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Abstract. Natural language interaction between a student and a tutor-
ing or an assistance system for mathematics is a new multi-disciplinary
challenge that requires the interaction of (i) advanced natural language
processing, (ii) flexible tutorial dialog strategies including hints, and (iii)
mathematical domain reasoning. This paper provides an overview on
the current research in the multi-disciplinary research project DIALOG,
whose goal is to build a prototype dialog-enabled system for teaching to
do mathematical proofs. We present the crucial sub-systems in our archi-
tecture: the input understanding component and the domain reasoner.
We present an interpretation method for mixed-language input consist-
ing of informal and imprecise verbalization of mathematical content, and
a proof manager that supports assertion-level automated theorem prov-
ing that is a crucial part of our domain reasoning module. Finally, we
briefly report on an implementation of a demo system.

1 Introduction

The goal of the DIALOG project is to develop a conversational tutoring system
helping students to construct proofs of mathematical theorems. Empirical evi-
dence shows that collaborative problem solving, question answering, and error
correction are among the most prominent features of naturalistic one-to-one tu-
toring and that efficient tutoring exhibits certain dialog patterns characteristic
of these collaborative processes [16]. In our project, we aim at a flexible tutor-
ial dialog in which students interact with the system by proposing proof steps
using an unconstrained mixture of natural language and mathematical symbols,
and the system responds with pedagogically plausible and effective feedback and
guidance toward the solution.

Since little is known about the use of natural language in student—tutor di-
alogs about proofs, we conducted two data—collection experiments. Students with
varying educational backgrounds and little to fair prior mathematical knowledge
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solved proofs in naive set theory! (e.g., K((AUB)N(CUD)) = (K(A)NK(B))U
(K(C) N K(D))) and binary relations (e.g., (Ro S)™! = S~ o R™1) with the
help of a system simulated in a Wizard-of-Oz setup. Mathematics teachers were
hired as tutors. Both students and tutors were allowed to formulate turns us-
ing natural language (German) typed on the keyboard and/or mathematical
symbols available on a graphical interface. The students were instructed to en-
ter proof steps, rather than complete proofs, to encourage a dialogue with the
system.

More details on the setup of the first experiment can be found in [5] and the
second in [8]. [32] and [9, 33] present the first and the second corpus respectively.
Fig. 1 shows an excerpt from a typical session.?

The experience gained in the Wizard-of-Oz experiments and the analysis of the
collected data let us identify three major research topics:

A. Interpretation of informal input mizing natural language and formal expres-
sions. The mathematical content in the dialog utterances is (i) verbalized to
varying degree, resulting in a mizture of natural language and mathematical
expressions, and (ii) presented informally and imprecisely. These characteris-
tics affect input analysis at the sentence-level, the discourse-level as well as at
the level of domain interpretation. The language phenomena are by themselves
not new, but the genre of an informal mathematical dialog adds new twists to
them [6, 18]. The mixed language and the imprecision call for deep syntactic and
semantic analysis to ensure a correct mapping of the surface input to the formal
representation of the proof step.

B. Evaluation of proof steps. In order to evaluate a proof contribution, a domain
reasoner that supports the tutoring process must be capable of judging contex-
tual appropriateness of proof-steps. We identified the following appropriateness
criteria pertinent to tutoring:

Soundness: Can the proof step be reconstructed by a formal inference system
and logically and pedagogically verified?

Granularity: Is the ‘argumentative complexity’ or ‘size’ of the proof step logi-
cally and pedagogically acceptable?

Relevance: Is the proof step logically and pedagogically useful given the goal?

Existing Mathematical Assistant systems, such as 2MEGA [28], are capable of in-
teractive proof search and correctness verification. Soundness is a fairly tractable
criterion for which different techniques are readily available [34]. However, proof
step evaluation with respect to granularity and relevance is a novel and interest-
ing application challenge for theorem proving systems.

C. Handling underspecification. A typical characteristic of proofs constructed by
students is content underspecification and ambiguity. Interestingly,
underspecificationalso occurs in shaped-up textbook proofs [34]. To illustrate

! K denotes the set complement.
2 Here and further T and S denote tutor and student turns respectively.
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T1: Bitte zeigen Sie: ANB € P((AUC)N(BUQ)) !
Please show ANB € P(AUC)N(BUCQ)) !

S1: (AuC)n(BUQC))=C

T2: Das ist falsch. Nach der Distributivitét gilt: (AUC)N(BUC) =(ANB)UC.
Somit gilt auch: P((AUC) N (BUC)) = P((AN B) U C). Wie geht es nun
weiter?
[This is wrong. By distributivity we have: (AUC)N(BUC) = (AN B)UC.
Therefore, we also have P((AUC)N (BUC)) = P((An B)UC(C). How to
continue?/

S2: (AN B) muss in P((AUC)N(BUCQC)) sein,da (ANB)e (ANB)UC
[(AN B) must be in P((AUC) N (BUCQC)) since (ANB) € (ANB)UC]

T3: Was meinen Sie mit: (AN B) muss in P((AUC) N (BUC)) sein?
[What do you mean by: (AN B) must be in P((AUC)N (BUC(C))?]

S3: da P((AUC)N(BUC)) nach Distributivgesetz gleich P((ANB)UC) ist muss
(ANB) in P((AUC)N(BUC)) enthalten sein.
[since P((AUC)N(BUCQ)) equals by distibutivity P((ANB)UC) (AN B) must
be contained in P((AUC)N(BUC(C)) ]

T4: Was meinen Sie mit: muss (AN B) in P((AUC) N (B UQC)) enthalten sein.
Meinen Sie Element oder Teilmenge?
[What do you mean by: (AN B) must be in P((AUC)N(BUC)). Do you mean
as element or subset?]

S4: (ANB) e P((ANB)UC)

T5: Meinten Sie vorhin wirklich: (AN B) € (ANB)UC?
[Do you really mean (AN B) € (ANB)UC?]

S5: ja
[yes]

T6: Das ist falsch, denn (AN B) C (ANB)UC. (AN B) und (AN B) U C sind
Mengen und keine Elemente voneinander. Was folgt als néchstes? ...
[This is wrong because (ANB) C (ANB)UC. (ANB) and (AN B)UC are
sets and not elements of each other. What comes next? ... ]

Fig. 1. An example dialog. P denotes the powerset.

proof-step underspecification let us consider the following excerpt from the first
corpus:

T: Please show : K ((AUB)N(CUD)) = (K(A)NK(B))U(K(C)NK (D))
S: by the deMorgan rule K((AUB)N(CUD)) = (K(AUB)UK(CUD))
holds.

From the point of view of linguistic analysis, S is unambiguous. However, the
proof-step that the utterance expresses is highly underspecified from a proof con-
struction viewpoint: it is neither mentioned how the assertion is related to the
target formula, nor how and which deMorgan rule was used. S can be obtained
directly from the second deMorgan rule VX, Y. K(XNY) = K(X)UK(Y) by in-
stantiating X with (AUB) and Y with (CUD). Alternatively, it could be inferred
from T by applying the first deMorgan rule VX, V. K(X UY) = K(X)N K(Y)
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from right to left to the subterms K (A)NK (B) and K(C)NK (D). Proof assistant
systems, typically require such detailed specification to execute the user’s proof-
step directive. Differentiating between proof construction alternatives can be
important from the tutoring perspective.

Based on the empirical findings, we implemented a prototype system that
can handle variations on the dialog in Fig. 1 and several other dialogs from
our corpora. The demo system consists of a graphical user interface, an input
analyzer, a proof manager, a tutorial manager, and a natural language generator.
The modules are connected and controlled by an Information State Update-
based dialogue manager [29]. Our research and, in particular, the implementation
focus has been mainly on the input analyzer, whose task is to interpret and
formally represent the linguistic content of the student’s dialog contributions,
and the proof manager, whose task is to evaluate the student proof step proposals
with the help of a domain reasoner: the automated theorem prover {2MEGA. For
the other modules we provided baseline functionality required to carry out the
dialogs. More details on the DIALOG demo system can be found in [10].

The remainder of this paper is organized as follows: In Sections 2 and 3 we
describe our approach to mixed language interpretation and proof step evalua-
tion, respectively. In Section 4, we overview the related work. In Section 5, we
summarize and present the conclusions.

2 Interpreting Informal Mathematical Discourse

For student utterances that contain proof-relevant parts, such as S2 in Fig. 1,
the task of input interpretation is to identify these and represent them in a
format interpretable by a domain reasoner. To ensure correct mapping to this
representation, deep analysis is needed. It is further justified by the varying
degrees of mathematical content verbalization and imprecision, common in the
informal mathematical discourse in our corpus, as well as the need for consistency
of interpretation required for proof-step evaluation by the domain reasoner.

In this section, we present an overview of our input interpretation procedure;
we omit obvious pre-processing such as sentence- and word-tokenization. We first
describe three basic components that provide minimal functionality required to
analyze simple cases of mixed language. Then we discuss extensions for some
of the more complex phenomena. For a more detailed discussion of language
phenomena and interpretation procedure see [30,31,18,19]

2.1 Baseline Processing

A simple utterance consisting of a mixture of mathematical expressions and nat-
ural language is the utterance S presented in Section 1: “by the deMorgan rule
K(AuB)N(CuUD)) = (K(AUB)UK(CUD)) holds.”. We shall use it to
illustrate the step-wise analysis process that proceeds as follows: we first identify
mathematical expressions in order to encapsulate them before syntactic parsing.
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During syntactic parsing, a domain-independent semantic representation is con-
structed. This we then refine to obtain a domain-specific interpretation suitable
as input to the domain reasoner.

Mathematical expression parsing. To recognize and parse mathematical expres-
sions we use knowledge about operators and identifiers the domain and relevant
for the given problem, e.g., U, N, K. For the purpose of subsequent syntactic and
semantic parsing, each mathematical expression is assigned a symbolic token
corresponding to its type.

In our example, the expression K ((AUB)N(CUD)) = (K(AUB)UK(CUD))
is assigned the type FORMULA. The token representing the expression type is
substituted for the original expression resulting in the following input to the
parser: “by the deMorgan rule FORMULA holds.”

Syntactic parsing and semantic interpretation. The parser processes sentences
and syntactically well-formed fragments, and constructs a representation of their
linguistic meaning (LM). The LM is represented as a relational dependency
structure closely corresponding to the tectogrammatical level in [26].

To obtain the LM, we use the OpenCCG parser (openccg.sourceforge.net)
for which we develop a lexically-based Combinatory Categorial Grammar for
German [13]. Our motivation for using this grammar framework is two-fold:
first, it is well known for its account of coordination phenomena, widely present
in mathematical discourse. Second, mathematical expressions, represented by
their types, lend themselves to a perspicuous categorial treatment as follows:
In the course of parsing, we treat symbolic tokens representing mathematical
expressions on a par with lexical units. The parser’s lexicon encodes entries for
each mathematical expression type represented by its token (e.g. TERM, FORMULA)
together with the syntactic categories the expression may take (e.g. the category
of a noun phrase, np, for TERM, the category of a sentence, s, for FORMULA). By
designing one grammar that allows a uniform treatment of the linguistic content
and the mathematical content, we aim at a consistent analysis of different degrees
of mathematical content verbalization.

Domain interpretation. The LM representations built by the parser are domain-
independent. To obtain domain-specific interpretations, we implemented a step-
wise procedure that gradually assigns domain-specific semantics to predicates
and relations in the LM.

As a first step, we use a semantic lexicon to map (parts of) the LM repre-
sentations to domain-independent conceptual frames. The input structures are
described in terms of tectogrammatical valency frames of lexemes that evoke a
given concept. The output structures are the evoked concepts with roles indexed
by tectogrammatical frame elements. Where relevant, sortal information for role
fillers is given. For example, the Norm tectogrammatical relation (TR) evokes
the concept of a Rule. The dependent in the Norm-relation identifies the rule
according to which the main proposition holds.

As a second step, semantic lexicon concepts are mapped to domain-specific in-
terpretations using a domain ontology. The ontology is an intermediate
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gilt : hold — Asserting — Fact

gilt : hold
DM FORMULA : DM orm FORMULA :
NORM K ((AUB)N(CUD)) = — Rule K((AUB)N(CUD)) =
(K(AUB)UK(CUD)) — Justification (K(AU B)U K(C U D)) PAT
PAT — Proposition

Fig. 2. Interpretation of the utterance “by the deMorgan rule K((AUB)N(CUD)) =
(K(AU B)UK(CU D)) holds.”; DM stands for DeMorgan

representation that mediates between the discrepant views of linguistic analysis
and deduction systems’ representation [17]; it thus has a potential of providing
a direct link to logical definitions in a mathematical knowledge base, such as
MBase [21]. The motivation for using an intermediate representation instead of
directly accessing a mathematical knowledge base will become clear when we
discuss ambiguity in Section 2.2.

Let us return to the example utterance: In Fig. 2 on the left, we show the rep-
resentation of its linguistic meaning built by the parser. The structure consists
of the German verb, “gilt”, with the symbolic meaning hold, as the head, and
two dependents in the TRs: Norm and Patient. The right part of Fig. 2 shows
the assignment of domain-specific meaning: First, based on the semantic lexicon,
the concept Assertion is assigned to hold, with Patient and Norm dependents
as the Proposition and Rule respectively. Next, Assertion is interpreted as the
Fact and the Rule as Justification in a proof-step. Applying re-writing trans-
formations, we obtain the following underspecified representation used by the
domain reasoner [4]: “Fact K((AUB)N (CUD)) = (K(AUB)UK(CUD))
By DeMorgan-1 From .”.

The baseline processing described so far covers simple cases of the mixed
language: it suffices to interpret utterances where terms or complete formulas
are embedded within natural language parts. However, our corpus contains more
complex cases of interleaved mathematical expressions and natural language. We
turn to their processing in the next section.

2.2 Domain- and Context-Specific Processing

Our corpus contains a range of more complex phenomena typical for informal
mathematical discourse, which the baseline processing described above cannot
handle. In this section, we describe several extensions that we have implemented
so far: parsing extensions to handle tightly interleaving mathematical expressions
and natural language, and domain model extensions to handle ambiguous and
imprecise formulations.

Parsing extensions. Input utterances often contain incomplete mathematical
formulas interleaved with natural language expressions, where these two modes
interact, e.g. (1) and (2) below. To handle these cases we made the following
extensions: (i) the mathematical expression parser recovers information about
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incomplete formulas using domain-knowledge of syntax and semantics of formal
expressions, and (ii) the syntactic parser’s lexicon contains the corresponding
categories and their semantics.

For example, in (1), the parser recognizes the operator € as requiring two
arguments: one of type inhabitant and the other set.

(1) AnBist € von CU(ANB)
ANBise of CU(ANDB)

Accordingly, € is assigned a symbolic type 0 FORMULA O, where O indicates the
arguments missing in the left and the right context. We have included a lexical
entry O FORMULA O of syntactic category s/ppiez:won\RP in the lexicon of the
syntactic parser.

Example (2) illustrates a case of tight interaction between mathematical ex-
pressions and the surrounding natural language:

(2) B enthaelt kein x € A
B contains nox € A

Here, the negation word “kein” has z, i.e. part of the expression x € A, in its
scope. The intended meaning of (2) can be paraphrased as B contains no x such
that x € A.

To account for this interaction we identify substructures of mathematical ex-
pressions that may lie in the scope of a natural language expression. In (2), the
expression x € A is of type FORMULA. The relevant substructures are obtained
by splitting the formula at the top node. As a result, we obtain two readings of
the expression: TERM; 0 FORMULA; and FORMULA O, TERM,; and parse the utter-
ance with them. The lexical entry for 0 FORMULA (formula with a missing left
argument) is of syntactic category s\np (and semantics corresponding to such
that TERM has property FORMULA), while the entry for FORMULA O (formula
with a missing right argument) is of category s/np. This allows us to obtain the
intended reading of (2).

Domain modeling extensions. Another common phenomenon in informal math-
ematical discourse is ambiguity and/or imprecision. For example, the verb “en-
thalten” in the previously mentioned example (2), can in principle mean a subset,
a membership, or a substring relation. To handle such cases, we extended the do-
main model. We added semantic relations that represent general concepts that
subsume the specific mathematical relations. For example, the verb “enthalten”
(contain) evokes either the concept of CONTAINMENT or that of STRUCTURAL
COMPOSITION. CONTAINMENT in its most common interpretation specializes to
the domain relations of (strict) SUBSET or ELEMENT with two roles: CONTAINER
and CONTENTS. These are filled by the fillers of the TRs Actor (act) and Patient
(pat) in the tectogrammatical valency frame of “enthalten”, respectively. The
STRUCTURAL COMPOSITION relation holds between a STRUCTURED OBJECT and
its structural sub-component in the SUBSTRUCTURE role. Similarly, these roles
are filled by the Actor and the Patient dependent, respectively. The semantic



8 C. Benzmiiller et al.

(containg,edq, Xact, Ypat) — (CONTAINMENTprcq, CONtainerqyce, contentspqe) (a)

(Containpreda Xact: formula, Ypat:formula,) -
(STRUCTURAL COMPOSITIONpred, Structured objectqct, substructurepqt) (b)

Fig. 3. Example entries from the semantic lexicon

lexicon entry of the verb “enthalten” (contain) with the mappings of the con-
cept roles described above is shown in Fig. 3. The domain ontology and semantic
lexicon are presented in more detail in [31,19].

We have so far concentrated on a proof-of-concept implementation of the input
interpretation components. Our interpretation module is capable of producing
analyzes of utterances similar to the ones in Fig. 1 as well as several variants
thereof. We have implemented an OpenCCG grammar that covers variants of
the syntactic structures of the utterances. We have also manually encoded the
relevant part of the domain ontology required to account for the domain-specific
interpretation. Our focus so far has not been on robust coverage, but rather on
a systematic consistent representation of the most frequent constructions in the
format readable by the domain reasoner.

3 Mathematical Domain Reasoning

Determining whether a proof step is appropriate requires that a mathematical
domain reasoner can represent, reconstruct, and validate the proof step (includ-
ing all the justifications used by the student) within its representation of the
current proof.

Consider, for instance, utterance (a) in Fig. 4: Verification of the soundness
of this utterance boils down to adding D as a new assertion to the proof state
and to proving that: (P1) (AA B),(A = C),(C = D),(F = B) F D. Solving
this proof task confirms the logical soundness of utterance (a). If further explicit
justifications are provided in the student’s utterance (e.g. a proof rule) then we
have to take them into consideration and, for example, prove (P1) modulo these
additional constraints.

Soundness evaluation can be supported by different methods — including some
that avoid dynamic theorem proving system. On one extreme “gold-standard”
proofs could be selected and the proposed partial proofs could be matched against
them. The other extreme would be to interpret the problem as a challenge to proof
theory and try to develop and implement a proper proof theoretic approach to dif-
ferentiate between ‘pedagogically good’ proofs and proof steps and pedagogically
‘less acceptable’ proofs and proof steps in the space of all proofs for a given prob-
lem. A notion of a ‘good proof’ is, for instance, presented in [11].

Soundness is, however, only one of the criteria along which a proof step should
be evaluated in a tutorial context. For instance, a proof step may be formally
relevant in purely logical terms, but considered irrelevant when additional tuto-
rial aspects are taken into account. This is, for instance, the case when the goal
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Proof State
Example Student Utterances

(A1) ANB.
(A2) A= C. (a) From the assertions follows D.
(A3) C = D (b) B holds.
(A4) F = B. (c) It is sufficient to show D.
(d) We show E.
(G) DVE

Fig. 4. Proof step evaluation scenario: (A1l)-(A4) are assertions that have been intro-
duced in the discourse and that are available to prove the goal (G). (a)-(d) are typical
examples of proof step proposed by students.

of the session is to teach a particular proof technique. Well known examples are
proof by induction on the naturals, proof by structural induction, and proof by
diagonalization. Often different proof techniques are applicable to one and the
same problem and this causes pedagogically different, but formally correct and
relevant, proof directions.

On the other hand, a step that is sufficiently close to a valid proof step may be
considered pedagogically relevant while being logically irrelevant. Proof step eval-
uation should therefore support dynamic step-by-step analysis of the proof con-
structed by the student using the criteria of soundness, granularity and relevance
not only with respect to a purely logical dimension, but also a tutorial dimension.

So far we have mainly focused on the logical dimension; the hypothesis is that
the solution in the logical dimension is a prerequisite for solving the proof step
evaluation problem involving also the tutorial dimension. Much further research
in this direction is clearly needed.

In the following sections, we discuss some of the issues related to evaluat-
ing granularity and relevance. We illustrate the challenges using a constructed
example in Fig. 4. See also [7].

3.1 Granularity

Granularity judgment refers to analysis of the ‘complexity’ or ‘size’ of proofs
instead of the mere existence of proofs. For instance, evaluation of (a) boils
down to judging the complexity of the generated proof task (P1).

Let us, for example, use Gentzen’s natural deduction (ND) calculus [12] as
the proof system F. As a first and naive logical granularity measure, we may
determine the number of F-steps in the smallest F-proof of the proof task for
the proof step utterance in question; this number is taken as the argumentative
complexity of the uttered proof step. For example, the smallest ND proof for
utterance (a) requires three proof steps: we need one ‘Conjunction-Elimination’
step to extract A from A A B, one ‘Modus Ponens’ step to obtain C' from A and
A = C, and another ‘Modus Ponens’ step to obtain D from C and C = D.
On the other hand, the smallest ND proof for utterance (b) requires only ‘1’
step: B follows from assertion A A B by ‘Conjunction-Elimination’. If we now
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fix a threshold that tries to capture, in this sense, the ‘maximally acceptable
size’ of a single argument, then we can distinguish between proof steps whose
granularity is acceptable and those which are not. This threshold may be treated
as a parameter determined by the tutorial setting.

However, the ND calculus together with naive proof step counting does not
always provide a cognitively adequate basis for granularity analysis. The reason
is that two intuitively very similar student proof steps (such as (i) from A = B
and B = C infer A = C and (ii) from A < B and B < C infer A < C) may
actually expand into base-level ND proofs of completely different size. Related
research has shown that the standard ND calculus does not adequately reflect
human-reasoning in this respect [24]. Two important and cognitively interesting
questions thus concern the appropriate choice of a proof system - and ways to
measure the ‘argumentative complexity’ of an admissible proof step.

3.2 Relevance

Relevance is about usefulness and importance of a proof step with respect to the
given proof task. For instance, in utterance (c) the proof goal D V E is refined
to a new goal D using backward reasoning, i.e., the previously open goal DV FE
is closed and justified by a new goal.

Solving logical relevance problem requires in this case checking whether a
proof can still be generated in the new proof situation. In this case, the task
is thus identical to (P1). An irrelevant backward proof step, according to this
criterion, is (d) since it reduces to the proof task: (P2) (AAB),(A = C),(C =
D), (F = B) - E for which no proof can be generated. Thus, (d) is a sound re-
finement step that is however irrelevant. This simple approach appears plausible,
but needs to be refined. The challenge is to exclude detours and to take tutorial
aspects into account (in a tutorial setting we are often interested in teaching
particular styles of proofs, particular proof methods, etc.). This also applies to
the more challenging forward reasoning case where for instance, utterance (b)
should be identified as an irrelevant step.

4 Related Work

Input analysis in dialog systems is commonly done with shallow syntactic analy-
sis combined with keyword spotting where short answers may be elicited by
asking closed-questions [14]. Slot-filling templates, however, are not suitable rep-
resentations of the content in our domain. Moreover, the interleaving of natural
and symbolic language makes keyword spotting difficult because of the variety
of possible verbalizations.

Statistical methods are often employed in tutorial systems to compare student
responses with pre-constructed gold-standard answers [15]. In our context, such
a static modeling solution is impossible because of the wide quantitative and
qualitative range of acceptable proofs, i.e., generally, our set of gold-standard
answers is infinite. In this respect our approach is closely related to the Why2-
Atlas tutoring system [22]. This system presents students with qualitative physics
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questions and encourages them to explain their answers with natural language.
Different to our approach is that the students first present a complete essay of
their answer to the system. The system then employs propositional logic rep-
resentations and propositional abductive reasoning to analyze the answer with
respect to a set of anticipated solutions. The analysis results are then used to cre-
ate a dialog in which misconceptions in the students essay are addressed. In our
scenario propositional logic appears insufficient and we employ first-order and
higher-order representations and reasoning techniques. Similar to our scenario,
however, is the problem of multiple proof alternatives that have to considered
in the analysis tasks.

To analyze human-oriented mathematical proofs, shaped-up textbook proofs
have been investigated in the deduction systems community (see [34,27]). Claus
Zinn [34], for instance, addresses complete, carefully structured textbook proofs,
and relies on given text-structure, typesetting and additional information that
identifies mathematical symbols, formulas, and proof steps. The DIALOG corpus
provides an important alternative view, since textbook proofs neither reveal the
dynamics of proof construction nor do they show the actual student’s utterances,
i.e., the student’s proof step directives. Our corpus also illustrates the style and
logical granularity of human-constructed proofs. The style is mainly declarative,
for example, the students declaratively described the conclusions and some (or
none) of the premises of their inferences. By contrast, many proof assistants
employ a procedural style in which proof steps are invoked by calling rules,
tactics, or methods, i.e., some proof refinement procedures.

Recent research into dialog modeling has delivered a variety of approaches
more or less suitable for the tutorial dialog setting. For instance, scripting is em-
ployed in AutoTutor [23] and a knowledge-based approach similar to ours is im-
plemented in the Geometry Tutor [1,2]. Outside the tutorial domain, the frame-
work of Information State Update (ISU) has been developed in the EU projects
TRINDI (http://www.ling.gu.se/research/projects/trindi/) and SIRIDUS
(http://www.ling.gu.se/projekt/siridus/) [29], and applied in various projects
targeting flexible dialog. An ISU-based approach with several layers of planning
is used in the tutorial dialog system BEETLE [35].

5 Conclusion

We presented our approach to interpreting informal mathematical discourse in
the context of tutorial dialogue and to evaluating the proof steps proposed by
the student by a back-end domain reasoning component. We employ a strat-
ified approach to interpreting the mixed natural- and mathematical language;
we first developed methods for basic cases, and enhanced them by techniques
for handling additional levels of complexity. Our interpretation method has the
potential of putting a tutorial system in a good position to apply strategies for
enhancing higher-level problem-solving skills of the student.

We have identified two previously unconsidered aspects of proof-step eval-
uation: relevance and granularity of proof-steps, that are important from the
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tutoring point of view. To address these criteria, it is not sufficient to merely
establish the existence of proofs. The system has to construct proofs with par-
ticular properties. It may be the case that evaluating different criteria requires
different theorem provers. Moreover, the system also needs to closely mirror
and reflect reasoning steps as they are typically preferred by humans. Generally,
the system will need to adapt to the capabilities of individual students and the
requirements of varying tutorial settings.

We have implemented an input interpretation component capable of rep-
resenting student utterances consisting of a mixture of natural language and
mathematical expressions, in a format that is interpretable by an automated
reasoning engine. The application of our approach to mathematical domains
that are more challenging than naive set theory, and its evaluation therein is
ongoing work. The hypothesis that assertion level reasoning [20] plays an essen-
tial role in evaluating appropriateness of underspecified partial proofs has been
confirmed. The fact that assertion level reasoning may be highly underspecified
in human-constructed proofs is a novel finding of our project (cf. [4]).

The implemented proof manager demonstrator helps to resolve underspecifi-
cation and to evaluate proof steps based on heuristically guided abstract-level
domain reasoning realized of the 2MEGA-CORE framework [3]. The PM has
been integrated also into the overall DIALOG system to communicate with the
other components of the system.

The evaluation of the system so far concentrates mainly on individual analy-
sis of specific aspects of single modules. One example presented in [25] is the
evaluation of mechanized granularity judgments of proof steps, using deductive
techniques based on natural deduction calculus and the PSYCOP approach [24].
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