Skip to main content
Log in

Self-Assembly, Self-Organization: Nanotechnology and Vitalism

  • Original Paper
  • Published:
NanoEthics Aims and scope Submit manuscript

Abstract

Over the past decades, self-assembly has attracted a lot of research attention and transformed the relations between chemistry, materials science and biology. The paper explores the impact of the current interest in self-assembly techniques on the traditional debate over the nature of life. The first section describes three different research programs of self-assembly in nanotechnology in order to characterize their metaphysical implications: (1) Hybridization (using the building blocks of living systems for making devices and machines) ; (2) Biomimetics (making artifacts mimicking nature); (3) Integration (a composite of the two previous strategies). The second section focused on the elusive boundary between self-assembly and self-organization tries to map out the various positions adopted by the promoters of self-assembly on the issue of vitalism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Drexler [15] p. 2; Richard Jones rather used the metaphor of the jigsaw puzzle (Jones [18], p. 91–93)

  2. See Whitesides and Boncheva Whitesides and Boncheva [40], Shuguang [42], MRS Bulletin, 31 January 2006,

  3. Actually some scientists like to play magics. In a European conference of chemistry (Budapest, August 2006), David Leigh from Edinburgh performed magic tricks while presenting the results of his work on self-assembly.

  4. See Newman [31]

  5. Berthelot [10] p. 265–77. On the urea synthesis legend see [12, 32].

  6. See for instance Ball [4]

  7. Whether biological systems designed by Darwinian evolution are optimized or not is the matter of ongoing debates. Gould and Lewontin [17] For Jones biological systems are optimized and provide a norm rather than inspiration for nanotechnology. “The insights of molecular cell biology show us more and more clearly how optimised nature‘s machines are for operation at the nanoscale. …] Nature has evolved to get nanotechnology right. (p.7) By contrast, Whitesides points out a major limit of bio-inspiration for self-assembly: biosystems do not make use of magnetic interactions which could prove very promising in technological systems because they are rather insensitive to environment. But here is precisely the key feature of self-assembly in biological systems. It is a process involving environment-sensitive properties, and responding to environmental changes.

  8. See Table 1 in Whitesides and Grzybovski [41]

  9. Jones [18] softmachines blog, March,14, 06 How much should we worry about bioNT ?

  10. Whitesides quoted by Ball [5] p. 501.

  11. See Bensaude-Vincent and Stengers [6] p. 152–154

  12. See Lehn [24] Table 3 on p. 2402.

  13. Lehn quoted by Ball [5] p. 501.

  14. See Dupuy [16]

References

  1. Atlan H (1972) L’organisation biologique et la théorie de l’information. Hermann, Paris

    Google Scholar 

  2. Atlan H (1979) Entre le cristal et la fumée. Seuil-Point sciencem, Paris

    Google Scholar 

  3. Atlan H, Cohen Irun R (2006) Self-organization and meaning in immunology. In: Feltz B, Crommelinck M, Goujon P (eds) Self-Organization and emergence in life sciences. Springer, The Netherlands, pp 121–139

    Chapter  Google Scholar 

  4. Ball P (2002) Natural Strategies for the molecular engineer. Nanotechnology 13:15–28. doi:10.1088/0957-4484/13/5/201

    Article  Google Scholar 

  5. Ball P (2006) What chemists want to know. Nature 442(Aug):500–502. doi:10.1038/442500a

    Article  Google Scholar 

  6. Bensaude-Vincent B, Stengers I (1996) A history of chemistry. Harvard University Press, Cambridge Mass

    Google Scholar 

  7. Bensaude-Vincent B, Arribart H, Bouligand Y, Sanchez C (2002) Chemists at the School of Nature. N J Chem 26:1–5. doi:10.1039/b108504m

    Article  Google Scholar 

  8. Bensaude-Vincent B, Guchet X (2007) Nanomachine: One word for three different paradigms , Technê, Res Philos Technol 10, n° 3, Spring 2007.

  9. Bernard C (1878) Sixième Leçon in Leçons sur les phénomènes de la vie communs aux animaux et aux végétaux. Vrin, Paris. 1966

    Google Scholar 

  10. Berthelot M (1897) La synthèse chimique, 8th edn. Alcan, Paris

    Google Scholar 

  11. Boxer S (1991) Quoted in exploiting the nanotechnology of life. Sci 254(29):1308–1309

    Google Scholar 

  12. Brooke JH (1973) Organic synthesis and the unification of chemistry—a reappraisal. Br J Hist Sci 4:362–392

    Google Scholar 

  13. Breen TL, Tien J, Oliver SR, Hadzic T, Whitesides GM (1999) Design and self-assembly of open, regular, 3D mesostructures. Sci 284(7):48–951

    Google Scholar 

  14. Canguilhem G (1947) Machine et organisme, in La connaissance de la vie. Vrin Paris 1971:101–127

    Google Scholar 

  15. Drexler EK (1986) Engines of Creation, 2nd edn. Anchor Books, New York 1990.

    Google Scholar 

  16. Dupuy JP (2000) The mechanization of the mind. Princeton University Press, Princeton N.J.

    Google Scholar 

  17. Gould SJ, Lewontin RC (1979) The spandrels of San Marco and the Panglossian Paradigm: A critique of the adptationist programme. Proceedings of the royal society of London, Series B 205(1161):581–598

    Article  Google Scholar 

  18. Jones RL (2004) Soft Machines. Oxford University Press, Oxford, New-York

    Google Scholar 

  19. Jones RL Softmachines blog, http://www.softmachines.org/wordpress/?m=200511 (accessed January 2009)

  20. Keren K, Berman RS, Buchstab E, Sivan U, Braun E (2003) DNA-templated carbon nanotube field-effect transistor. Sci 302:1380–1382. doi:10.1126/science.1091022

    Article  Google Scholar 

  21. Kirschner M, Gerhart M, Mitchison T (2000) Molecular vitalism. Cell 100(7):79–88

    Article  Google Scholar 

  22. Lehn JM (1995) Supramolecular Chemistry. VCH, Weinheim

    Book  Google Scholar 

  23. Lehn JM (1999) Dynamic combinatorial chemistry and virtual combinatorial libraries. Chem Eur J 5(9):2455–2463. doi:10.1002/(SICI)1521-3765(19990903)5:9≤2455::AID-CHEM2455≥3.0.CO;2-H

    Article  Google Scholar 

  24. Lehn JM (2002) Toward self-organization and complex matter. Sci 295(29):2400–2403. doi:10.1126/science.1071063

    Article  Google Scholar 

  25. Lehn JM (2004) “Entretien avec Jean-marie Lehn sur les possibles naturels en chimie”, Revue de métaphysique et de morale, N°3, p. 371–380.

  26. Lehn JM (2006) From supramolecular chemistry to molecular dynamics, Plenary Lecture at the First European Chemistry Congress, Budapest, 27–31 August, 2006.

  27. Livet Pierre, 1985, “Cybernétique, auto-organisation et néo-connectionisme”, Cahiers du CREA, N°8, 105–153

  28. Maasen S (2006) The assembled self of nanotechnology: the career of self-assembly as a metaphor, paper presented at EASST Conference, Lausanne, Aug 2006.

  29. Montemagno CD (2001) Nanomachines: a roadmap for realizing the vision. J Nanopart Res 3:1–3. doi:10.1023/A:1011452612805

    Article  Google Scholar 

  30. Montemagno CD (2004) Integrative technology for the 21st century. In Roco M, & Montemagno CD eds The co-evolution of human potential and converging technologies. Annals New York Academic Science 1013:38–49. doi:10.1196/annals.1305.004

  31. Newman WR (2004) Promethean ambitions: alchemy and the quest to perfect nature. University of Chicago Press, Chicago

    Google Scholar 

  32. Ramberg P (2000) The death of vitalism and the birth of organic chemistry: Wölher’s urea synthesis and the disciplinary identity of chemistry. Ambix 47:170–195

    Google Scholar 

  33. Roco M Bainbridge W. (2002) Converging technologies for improving human performance nanotechnology, biotechnology, information technology and cognitive science national science foundation report, Arlington.

  34. Sarikaya, Aksay (1995) Biomimetics: design and processing of materials. AIP Press, Woodbury

    Google Scholar 

  35. Simondon G (1989) Du mode d’existence des objets techniques. Aubier, Paris

    Google Scholar 

  36. Stengers Isabelle (1985) Les généalogies de l’auto organisation, Cahiers du CREA, N° 8, 7–104.

  37. Stengers I (1997) Cosmopolitiques, Paris, éditions la découverte, 7 volumes; vol. 6 La vie et l’artifice: Visages de l’émergence.

  38. Whitesides GM (2003) The right size in nanobiotechnology. Nat Biotechnol 21:1161–1165

    Article  Google Scholar 

  39. Whitesides GM (2004) Taking chemistry in new directions. Angew Chem Int Ed 43:3632–3641. doi:10.1002/anie.200330076

    Article  Google Scholar 

  40. Whitesides GM, Boncheva M (2002) Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci U S A 99:4769–4774. doi:10.1073/pnas.082065899

    Article  Google Scholar 

  41. Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295:2418–2421. doi:10.1126/science.1070821

    Article  Google Scholar 

  42. Shuguang Z (2003) Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol 21(10):1171–1178. doi:10.1038/nbt874

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernadette Bensaude-Vincent.

Additional information

An earlier and longer version of this paper has been presented as position paper at the France/Stanford Meeting organized by Jean-Pierre Dupuy in Avignon, December 2006. I am grateful for the comments of participants.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bensaude-Vincent, B. Self-Assembly, Self-Organization: Nanotechnology and Vitalism. Nanoethics 3, 31–42 (2009). https://doi.org/10.1007/s11569-009-0056-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11569-009-0056-0

Keywords

Navigation