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Abstract. (i) We lay down the groundwork for the treatment of almost hyperde-
finable groups: notions from [BTW04] are put into a natural hierarchy, and new
notions, essential to the study to such groups, fit elegantly into this hierarchy.

(ii) We show that “classical” properties of definable and hyperdefinable groups in
simple theories can be generalised to this context. In particular, we prove the
existence of stabilisers of Lascar strong types and of the connected and locally
connected components of subgroups, and that in a simple one-based theory an
almost hyperdefinable group is bounded-by-abelian-by-bounded.

Introduction

This paper is concerned with the generalisation of results from [Wag05, Wag01] to the
context of α/β-groups (see below for the definition), first introduced as almost hyperde-
finable groups in [BTW04]. Loosely speaking, an α/β-group is a group whose underlying
set of elements is of the form G = Gb/R, where Gb is a type-definable set, and R =

∨
i∈I Ri

is an equivalence relation which is not type-definable but is only an infinite disjunction
of type-definable relations (satisfying some additional properties).

There are two aspects to our task. The first is to lay the groundwork for the model-
theoretic treatment of such groups. This was partially done in [BTW04], where some
basic definitions were given and the existence of well-behaved stratified local ranks was
proved for almost hyperdefinable groups (and polygroups). However, in order to study
a group we must consider its subgroups, and in that respect previous work leaves much
to want. As we consider subgroups of α/β-groups in the current paper we find ourselves
forced to consider the new notion of β/β-subgroups, namely subgroups Hb/R ⊆ Gb/R
where Hb is not type-definable, but again only an infinite union of type-definable sets
(with some additional properties). While doing so we find ourselves working in a rather
weird category, where “obvious” notions such as intersection can be somewhat surprising.

The other aspect is actually proving properties of α/β-groups and their subgroups.
While doing so, we shall try to skip tedious step-by-step verifications in this new context
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of proofs already given in [Wag05, Wag01], if the adaptation of the existing proofs is
sufficiently trivial. We rather wish to concentrate on new ideas, such as methods to
recover α-elements and α/β-groups from such β/β-groups, using stratified local ranks
and the intermediary notion of an α−/β-group.

Finally, a word (or several) about our terminology, compared with that of [BTW04]
and before. Originally, one considered definable groups, or at most type-definable groups,
which lived in the real or in an imaginary sort. Then in [Wag01], one starts considering
groups living in hyperimaginary sorts, namely in quotients by type-definable equivalence
relations. In a hyperimaginary sort the distinction between a type-definable and a defin-
able set is meaningless, so we call them hyperdefinable. The next level comes in [BTW04],
where we have to replace the type-definable equivalence relation by which we divide by
an almost type-definable one, namely a “nice” union of type-definable relations. The
quotient is named almost hyperdefinable, in analogy with hyperdefinable. So in “almost
type-definable”, the “almost” qualifies the numerator (in fact there isn’t necessarily a
denominator), whereas in “almost hyperdefinable” it qualifies the denominator.

This is a bit of a mess (for which the author has to admit responsibility), but it works
quite well, until in the current paper we encounter quotients of almost type-definable sets
by almost type-definable equivalence relations. Putting these into the existing naming
scheme would be complicated, since we’d have to say if the “almost” applies to the
numerator, denominator, or both. In addition, the prefixes “type-” and “hyper” have
somewhat lost of their original meaning, since they not longer designate generalisations
of plain first-order definability (we’re way past that stage), but merely serve to tell us
how to interpret the adverb “almost”.

We therefore decided that instead of trying to adapt by force a pretty inadequate
naming scheme, we should use a new one which would be designed for the purposes of
this paper; and while we’re at it, why not make it more compact as well. We consider
three levels of definability, γ, β, and α, increasingly well-behaved: α-definable is anything
that was before [BTW04], namely definable, type-definable or hyperdefinable, between
which we do not find the need to make any distinction (in this context!); γ-definable just
means graded, that is a union of α-definable sets with some compatibility conditions; and
β-definable, which lies in between, is what we called in [BTW04] almost type-definable,
namely something which is γ-definable, but is “sufficiently close” to being α-definable.
Thus almost hyperdefinable is α/β, the new kind of groups we introduce is β/β-groups,
etc.. If only the rest were just as clear and intuitive as this. . .

1. General definitions and terminology

1.1. Gradings.

Convention 1.1. In the spirit of [Ben03b], we do not distinguish between real, imagi-
nary and hyperimaginary elements and sorts, and call them all α-elements and α-sorts,
respectively. Similarly, classically definable, type-definable, and hyperdefinable sets are
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all called α-sets.
Later on we will define more general kinds of elements; however, parameters over which
sets are defined are always α-elements.

Thus, this paper fits naturally in the context of [Ben03b]. In particular, everything we
say here is valid in a simple thick cat (see [Ben03c, Ben03d]). However, if the reader so
wishes, she or he may assume that we work with a first order theory.

Definition 1.2. Let I be a directed partial order.
A γI-set (over an α-element a) is a family of α-sets (defined over a) XI = {Xi : i ∈ I},
increasing along I: i ≤ j =⇒ Xi ⊆ Xj. We may sometimes just write X =

⋃
i∈I Xi, and

this decomposition of X into subsets is called its grading.
We may omit the subscript I if it is clear from the context.

The idea is that the grading is an essential part of the structure on the set X. Classical
properties are defined for X with the additional requirement that they be compatible with
the grading. For example:

Definition 1.3. Let XI and YJ be γ-sets, and f : I → J a map. Then XI ⊆f YJ (X
is f -gradedly included in Y ) if Xi ⊆ Yf(i) for all i ∈ I. If we do not care much for the
particular map f we may simply write XI ⊆ YJ , but it is understood that is a graded
inclusion.
X =f,g Y (X is f, g-gradedly equal to Y ) if X ⊆f Y and X ⊇g Y . If I = J one f : I → I
should suffice and we write X =f Y , and of course we may omit the subscript altogether.

It is important that all relations between γ-sets (inclusion, equality, etc.) are graded in
the sense defined above. On the other hand, since we never consider ungraded relations,
we allow ourselves to omit the qualifier: thus equal always means gradedly equal, and so
forth.

We identify equal sets, and will make sure that all the properties that we define will be
invariant under equality. However, when dealing with infinitely many γ-sets, one needs
to be more careful. If {Xj : j < λ} and {Y j : j < λ} are two families of γI-sets, we say
that Xj = Y j uniformly if exists one f : I → I such that Xj =f Y j for all j < λ (rather
than: for all j < λ there exists fj : I → I. . . ). For example:

Definition 1.4. Let X be a γI set and a an α-element. Then X is a-invariant if all
a-conjugates of X are uniformly equal.

Lemma 1.5. An a-invariant γI-set X is equal to a γI-set over a.

Proof. Say that X is defined over b, and write Xi = Xi(b) and q = tp(b/a). By assumption
there is f : I → I such that Xi(b) =f Xi(b

′) for all b′ ≡a b. Let Yi = {c : ∃z [q(z) ∧ c ∈
Xi(z)]}. Then clearly X =f Y . qed1.5

Still, this allows us some liberty with the set I:
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Lemma 1.6. Let XI be a γ-set, and J any directed partial order. For (i, j) ∈ I × J ,
define X ′

i,j = Xi. Then X ′

I×J is a γ-set and X = X ′.

Proof. Easy. qed1.6

Since moreover this can be done in a uniform fashion for a family of γI-sets, may always
assume, when given several γ-sets, that they are γI for the same I.

When considering the intersection of infinitely many sets, it would seem that the right
thing to do would be to define:

Definition 1.7. Let (Xα : α < λ) be all γI-set. We define their intersection
⋂

α Xα as
the γI-set (

⋂
α Xα)i =

⋂
α Xα

i .

Remark 1.8. We do not lose generality by the uniformity requirement. Indeed, if each
Xα is γIα then they are all naturally γQ

Iα , and we can still calculate their intersection.
In this case, we obtain the intersection in the non-graded sense, which will be noted by
⋂Q

α Xα. Thus,
⋂Q

α Xα in naturally a γQ

Iα-set. In particular, if all the Xα are γI , then
⋂Q

α Xα is naturally a γIλ-set.
If we do not have uniform gradings, this method is the best we can do. Of course, it has
the disadvantage that the order type by which we grade depends on the set of subgroups
which we intersect. In practice we will manage to have uniformity and keep I fixed.

For sets with additional structure (groups, equivalence relations, etc.) we shall also
require that the grading be compatible with the structure, and this is witnessed by some
f : I → I. For example:

Definition 1.9. A γI,f -equivalence relation in a sort is a γI-set R of pairs in this sort,
which is reflexive, symmetric, and f -gradedly transitive:

• a Ri a for all i ∈ I and a in the sort.
• a Ri b =⇒ b Ri a for all i ∈ I (and a, b in the sort).
• a Ri b ∧ b Ri c =⇒ a Rf(i) c for every a, b, c in the sort and i ∈ I.

If R is a γ-equivalence relation on some sort and X an α-set in this sort, then XRi =
{b : ∃a ∈ X b Ri a}. For a γI-set XI in this sort, we define XR

I = (XRi

i : i ∈ I).

Definition 1.10. Here R is a γI,f -equivalence relation.

(i) A γI-set X is R-complete if X = XR.
This means that uniformly, every element of X belongs to some R-class, and if
X intersects some R-class then it contains it.

(ii) A γ/γI,f -set is a formal quotient X/R where X is R-complete.
If X = Y R where Y is α, then X/R = Y R/R is α−/γ.
If X is (equal to) an α-set then X/R is α/γ.
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(iii) A γ-subset of a γ/γ-set X/R is a γ/γ-set Y/R (so Y is R-complete) where Y ⊆ X,
and we write Y/R ⊆ X/R.
An α-subset (α−-subset) of X is a subset that is α/γ (α−/γ) as a set.

Remark 1.11. Note that the (graded) intersection of uniformly R-complete sets is R-
complete, so we can speak of the intersection of infinitely many subsets of X/R, when
they are uniformly such.

Intuitively, we would like to consider X/R as the set {aR : a ∈ X}. This is wrong,
though, since this ignores all the graded information. The right way to define the struc-
ture on X/R is through the category of γ/γ-sets.

Here we only define maps between α/γ sets. We allow ourselves this simplification,
since all γ/γ-sets we will consider in this paper are subsets of α/γ-sets, and we are only
going to consider maps between them that are restrictions of maps from the surrounding
α/γ-sets. In fact, it does not seem at all clear what should be the “correct” definition of
a map between γ/γ-sets beside taking the restriction of a map between ambient α/γ-sets.

Definition 1.12. (i) Let X/R, Y/R′ be two α/γ-sets, and F ⊆ X × Y an α-set.
For a ∈ X write F (a) = {b′ : (a, b′) ∈ F}, and for b ∈ Y write F−1(b) = {a′ :
(a′, b) ∈ F}. Assume that:

• F is well-defined: F (aR) ⊆ bR′
uniformly for all a ∈ X and b ∈ F (a).

• F is everywhere-defined: X ⊆ F−1(Y )R1 for some 1 ∈ I.
Then F : X/R → Y/R is a (graded) map.

(ii) Two graded maps F,G : X/R → Y/R′ are equal if F (aR) = G(aR) uniformly for
all a ∈ X.

(iii) Let F : X/R → Y/R′, G : Y/R′ → Z/R′′ be maps. Define H = {(a, c) : ∃b b ∈
F (a) ∧ c ∈ G(b)}. Then the composition G ◦ F is defined as H : X/R′ → Z/R′′.
The identity idX/R : X/R → X/R is defined by the diagonal of X.
Consequently, if F : X/R → Y/R′ and G : Y/R′ → X/R are graded maps, then
we say that G = F−1 if G ◦ F = idX/R and F ◦ G = idY/R′ .

If we were to consider X/R as the set {aR : a ∈ X}, then F : X → Y would be the
map aR 7→ F (a)R′

. We remind though that this is formally wrong, and there is more
structure behind.

Remark 1.13. (i) The condition on F to be everywhere-defined is equivalent to: for
some map 1 ∈ I, for every a ∈ X: F (aR1) 6= ∅.

(ii) Two graded maps F,G : X/R → Y/R′ are equal if and only if there is 1 ∈ I such
that F ⊆ GR1×R′

1 and G ⊆ FR1×R′
1 .

We defined maps between α/γ-sets. A map between two γ/γ-sets is defined as the
restriction of a map between α/γ-sets containing them. More precisely:

Definition 1.14. Let F : X/R → Y/R′ be a map between α/γ-sets, and X ′/R ⊆ X/R.
Then F (X ′/R) is defined as F (X ′)R′

/R′. IF F (X ′/R) ⊆ Y ′/R ⊆ Y/R′ then F induces a
map F ¹X′/R: X ′/R → Y ′/R′.
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Clearly, an α-subset is a α−-subset. The converse is not true, and instead we have:

Lemma 1.15. Let Y/R ⊆ X/R be γ/γ-sets (so in particular, X and Y are R-complete).
Then Y/R is an α−-subset if and only if it is an (injective) image of an α/γ-set.

Proof. Consider an α−-subset Y/R = ZR/R ⊆ X/R, where Z ⊆ X is an α-set, so
Z/(R ¹Z) is an α/γ-set. Let F ⊆ Z × Z be the diagonal. Then F : Z/(R ¹Z) ↪→ X/R
and its image is Y/R.
Conversely, let Z/R′ be an α/γ-set, and F : Z/R′ → X/R a map (not necessarily
injective) whose image is Y/R. Then W = F (Z) ⊆ X is an α-set, and one verifies easily
that Y = WR. qed1.15

By R ¹Z we mean the γ-equivalence relation R′

I defined by a R′

i b ⇐⇒ (a Ri b ∧ a, b ∈
Z) ∨ a = b.

Remark 1.16. Notice that an injective image is not necessarily isomorphic to its domain.
In other words, an injective and surjective map is not necessarily invertible.
Thus the difference between an α-subset and an α−-subset is that between a “true” subset
and an embedded set.

1.2. Groups. We recall a definition from [BTW04]:

Definition 1.17. Let F be a purely functional signature.

(i) An α/γI-F-structure is a α/γI-set S = Sb/R equipped with maps F S : SnF → S
for every nF -ary function symbol F ∈ F . If we have infinitely many function
symbols, then we require that all F S be maps uniformly (that is, that the re-
quirements from a map hold uniformly for all F S).

(ii) If S is such a structure and S ′ = S ′b/R ⊆ Sb/R = S is a γ-subset, and in addition

it is uniformly closed under the functions F S (that is to say that F S((S ′b)nF ) ⊆

S ′b uniformly for all F ), then S ′ is a γ-substructure.
(iii) A γ/γ-structure is a γ-substructure of an α/γ-structure.
(iv) If S, S ′ are two γ-F -structures and G : S → S ′ a map, then it is a homomorphism

if G ◦ F S = F S′
◦ (G, . . . , G) (gradedly) for every F ∈ F .

Remark 1.18. Note that we only allow α/γ-structures as ambient structures, and γ/γ-
structures must live within such a structure. Compare this with Definition 1.12.

We can generalise Lemma 1.15 (this was also observed by Frank Wagner):

Lemma 1.19. Let S ′ be an γ/γ-structure, that is a substructure of an α/γ structure S.
Then S ′ is an α−-substructure if and only if it is an (injective) homomorphic image of
an α/γ-structure.

Proof. Given Lemma 1.15, the only thing that requires proving is that if S ′ = S ′bR
/R ⊆

S/R is a substructure with S ′b an α-set, then the structure can be pulled back to the

α/γ-set S ′′ = S ′b/(R ¹S′b).
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For sufficiently big 1 ∈ I we have F S(āR1) 6= ∅ for all ā ∈ Sb and F ∈ F . For a possibly

bigger 2 ∈ I we have then F S(S ′R1) ⊆ S ′R2 for every F ∈ F , whereby for some yet bigger

3 ∈ I: F S(āR1)R3 ∩ S ′b 6= ∅ for every ā ∈ S ′b and F ∈ F , since we assumed that S ′ was
uniformly closed under the maps F S.
Define F S′′

= {(ā, b) : b ∈ F S(ā)R3}. Then S ′′ is an α/γ-structure, and S ′′ ↪→ S is a
monomorphism onto S ′. qed1.19

Definition 1.20. Let T be a positive universal F -theory: each axiom is just a universally
quantified disjunction of equations of terms. Let S = Sb/R be a α/γ-structure. Then
S ² T if for some 1 ∈ I, for every axiom, if we substitute elements from Sb for the
variables and calculate possible values for the terms, then at least one of the equations
holds up to R1.
Since a γ/γ-structure is defined as a substructure of an α/γ-structure, and we only
consider universal theories, we do not need to worry about satisfaction of a theory in
such a structure: we will only consider substructures of models of the theory in question.

Definition 1.21. An α/γ-group is a model in the language {·, e,−1 } of the theory of
groups; an α/γ-homogeneous space is defined similarly, in a two-sorted language.
As said above, γ/γ-groups and γ/γ-homogeneous spaces are defined as substructures of
α/γ groups and α/γ-homogeneous spaces.

Convention 1.22. We work in an ambient α/γI-group G = Gb/R. For simplicity of
notation, and compatibility with [BTW04], we assume that for every a, b, c ∈ Gb:

(i) a · b 6= ∅

(ii) (a · b) · c ∩ a · (b · c) 6= ∅

(iii) a ∈ e · a ∩ a · e
(iv) e ∈ a · a−1 ∩ a−1 · a

(with the definitions given until now we only knew this up to some R1, but then we can
replace · with ·R1 and get these properties).

Remark 1.23. Let H = Hb/R ⊆ G. Then H ≤ G if and only if there is f : I → I such

that Hb
i
−1

· Hb
i ⊆ Hb

f(i) for every i ∈ I.

Proof. This is left as an exercise. qed1.23

1.3. Fullness and α−-subgroups. The fullness property has a somewhat particular
status: we would not expect it to hold for maps (morphisms) between structures, but we
would expect it to hold for maps which are the interpretation of operations within an
interpreted structure.

We recall from [BTW04]:

Definition 1.24. (i) A map F : X/R → Y/R′ is full if for some 1 ∈ I, bR′
⊆

F (aR)R′
1 uniformly for all a ∈ X and b ∈ F (a).
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(ii) Let k < n < ω. A map F : (X/R)n → Y/R′ is full in the kth argument if for
every a0, . . . , âk, . . . , an−1 ∈ X, the maps Fa0,...,âk,...,an−1 : X/R → Y/R′ defined
by Fa0,...,âk,...,an−1(a) = F (a0, . . . , ak−1, a, ak+1, . . . , an−1) are uniformly full.
F is full if it is full in every argument.

(iii) A γ/γ-structure S/R is full if F S is uniformly full for every F ∈ F .

Lemma 1.25. Let X/R and Y/R′ be α/γ-sets, and F : X/R → Y/R′ a map. Then the
following are equivalent:

(i) F is full.
(ii) There is 1 ∈ I such that, if (Zξ : ξ < λ) is a family of α-subsets of Y , then

F−1(ZR′

ξ )R1 = F−1(Z
R′

1
ξ )R uniformly.

(iii) There is 1 ∈ I such that if (Zξ : ξ < λ) is a family of α-subsets of X, then

F (ZR
ξ )R′

1 = F (ZR1
ξ )R′

uniformly.

Note that a family of α-sets means just that: there is no uniformity requirement on the
way that the Zξ are defined.

Proof. (i) =⇒ (ii). We may choose 1 ∈ I as in the definition of fullness, such that in
addition X ⊆ F−1(Y )R1 . Let (Zξ : ξ < λ) be a family of α-subsets of Y , and we need to

prove that F−1(ZR′

ξ )R1 = F−1(Z
R′

1
ξ )R uniformly.

By choice of R1, for every a ∈ X there is a′ R1 a such that F (a′) 6= ∅. If in addition

a ∈ F−1(Z
R′

1
ξ )Ri then there is also a′′ Ri a such that F (a′′) ∩ Z

R′
1

ξ 6= ∅. Let b ∈ F (a′):

then F (a′R) ⊆ bR′
, so there is some j such that b ∈ Z

R′
j

ξ , whereby a ∈ F−1(Z
R′

j

ξ )R1 , and

j depends only on i. Thus F−1(Z
R′

1
ξ )R ⊆ F−1(ZR′

ξ )R1 uniformly, and this inclusion does
not in fact depend on fullness, only on F ’s being total.

Conversely, assume that a ∈ F−1(Z
R′

i

ξ ), so there exists b ∈ F (a) ∩ Z
R′

i

ξ . We know that

F (aR)R′
1 ⊇ bR′

uniformly for all such a, b, so there is j which depends only on i such

that Zξ ∩ F (aRj)R′
1 6= ∅, whereby a ∈ F−1(Z

R′
1

ξ )Rj . We obtain F−1(ZR′

ξ ) ⊆ F−1(Z
R′

1
ξ )R

uniformly.
(ii) =⇒ (iii). Let (Zξ : ξ < λ) be a family of α-subsets of X. We may assume that

1 ∈ I is as in the antecedent, and in addition satisfying X ⊆ F−1(Y )R1 . The uniform
inclusion F (ZR

ξ )R′
1 ⊆ F (ZR1

ξ )R′
follows from the definition of a well-defined map. For the

other, let b ∈ F (ZR1
ξ )R′

i , so F−1(bR′
i)R1∩Zξ 6= ∅. On the other hand, by assumption there

is j which depends only on i such that F−1(bR′
i)R1 ⊆ F−1(bR′

1)Rj , whereby b ∈ F (Z
Rj

ξ )R′
1 ,

as required.
(iii) =⇒ (i). Taking Za = {a}, F (aR1)R′

⊆ F (aR)R′
1 uniformly for all a. qed1.25

In groups the situation is rather simple, due to the existence of inverses. The following
is proved in [BTW04]:

Fact 1.26. (i) Every α/γ-group is full.
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(ii) if 〈G,X〉 is a homogeneous space, with ·X : G × X → X the group action, then
it is full if and only if ·X is full in the first argument.

Remark 1.27. With Convention 1.22, we obtain a stronger version of fullness for G,
namely that aR · b = a · bR = cR uniformly for all a, b ∈ Gb and c ∈ a · b.

The issue of fullness of homogeneous spaces is essential for the usefulness of stratified
ranks (in a simple theory, see [BTW04]).

Assume that 〈G,X〉 = 〈Gb/R,Xb/R′〉 is an α/γ-homogeneous space. For x ∈ Xb, let
rx : G → X be defined by rx(g) = g · x. We define Gb

x = r−1
x (xR′

)R = r−1
x (xR′

)R1 (for
some 1 ∈ I, which we know must exist), and Gx = Gb

x/R is defined as the stabiliser of x.

Conversely, if H ≤ G we can define RH,l
i = {(g, g′) : g = g′ ∨ g ∈ g′ · Hb

i }. By
Convention 1.22, this is an equivalence relation; the quotient G/H is defined as Gb/RH,l,
and 〈G,G/H〉 has a natural structure of an α/γ-homogeneous space. Finally, it can be
verified by the reader that in the latter case GgH = gHg−1, and in the former G/Gx is
isomorphic to the orbit of x (all gradedly, of course).

This is directly connected with the fullness of homogeneous spaces:

Proposition 1.28. Assume that G is α/γ. A subgroup H ≤ G is α− if and only if it is
the stabiliser of an element in a full homogeneous space over G.

Proof. Assume that H = HbR
/R ≤ G = Gb/R where Hb is α. Take RH,l

i = {(g, g′) : g =
g′ ∨ g ∈ (g′ · Hb)Ri}. This is not precisely what we defined above, but in this particular
case it is gradedly equal to it, and therefore just as good.
Let f : I → I witness the fullness of G, namely (g · h)R ⊆f gR · h for all g, h ∈ Gb. Then:

(gR
f2(i) · g′)RH,l

1 = ((gR
f2(i) · g′) · Hb)R1

⊇ (g · g′)Rf(i) · Hb

⊇ ((g · g′) · Hb)Ri = (g · g′)RH,l
i

Thus f 2 and any 1 ∈ I witness the fullness of 〈G,G/H〉, and clearly H = GeH .
The converse is a special case of Lemma 1.25. qed1.28

1.4. β notions. The notion of a β-definable object lies somewhere between α-definable
and γ-definable objects. A βI-object is a γI-object XI such that there is 1 ∈ I for
which X1 is very similar to the whole of X, the precise definition of which depending
on the nature of the object in question. In order to make 1 explicit, we may speak of a
βI,1-object.

We give the basic definitions, as well as a few example and properties, without assuming
that the theory is simple. It should be noted, however, that the notion of β-object is
closely related to simplicity, and is most useful in that context.

As usual, we start we equivalence relations:
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Definition 1.29. A βI,f,1-equivalence relation RI is a γI,f -equivalence relation on some
sort X such that there exists a bound ν on the size of an R1-anti-clique in an R-class (an
R1-anti-clique is a sequence (aξ : ξ < α) such that ¬(aξ R1 aζ) for every ξ < ζ < α).

In fact, we encounter relations which we would like to call β as well. The right definition
would seem to be:

Definition 1.30. (i) Let R be a γI-relation on a sort X, that is a γI-set in the sort
X × X. Then R∗ is the equivalence relation generated by R, which is naturally
γI×ω.

(ii) A βI,1-relation RI is a γI-relation such that there is a bound on the size of an
R1-anti-clique in an R∗-class.

Remark 1.31. (i) A γ-equivalence relation is β1 as an equivalence relation if and
only if it is β1 as a relation. If R is a β-relation, then in particular R∗ is a
β-equivalence relation.

(ii) If R is a βI,f,1-equivalence relation then every R-class can be covered by ν sets of
the form aR1 . Conversely, if R is a γI,f -equivalence relation having this property,
then it is βI,f,f(1).

If X/R is an α/γ-set and R is a β-equivalence relation then we say that X/R is an
α/β-set, and similarly in other cases (α/β-group, etc.).

Example 1.32. One example of a β-equivalence relation is the core equivalence defined in
[BTW04]. In fact, it is defined as the transitive closure of a β-relation.

If this example originated from a γ-equivalence relation with bounded classes, then on
the other extremity we have:

Lemma 1.33. Let c be an α-element and X a sort. Define an equivalence relation on
X by saying that a R1 b if they lie on some c-indiscernible sequence, and let Rn be the
n-iterate of R1. Then R1 is a β-relation, so the transitive closure R = R∗ =

∨
Ri is a

βω,1-equivalence relation over c. It coincides with equality of Lascar strong type: it has
boundedly many classes and it is finest as such.
Moreover, R is the finest bounded β-equivalence relation over c in the following sense: if
R′ is any bounded βI,f,1-equivalence relation over c, and a Rn b, then a R′

fblg2 nc(1)
b.

Proof. That R is the finest bounded c-invariant equivalence relation is a classical result.
It is clearly γω. Notice that in the classical proof that R is bounded, one in fact proves
that there is a bound on the size of an R1-anti-clique in the entire sort, so a fortiori in
every class, and both R1 and R are βω,1.
For the moreover part: clearly, R1 ` R′

1 since there is a bound on the size on an R′

1-
anti-clique within an R′-class, and there are boundedly many R′-classes. We obtain
R2n ` R′

fn(1) by easy induction. qed1.33
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This result is of interest even in a simple theory where equality of Lascar strong types
is an α-equivalence relation. See Lemma 2.2 below.

Clearly, if (Rα : α < λ) are uniformly γ-equivalence relations, meaning that they are all
γI,f -equivalence relations for some I and f : I → I, then

⋂
Rα is also a γI,f -equivalence

relations. We can also prove that the β-property is preserved, and moreover that in this
case the graded intersection is not so far from the non-graded one:

Lemma 1.34. Let (Rα : α < λ) be βI,1-relations. Then
⋂

α Rα is a βI,1-relation, and

in fact there is a bound on a (
⋂

Rα
1 )-anti-clique in a (

⋂Q

Rα)∗-class (which is stronger
than a bound on an anti-clique in a (

⋂
Rα)∗-class).

Moreover, if all the Rα are βI,f,1-equivalence relations, then so is
⋂

α Rα, and every
⋂Q

Rα-class contains boundedly many
⋂

Rα-classes.

Proof. Let ν be a bound on the size of Rα
1 -anti-cliques in an Rα∗-class, for all α < λ. We

may assume that ν ≥ λ.
Consider an

⋂
α R1-anti-clique {aξ : ξ < µ = (2ν)+}. Paint each pair {ξ, ζ} ∈ [µ]2

(say that ξ < ζ) with the minimal α < λ such that ¬(aξ Rα
1 aζ). We have at most ν

colours, so by the Erdős-Rado Theorem there is a homogeneous subset of cardinality ν+.
This would be an Rβ

1 -anti-clique where β is the colour of this homogeneous set, which
therefore cannot be contained, by assumption, in an Rβ∗

-class, and a fortiori it cannot

be contained in a (
⋂

Rα)∗- or a (
⋂Q

Rα)∗-class.
The moreover part follows. qed1.34

Remark 1.35. As for arbitrary sets, if we do not have uniformity, and every Rα is a βIσ ,1α-
relation then they are all βQ

Iα,
Q

1α-relations, and if every one is a γIα,fα-equivalence
relation then they are all γQ

Iα,
Q

fα-equivalence relations.

We pass to subsets of groups. We keep the same conventions as before.

Definition 1.36. (i) A β2-subset of G is a subset X/R ⊆ G such that there exist a
cardinal ν and (gα, g′

α ∈ Gb : α < ν) such that X ⊆
⋃

α gα · X2 · g
′

α.
We say loosely that X can be covered by boundedly many two-sided translates
of X2.

(ii) A left β2-subgroup of G is a subgroup H ≤ G such that RH,l is a β2-equivalence
relation.

Lemma 1.37. Every left β2-subgroup of G is a β2-subset.

Proof. Let H ≤ G be a left β2-subgroup. Since there is a bound on the size of an
RH,l

2 -anti-clique in Hb, we can cover Hb by boundedly many sets of the form g · Hb
2 ⊆

g · Hb
2 · e. qed1.37

Lemma 1.38. If G is α/β1, then every α−-subset is a β-subset. An α−-subgroup is left
β.
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Proof. Let eR =
⋃

eR1
α be the identity of G. Then there is 2 ∈ I such that if X ⊆ Gb is

α, then XR =
⋃

eα · XR2 =
⋃

XR2 · eα.
If XR/R = H is a subgroup, a similar argument show that RH,l is β2: for every g ∈ Gb

we have gRH,l

= g · XR = gR · X =
⋃

gR1
α · X =

⋃
gα · XR2 , for well chosen 2 ∈ I and

gα ∈ gR. qed1.38

This is fortunate, since in an α/β-group, we ordinarily only wish to consider β-subsets.

We get an analogue for Lemma 1.34:

Lemma 1.39. (i) Let (Hα : α < λ) be γI,f -subgroups of G. Then
⋂

Hα is a γI,f -
subgroup

(ii) If the Hα are all left β, then
⋂

Hα is left β and has bounded index in
⋂Q

Hα.

Proof. (i) Clear.
(ii) Apply Lemma 1.34 to RHα,l. Although R

T

Hα,l is not defined in the same way as⋂
RHα,l, one verifies easily that they are (gradedly) equal.

qed1.39

Therefore, the graded intersection of α−-subgroups is at least left β, but we do not
know any reason why it should be α−.

2. The simple case

We move on to study α/β-groups in simple theories.

Convention 2.1. We assume that T is simple. For general facts about simple theories
we refer the reader to [Wag00].

We keep Convention 1.22, and add the assumption that G is α/βI,1.
We will use local stratified D-ranks as defined (for polygroups, and a fortiori for

groups) in [BTW04]. DG(−, ϕ, ψ) denotes local D-ranks stratified by G on both sides.

Lemma 2.2. If R is a bounded βI,f,2-equivalence relation over c and a ≡Ls
c b then a Rf(2)

b.

Proof. Just apply Lemma 1.33, recalling that in a simple theory two iterates suffices in
order to generate the equality of Lascar strong type. qed2.2

Definition 2.3. dϕ,ψ,n(x) is the partial type that says that DG(x, ϕ, ψ) ≥ n (for example,
the partial type that says that there exists a tree witnessing DG(−, ϕ, ψ) ≥ n, the
elements on whose leaves being an indiscernible n-dimensional array containing x).

Lemma 2.4. Let X ⊆ G be a β2-set. Let p =
∧

k<γ dϕk,ψk,nk
be a conjunction of some

partial types of this form. Then for any given pair ϕ, ψ, DG(Xi ∧ p, ϕ, ψ) is constant for
all i ≥ 2.
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Proof. It suffices to prove that DG(Xi ∧ p, ϕ, ψ) = DG(X2 ∧ p, ϕ, ψ) for i ≥ 2, for every
fixed pair ϕ, ψ. Let c ² X2 ∧ p be such that DG(c, ϕ, ψ) = DG(X2 ∧ p, ϕ, ψ). We know
that Xi ⊆

⋃
aα · X2 · bα, and we may assume that c |̂ āb̄. Then c ∈ aα · d · bα for some

α and d ∈ X2. Therefore:

DG(d, ϕk, ψk) ≥ DG(d/aαbα, ϕk, ψk) = DG(c/aαbα, ϕk, ψk)

= DG(c, ϕk, ψk) ≥ nk

Thus d ² p, whereby:

DG(X2 ∧ p, ϕ, ψ) ≥ DG(d, ϕ, ψ) ≥ DG(c, ϕ, ψ)

= DG(Xi ∧ p, ϕ, ψ) qed2.4

We obtain:

Proposition 2.5. For a subgroup H ≤ G, the following conditions are equivalent:

(i) H is a left β2-subgroup of G (for some 2 ∈ I).
(ii) H is a β2-subset of G (for some 2 ∈ I).
(iii) For some 2 ∈ I, for every pair ϕ, ψ, DG(Xi, ϕ, ψ) is constant for every i ≥ 2.

Moreover, we can keep the same 2 from top to bottom.

Proof. (i) =⇒ (ii). Is already known.
(ii) =⇒ (iii). By Lemma 2.4.
(iii) =⇒ (i). Take 2 as in the assumption. As the local ranks of Xi do not depend on

i for i ≥ 2, there is a bound on the size of a sequence (aα) ⊆ Hb such that (aα ·H
b
2)

R1 are

all disjoint. This gives a bound on an RH,l
3 -anti-clique in Hb, and therefore in any class

g · Hb. In fact, assuming that e ∈ Hb
2 (which holds in any case from some point on) we

can have 2 = 3. qed2.5

Remark 2.6. By passing to inverses, one sees that H ≤ G is a β-subset if and only if it
is a right β-subgroup, the definition being the obvious one.

Corollary 2.7. If H ≤ G is β, then G/H and G//H are α/β-homogeneous space and
α/β-polygroup, respectively.

We prove the graded analogue of [Wag01, Lemma 3.12]:

Lemma 2.8. Let X/R ⊆ G be a β2-set. Assume also that there is f : I → I such
that, whenever x, y ∈ Xi and x |̂ y, then x−1 · y ⊆ Xf(i). Write Hb

i = Xi · Xi. Then

H = Hb/R is a β-subgroup of G.
Moreover, if X is α−, then so is H.

Proof. We begin with the following observation: We assumed that x, y ∈ Xi and x |̂ y

imply that x−1 ·y ⊆ Xf(i). If we only assume xR |̂ yR we can find x′ ∈ xR2 , y′ ∈ yR2 such
that x′ |̂ y′. Since X is R-complete we find f ′ : I → I such that xR |̂ yR and x, y ∈ Xi
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imply that x−1 · y ⊆ Xf ′(i), and we may assume that this is already true for f .
As in the proof of [Wag01, Lemma 3.12], we may assume that each Xi is closed for in-
verses.
Fix an enumeration of all pairs (ϕk, ψk : k < λ), and find a maximal tuple n̄ (in lexico-
graphical order) such that X2∧

∧
dϕk,ψk,nk

is consistent. By Lemma 2.4, n̄ is also maximal
such that Xi ∧

∧
dϕk,ψk,nk

is consistent, for every i ≥ 2. We write p =
∧

dϕk,ψk,nk
.

We now proceed as in the proof of [Wag01, Lemma 3.12]. Assume that a ² X ∧ p,
b ∈ X, aR |̂ b and c ∈ a · b. Then c ∈ X, and we get for every k: DG(a, ϕk, ψk) =
DG(a/b, ϕk, ψk) = DG(c/b, ϕk, ψk) ≤ DG(c, ϕk, ψk), and by the maximality of n̄ we ob-
tain in particular cR |̂ b and c ² p.
Assume now that b ∈ X ·X ·X. We may find a ² X2 ∧ p such that a |̂ b, and moreover

find b0, b1, b2 ∈ X such that b ∈ b0 · b1 · b2 and a |̂ b0b1b2. Then we have c0 ∈ a · b−1
0 ,

c1 ∈ a · b1 and c2 ∈ c1 · b2 such that b ∈ c−1
0 · c1. By the previous argument c2 ² X ∧ p and

c2R |̂ b2. Since clearly c2R |̂
b2

b0b1 we get c2R |̂ b1 whereby c1 ∈ X as well. Similarly

c0 ∈ X so b ∈ X. Since we took a to be in X2, we obtain g : I → I which depends on 2
and f such that X ·X ·X ⊆g X ·X. Since X is assumed to be closed for inverses we get
H · H−1 = H gradedly.
It follows that H = Hb/R is a subgroup. It is β, since it follows from the calculations
above that DG(Hi, ϕk, ψk) = DG(Xi, ϕk, ψk) = nk for all i ≥ 2 and k < λ.
The moreover part is clear from the construction. qed2.8

Corollary 2.9. If H ≤ G is a β2-subgroup then generic elements exist for H and are
precisely those whose stratified ranks are equal to those of Hb

i for some (any) i ≥ 2.

Example 2.10. The subgroup H from [Ben03a] is a bounded β-subgroup; if we extend
the definitions to polygroups, then the core of an α/βI polygroup is βω×I . (To be more
precise: by their constructions, these examples are γ; then β follows from boundedness.)

Example 2.11. Let p ∈ S(c) be a Lascar strong type, p(x) ` x ∈ Gb. Define

Si(p) = {a ∈ Gb : ∃b, b′ [b, b′ ² p ∧ bR |̂
c

aR ∧ a ∈ (b′ · b−1)Ri ]}

Then for every i there is i′ such that Si(p) ⊆ S1(p)Ri ⊆ Si′(p), whereby SI(p) is α−.
Assume that b, b′ witness that a ∈ Si(p). As bR |̂

c
aR there are a0 ∈ aR1 and b0 ∈ bR1

such that b0 |̂
c
a0, and then there is b1 ∈ bR1

0 such that b1 ² p and b1 |̂
c
a0. We also

have:

DG(b′/c, ϕ, ψ) = DG(p, ϕ, ψ) = DG(b/c, ϕ, ψ)

= DG(b/a0c, ϕ, ψ) = DG(b′/a0c, ϕ, ψ)

Whereby b′R |̂
c
a0, so there is b′1 ∈ b′R

2
1 such that b′1 |̂

c
a0 and b′1 ² p.

Note that then there is some fixed 2 ∈ I such that there is always (b′ · b−1)Ri ⊆ ((b′1 ·



SIMPLE ALMOST HYPERDEFINABLE GROUPS 15

b−1
1 )Ri)R1 , so a definition like:

S ′

i(p) = {a ∈ Gb : ∃b, b′, a0 [b, b′ ² p ∧ a0 R1 a ∧ b |̂
c

a0 ∧ b′ |̂
c

a0 ∧ a ∈ (b′ · b−1)Ri ]}

Would have given something gradedly equal. Moreover, this shows that SI(p) = SI(p)−1

gradedly.
Assume now that a |̂

c
a′ are in Si(p) ⊆ S ′

i′(p) ⊆ Si′(p). We can find witnesses a0, b, b
′

such that: a0 R1 a, b, b′ ² p, b |̂
c
a0, b′ |̂

c
a0 and a ∈ (b′ · b−1)Ri′ , and similarly a′

0, c, c
′

witnessing a′ ∈ S ′

i′(p), such that in addition a0 |̂
c
a′

0. By the independence theorem we

may assume that b = c′, whereby a · a′ ⊆ Si′′(p) for some i′′ which only depends on i.
Since SI(p) is a− it is in particular β, and we may apply Lemma 2.8 to get an α−-subgroup
Stab(p) = S(p)2 ≤ G. In fact, it is gradedly equal to (S1(p)2)R.

Proposition 2.12. Let H ≤ G be a β-subgroup, say over A.

(i) Let g ∈ H, and p = lstp(g/A). Then Stab(p) ≤ H, and it is of bounded index if
and only if g is generic in H.

(ii) Let (Kα : α < λ) be uniformly β-subgroups of H defined over bdd(A), and
[H : Kα] < ∞ for all α. Assume also that for some i we have gα ∈ Hb

i generic
for H over A, for all α < λ. Then Stab(lstp(gα/A)) ⊆ Kα uniformly.

(iii) For every i ∈ I, Stab(lstp(g/A)) is uniformly unique for all generic g ∈ Hb
i ,

meaning that all choices of such g give uniformly equal subgroups of H, and this
unique subgroup is over A. It is also a gradedly normal subgroup of H, in the
sense that that all its group-theoretic conjugates in H are uniformly equal.

Proof. (i) Clearly Stab(p) ⊆ H, and it is a subgroup.
If g is generic, then Stab(p) contains many independent generics of H, whereby it
is of bounded index. Conversely, if Stab(p) is of bounded index then it contains
generics, whereby S(p) contains ones. But then there are g ² p, h ∈ S(p) such
that h is generic over g and h · g ² p, whereby p is generic.

(ii) Let p = lstp(g/A) be generic for H, and K ≤ H a βI,f,2-subgroup of bounded
index in H, defined over bdd(A). The cosets of K induce a bounded bdd(A)-β-
equivalence relation on the realisations of p. By Lemma 2.2 there is 3 ∈ I which
depends only on f and 2 such that p(x) ² x ∈ g ·K3. Therefore there are 4, 5 ∈ I
that depend only on f and 3, such that S1(p) ⊆ K4 and Stab(p)1 ≤ K5. We get
Stab(p) ≤ K gradedly.
The uniformity now follows.

(iii) Uniform uniqueness follows from the two previous items.
This unique subgroup is also uniformly gradedly equal to any of its model theo-
retic conjugates over A (as these are uniformly α− and of bounded index), so it
is over A.
By considering group-theoretic conjugates the same argument yields that it is
normal.

qed2.12
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Definition 2.13. The connected component (over A) of a β-subgroup H over A is defined
as Stab(lstp(g/A)) for any generic element g of H, and is noted H0

A. It is α−.

Lemma 2.14. Let H be a type-definable family of uniformly β-subgroups of G, having
the same stratified local ranks. Then commensurativity is type-definable for members of
H.
In other words, let p be a partial type, and H(x) be γI-sets depending on a parameter,
such that {H(a) : a ² p} are uniformly β-subgroup their DG(−, ϕ, ψ)-ranks are equal.
Then there is a type-definable equivalence relation E(x, y) on p such that ² E(a, b) if and
only if H(a) and H(b) are commensurate.

Proof. Compare the local ranks of the intersection with the common local ranks. Uni-
formity assures us that there is 2 such that it suffices to check the rank of H2(x) ∩
H2(y). qed2.14

Remark 2.15. Given a β-subgroup H, the family of all model-theoretic and group-
theoretic conjugates of H satisfies the assumptions.

Definition 2.16. A β-subgroup H ≤ G is locally connected if whenever H ′ is a group-
theoretic or model-theoretic conjugate of H commensurate with H, then H = H ′ grad-
edly, and uniformly for all such H ′.
The locally connected component of a β-subgroup H is a minimal locally connected β-
subgroup commensurate with H.

Fact 2.17. Every β-subgroup H has a unique locally connected component, noted Hc.

Proof. The construction of locally connected components generalises from [Wag01] using
Lemma 2.8, Lemma 1.39 and graded intersections. qed2.17

Locally connected components serve us as canonical representatives of commensura-
tivity classes (note however that the addition of constants to the language may change
the notion of a locally connected subgroup, and therefore the subgroup Hc). As the
connected component of a locally connected subgroup is clearly locally connected, we see
Hc is α−.

Corollary 2.18. Let H ≤ G be a locally connected β-subgroup. Then H has an canonical
α-parameter. If g ∈ G, then H · g has a canonical β-parameter.

Proof. Say that H is defined over a, and write H = H(a). Let B = {b : b ≡ a}, and
H = {H(b) : b ∈ B}. By Lemma 2.14 there is a type-definable equivalence relation
E such that E(b, b′) ⇐⇒ [H(b) : H(b) ∩ H(b′)] < ∞, but the latter is equivalent to
H(b) = H(b′). Therefore u = aE is an α-canonical parameter for H.
Divide Gb×B by the relation FI where Fi(g, b, g′, b′) ⇐⇒ E(b, b′)∧[g′·g−1∩Hi(b)∩Hi(b

′) 6=
∅]. This is a βI-equivalence relation. Fix g ∈ Gb and consider (g, a)F . Let ϕ be an
automorphism, g′, a′ = ϕ(g, a), and assume that Fi(g, a, g′, a′). Then ϕ fixes u, and
therefore it fixes H gradedly (set-wise). Then g′ ·g−1∩Hi 6= ∅ implies that Hg = ϕ(Hg)
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gradedly, where the gradedness depends only on i (the smaller i is, the closer are the
gradings on Hg and ϕ(Hg)). Conversely, if Hg = ϕ(Hg) gradedly, then there is i such
that Fi(g, a, g′, a′), and the closer the gradings are on Hg and ϕ(Hg), the smaller we can
take i. Therefore (g, a)F is a βI-canonical parameter for the β/β-coset Hg. qed2.18

3. One-based groups

We conclude by showing that classical properties of hyperdefinable groups in one-based
simple theories hold for α/β-groups.

Convention 3.1. We keep the assumption that T is simple, and assume furthermore it
is one-based.

Proposition 3.2. Assume that H ≤ G is locally connected and β2. Let u be the canonical
parameter for H. Then u ∈ bdd(∅).

Proof. Let h ∈ Hb
2 be (a representative of) a generic element of H. Let g ∈ Gb be a

generic element of G over h, u. Let fR = (h · g)R, so fR |̂ h, u and f is generic for G

over h, u. Since R is β1 we may choose f such that f ∈ (Hb
2 · g)R1 ⊆ Hb

3 · g and f |̂ h, u
(for some 3 ∈ I). On the other hand, h |̂

u
g, so f is generic for H · g over g, u.

Let (fξ : ξ < ω) be a Morley sequence in tp(f/g, u), and let ϕ be an automorphism

fixing (fξ). Write u′ = ϕ(u), H ′ = ϕ(H), g′ = ϕ(g). Then (fξ) ⊆ Hb
3 · g ∩ H ′b

3 · g′ ⊆

Hb
4 · f0 ∩ H ′b

4 · f0 ⊆ (Hb
5 ∩ H ′b

5) · f0 for some 4 and 5 in I. As fξ is a Morley sequence in

tp(f/g, u), we may assume that f1 |̂
g,u

u′, f0. We can take s ∈ f1 · f
−1
0 ∩ Hb

5 ∩ H ′b
5, and

we get for every i ≥ 2:

DG(tp(s/u, u′), ϕ, ψ) ≥ DG(tp(s/g, f0, u, u′), ϕ, ψ) = DG(tp(f1/g, f0, u, u′), ϕ, ψ)

= DG(tp(f1/g, u), ϕ, ψ) = DG(tp(f/g, u), ϕ, ψ) = DG(tp(h/g, u), ϕ, ψ)

= DG(Hb
i , ϕ, ψ) = DG(H ′b

i , ϕ, ψ),

But then s is generic for both H and H ′, so H and H ′ are commensurate and u′ = u.
This shows that u ∈ dcl((fξ)), whereby (fξ) |̂

Cb(f/g,u)
g, u =⇒ u ∈ bdd(Cb(f/g, u)) ⊆

bdd(f), by one-basedness. Finally: u |̂ f =⇒ u |̂ u =⇒ u ∈ bdd(∅). qed3.2

Corollary 3.3. G is (βI×ω-bounded)-by-(α-abelian)-by-bounded. That is to say that there
is an α-subgroup Z̃ ≤ G of bounded index such that Z̃ ′ is bounded and βω×I .
Moreover, there exists a βI-subgroup N C G, of bounded index such that N ′ is central in
N .
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Proof. We follow [Wag05, Theorem 6.3].
For g ∈ Gb, write:

CG
b
I(g) = ({h ∈ Gb : h ∈ (g · h · g−1)Ri} : i ∈ I)

CG(g) = CG
b
I(g)/R ≤ G

∆b
g = {(h, h′) : h ∈ Gb, h′ ∈ g · h · g−1} ⊆ Gb2

∆g = ∆b
g

R×R
/R × R ≤ G2

The class {∆g : g ∈ Gb} is uniformly α−, so it is uniformly βI , and contains boundedly
many commensurativity classes. Then the class {∆g ∩ ∆e : g ∈ Gb} is uniformly βI ;
as the projection of ∆g ∩ ∆e is gradedly equal to CG(g), and uniformly so, the class
{CG(g) : g ∈ Gb} is uniformly βI . Therefore the set:

Z̃b = {g ∈ Gb : ∆g is commensurate to ∆e}

= {g : [G : CG(g)] < ∞}

is an R-complete α-set, closed for product and inverse, whereby Z̃ = Z̃b/R C G is a
normal α-subgroup (that is, α/β-subgroup).
Continue as in [Wag05, Theorem 6.3] to conclude that Z̃ has bounded index in G and
boundedly many commutators. The set of commutators is a α−-set which generates Z̃ ′

in ω steps, whereby the latter is γω×I , and in fact βω×I as it is bounded.
Finally, as Z̃ ′ is bounded and R is β, we can find (gξ : ξ < λ) ⊆ Gb such that Z̃ ′ =

(
⋃

ξ gR1
ξ )/R. By the same argument as above, CZ̃(gξ) are uniformly βI . Then the graded

intersection
⋂

ξ CZ̃(gξ) is βI , and in fact uniformly so for all possible choices of (gξ).

If (hζ) is another such choice, then it differs from (gξ) at most by R1, so there is a
(uniform) bound on the differences in the gradings of

⋂
ξ CZ̃(gξ) and

⋂
ζ CZ̃(hζ). This

shows that
⋂

ξ CZ̃(gξ) is gradedly and uniformly unique, and we may define CZ̃(Z̃ ′) =
⋂

ξ CZ̃(gξ) without ambiguity (although it may be somewhat smaller than the group-

theoretic CZ̃(Z̃ ′), as we require each element to centralise Z̃ ′ uniformly). Then N =

CZ̃(Z̃ ′) C G is a normal βI-subgroup of bounded index, and N ′ is central in N . qed3.3

Corollary 3.4. If T is one-based then G is naturally isogenous to the abelian α/β group
Z̃(G)/Z̃(G)′.

Remark 3.5. It is important that Z̃(G) is α/β (and not β/β, as are most of the subgroups
of G we consider): it can serve as an ambient group without modification, and G/Z̃(G)
is a hyperdefinable group in the classical sense (this is true also if T is not one-based,
and this is in fact the more interesting case, as then G/Z̃(G) is not necessarily bounded).
Moreover, even if G were α (in opposition to α/β), then the best abelian group we know
that is isogenous to it is α/β. This is an overlooked pre-[BTW04] example of a α/βω

group.
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