Skip to main content
Log in

Towards a Coherent Theory of Physics and Mathematics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

As an approach to a Theory of Everything a framework for developing a coherent theory of mathematics and physics together is described. The main characteristic of such a theory is discussed: the theory must be valid and and sufficiently strong, and it must maximally describe its own validity and sufficient strength. The mathematical logical definition of validity is used, and sufficient strength is seen to be a necessary and useful concept. The requirement of maximal description of its own validity and sufficient strength may be useful to reject candidate coherent theories for which the description is less than maximal. Other aspects of a coherent theory discussed include universal applicability, the relation to the anthropic principle, and possible uniqueness. It is suggested that the basic properties of the physical and mathematical universes are entwined with and emerge with a coherent theory. Support for this includes the indirect reality status of properties of very small or very large far away systems compared to moderate sized nearby systems. Discussion of the necessary physical nature of language includes physical models of language and a proof that the meaning content of expressions of any axiomatizable theory seems to be independent of the algorithmic complexity of the theory. Gödel maps seem to be less useful for a coherent theory than for purely mathematical theories because all symbols and words of any language must have representations as states of physical systems already in the domain of a coherent theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. S. Weinberg, Dreams of a Final Theory (Vintage Books, New York, 1994).

    Google Scholar 

  2. B. Greene, The Elegant Universe (Vintage Books, New York, 2000).

    Google Scholar 

  3. J. Casti and A. Karlqvist, eds., Boundaries and Barriers, On the Limits to Scientific Knowledge (Perseus Books, Reading, MA, 1996).

    Google Scholar 

  4. M. Tegmark, Ann. Phys. 270, 1-51 (1998).

    Google Scholar 

  5. J. R. Shoenfield, Mathematical Logic (Addison-Wesley, Reading, MA, 1967).

    Google Scholar 

  6. R. Smullyan, Gödel's Incompleteness Theorems (Oxford University Press, New York, 1992).

    Google Scholar 

  7. K. Gödel, “Ñber formal unentscheidbare Sätze der Principia Mathematica und Vervandter Systeme I,” Monatschefte für Mathematik und Physik 38, 173-198 (1931).

    Google Scholar 

  8. A. A. Frankel, Y. Bar-hillel, A. Levy, and D. van Dalen, Foundations of Set Theory, 2nd revised edn. (Studies in Logic and the Foundations of Mathematics, Vol 67) (North-Holland, Amsterdam, 1973).

    Google Scholar 

  9. P. Benioff, J. Math. Phys. 17, 618, 629 (1976).

    Google Scholar 

  10. J. Väänänen, Bull. Symbolic Logic 7, 504-519, (2001).

    Google Scholar 

  11. P. Benioff, Phys. Rev. A 59, 4223 (1999).

    Google Scholar 

  12. A. Heyting, Intuitionism, An Introduction, 3rd revised edn. (North-Holland, New York, 1971).

    Google Scholar 

  13. E. Bishop, Foundations of Constructive Analysis (McGraw-Hill, New York, 1967).

    Google Scholar 

  14. M. J. Beeson, Foundations of Constructive Mathematics Metamathematical Studies (Springer, New York, 1985).

    Google Scholar 

  15. R. Penrose, The Emperor's New Mind (Penguin Books, New York, 1991).

    Google Scholar 

  16. P. Davies and R. Hersh, The Mathematical Experience (Birkhäuser, Boston, 1981).

    Google Scholar 

  17. M. Kline, Mathematics, The Loss of Certainty (Oxford University Press, New York, 1980).

    Google Scholar 

  18. W. W Marek and J. Mycielski, “The foundations of mathematics in the twentieth century,” Amer. Math. Monthly 108, 449-468 (2001).

    Google Scholar 

  19. C. H. Papadimitriou, Computational Complexity (Addison-Wesley, Reading, MA, 1994).

    Google Scholar 

  20. D. Deutsch, A. Ekert, and R. Lupacchini, Bulletin Symbolic Logic 6, 265-283 (2000).

    Google Scholar 

  21. P. Shor, in Proceedings, 35th Annual Symposium on the Foundations of Computer Science, S. Goldwasser, ed. (IEEE Computer Society Press, Los Alamitos, CA, 1994), pp. 124-134.

    Google Scholar 

  22. L. K. Grover, Phys. Rev. Lett., 79, 325 (1997). G. Brassard, Science 275, 627 (1997). L. K.

    Google Scholar 

  23. Grover, Phys. Rev. Lett. 80, 4329 (1998).

    Google Scholar 

  24. R. P. Feynman, Int. J. Theoret. Phys. 21, 467 (1982).

    Google Scholar 

  25. C. Zalka, “Efficient simulation of quantum systems by quantum computers,” Los Alamos Archives preprint quant-ph/9603026.

  26. S. Wiesner, “Solutions of many body quantum systems by a quantum computer,” Los Alamos Archives preprint quant-ph/9603028.

  27. D. S. Abrams and S. Lloyd, Phys. Rev. Lett. 79, 2586-2589 (1997).

    Google Scholar 

  28. S. Lloyd, Science 273, 1073-1078 (1996).

    Google Scholar 

  29. R. Landauer, Physics Today 44(5), 23 (1991); Phys. Lett. A 217, 188 (1996); in Feynman and Computation, Exploring the Limits of Computers, A. J. G. Hey, ed. (Perseus Books, Reading, MA, 1998).

    Google Scholar 

  30. P. Bridgman, Nature of Physical Theory (Dover, New York, 1936).

    Google Scholar 

  31. K. Svozil, Found. Phys. 25, 1541 (1995).

    Google Scholar 

  32. D. Finkelstein, Int. J. Theoret. Phys. 31, 1627 (1992); “Quantum sets, assemblies and plexi,” in Current Issues in Quantum Logic, E. Beltrametti and B. van Frassen, eds. (Plenum, New York, 1981), pp. 323-333; Quantum Relativity (Springer, New York, 1994).

    Google Scholar 

  33. G. Takeuti, “Quantum Set theory,” in Current Issues in Quantum Logic, E. G. Beltrametti and B. C. van Fraasen, eds. (Plenum, New York, 1981), pp. 303-322.

    Google Scholar 

  34. H. Nishimura, Int. J. Theoret. Phys. 32, 1293 (1993); 43, 229 (1995).

    Google Scholar 

  35. A. Odlyzko, “Primes, quantum chaos and computers,” in Number Theory, Proceedings of a Symposium, May 4 1989, Washington, D.C., Board on Mathematical Sciences, National Research Council, 1990, pp. 35-46.

    Google Scholar 

  36. R. E. Crandall, J. Phys. A: Math. Gen. 29, 6795 (1996).

    Google Scholar 

  37. S. Okubo, “Lorentz-invariant Hamiltonian and Riemann hypothesis,” Los Alamos Archives, quant-ph/9707036.

  38. Y. Ozhigov, “Fast quantum verification for the formulas of predicate calculus,” Los Alamos Archives Rept. No. quant-ph/9809015.

  39. H. Buhrman, R. Cleve, and A. Wigderson, “Quantum vs. Classical Communication and Computation,” Los Alamos Archives Rept. No. quant-ph/9802040.

  40. C. Schmidhuber, Los Alamos Archives preprint hep-th/0011065.

  41. S. Blaha, “Cosmos and consciousness,” 1stbooks Library, Bloomington, IN, 2000; “A quantum computer foundation for the standard model and superstring theory,” Los Alamos Archives Rept. No. quant-ph/0201092.

    Google Scholar 

  42. D. Spector, J. Math. Phys. 39, 1919 (1998).

    Google Scholar 

  43. L. Foschini, “On the logic of quantum physics and the concept of the time,” Los Alamos Archives Preprint, quant-ph/9804040.

  44. G. W. Mackey, Mathematical Foundations of Quantum Mechanics (Benjamin, New York, 1963).

    Google Scholar 

  45. R. Haag, Local Quantum Physics: Fields, Particles, Algebras (Springer, Berlin, New York, 1992).

    Google Scholar 

  46. G. Birkhoff and J. von Neumann, Ann. Math. 37, 743 (1936).

    Google Scholar 

  47. J. M. Jauch and C. Piron, Helv. Phys. Acta 36, 837 (1963); C. Piron, ibid. 37, 439 (1964).

    Google Scholar 

  48. L. Hardy, Los Alamos Archives Preprint quant-ph/0101012.

  49. E. Wigner, Comm. Pure and Applied Math. 13, 001 (1960); reprinted in E. Wigner, Symmetries and Reflections (Indiana University Press, Bloomington, IN, 1966), pp. 222-237.

    Google Scholar 

  50. P. C. W. Davies, “Why is the physical world so comprehensible?,” in Complexity, Entropy, and Physical Information (Proceedings of the 1988 Work-shop on Complexity, Entropy, and the Physics of Information, May-June 1989, Santa Fe New Mexico), W. H. Zurek, ed. (Addison-Wesley, Redwood City, CA, 1990), pp. 61-70.

    Google Scholar 

  51. C. C. Chang and H. J. Keisler, Model Theory (Studies in Logic and the Foundations of Mathematics, Vol 73) (American Elsevier, New York, NY, 1973), pp. 36-45.

    Google Scholar 

  52. G. Chaitin, Information Theoretic Incompleteness (World Scientific Series in Computer Science, Vol. 35) (World Scientific, Singapore, 1992); Information Randomness &;;; Incompleteness (Series in Computer Science, Vol 8), 2nd edn. (World Scientific, Singapore, 1990); Scientific American 232, 47-52 (1975); American Scientist 90, 164-171 (2002).

    Google Scholar 

  53. P. J. Cohen, Set Theory and the Continuum Hypothesis (Benjamin, New York, NY, 1966).

    Google Scholar 

  54. H. Woodin, Notices, Amer. Math. Soc. 48, 567-576 (2001).

    Google Scholar 

  55. J. Stillwell, Am. Math. Monthly 109, 286-298 (2002).

    Google Scholar 

  56. C. H. Bennett, D. P. DiVincenzo, T. Mor, P. W. Shor, J. A. Smolin, and B. M. Terhal, Phys. Rev. Lett. 82, 5385 (1999). C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains, P. W. Shor, J. A. Smolin, and W. K. Wootters, Phys. Rev A, 59, 1070 (1999).

    Google Scholar 

  57. P. Benioff, Phys. Rev. A 64, #052310 (2001); Los Alamos archives quant-ph/ 0104061.

  58. A. Turing, Proc. London Math. Soc. 42, 230-265 (1936).

    Google Scholar 

  59. D. Deutsch, Proc. Roy. Soc. London, Series A 400, 997 (1985).

    Google Scholar 

  60. E. Bernstein and U. Vazirani, SIAM J. Comput. 26, 1541-1557 (1997).

    Google Scholar 

  61. M. Tegmark, Los Alamos Archives preprint quant-ph/9709032.

  62. H. Everett, Rev. Mod. Phys. 29, 454-462, (1957).

    Google Scholar 

  63. J. A. Wheeler, Rev. Mod. Phys. 29, 463-465, (1957).

    Google Scholar 

  64. H. P. Stapp, Mind, Matter, and Quantum Mechanics (Springer, Berlin, 1993).

    Google Scholar 

  65. E. Squires, Conscious Mind in the Physical World (IOP Publishing, Bristol, England, 1990).

    Google Scholar 

  66. D. Page, Los Alamos Archives preprint quant-ph/0108039.

  67. E. Wigner, “Remarks on the mind-body question,” in The Scientist Speculates, I. Good and W. Heinemann, eds. (Putnam, London, 1962).

    Google Scholar 

  68. D. Albert, Phys. Lett. A 98, 249 (1983); Philos. Sci. 54, 577 (1987); “The quantum mechanics of self-measurement” in Complexity, Entropy and the Physics of Information, (Proceedings of the 1988 workshop in Santa Fe, New Mexico, 1989), W. Zurek, ed. (Addison-Wesley, Redwood City, CA, 1990).

    Google Scholar 

  69. P. Benioff, Phys. Rev. A 63, #032305 (2001).

  70. P. Benioff, Los Alamos Archives preprint, quant-ph/0103078, Accepted for publication in special issue of Algorithmica.

  71. J. D. Barrow and F. J. Tipler, The Anthropic Cosmologic Principle (Oxford University Press, 1989).

  72. C. Hogan, Rev. Mod. Phys. 72, 1149 (2000).

    Google Scholar 

  73. G. Greenstein and A. Kropf, Am. J. Phys. 58, 746 (1989).

    Google Scholar 

  74. P. Benioff, Los Alamos Archives preprint quant-ph/0106153.

  75. P. Benioff, Phys. Rev. A 58, 893-904 (1998).

    Google Scholar 

  76. A. Berthiaume, W. van Dam, and S. Laplante, J. Comp. Syst. Sciences 63, 201-221 (2001).

    Google Scholar 

  77. P. Vitanyi, “Three approaches to the quantitative definition of information in an individual pure quantum state,” Proceedings 15th IEEE Conference on Computational Complexity (Piscatawy, NJ, 2000), pp. 263-270; Los Alamos Archives preprint quant-ph/9907035.

  78. P. Gacs, J. Phys. A, Math Gen. 34, 6859-6880 (2001).

    Google Scholar 

  79. W. V.O. Quine, Mathematical Logic (Norton, 1940).

  80. R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek, Phys. Rev. Lett. 77, 198 (1996); D. P. DiVincenzo and P. W. Shor, Phys. Rev. Lett. 77, 3260 (1996). E. M. Raines, R. H. Hardin, P. W. Shor, and N. J. A. Sloane, Phys. Rev. Lett. 79, 954 (1997).

    Google Scholar 

  81. W. H. Zurek, Phys. Rev. D 24, 1516 (1981); 26, 1862 (1982).

    Google Scholar 

  82. E. Joos and H. D. Zeh, Zeit. Phys. B 59, 23 (1985). H. D. Zeh, quant-ph/ 9905004; E. Joos, quant-ph/ 9808008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benioff, P. Towards a Coherent Theory of Physics and Mathematics. Foundations of Physics 32, 989–1029 (2002). https://doi.org/10.1023/A:1016561108807

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016561108807

Navigation