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ABSTRACT. I explain why model theory is unsatisfactory as a semantic theory and 
has drawbacks as a tool for proofs on logic systems. I then motivate and develop 
an alternative, the truth-valuational substitutional approach (TVS), and prove with 
it the soundness and completeness of the first order Predicate Calculus with 
identity and of Modal Propositional Calculus. Modal logic is developed without 
recourse to possible worlds. Along the way I answer a variety of difficulties that 
have been raised against TVS and show that, as applied to several central questions, 
model-theoretic semantics can be considered TVS in disguise. The conclusion is 
that the truth-valuational substitutional approach is an adequate tool for many of 
our logic inquiries, conceptually preferable over model-theoretic semantics. 
Another conclusion is that formal logic is independent of semantics, apart from its 
use of the notion of truth, but that even with respect to it its assumptions are 
minimal. 
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One difficulty in the Fregean theory is the generality of the words 
‘concept’ and ‘object’. For even if you can count tables and tones and 

vibrations and thoughts, it is difficult to bracket them all together. 
(Wittgenstein, PR 119; cf. PG 307 = BT 552) 

Preface 

I decided to make this work publicly available and not try to publish it in its current 
form, for several reasons. 
 I started working on the truth-valuational, substitutional approach (TVS) in late 
2011, thinking it can provide a valuable alternative to the currently dominant model-
theoretic semantics (MTS). At the time, I had, like most contemporary logicians, only a 
modest knowledge of the literature on the subject, published mainly around the 
seventies. I was writing this draft while gradually catching up with that literature, and 
consequently I occasionally reinvented the wheel in my proofs. In particular, it took me 
some time to obtain Hugues Leblanc’s 1976 book, Truth-value Semantics. My university 
library ordered a used copy which I and some of my students read only after I had 
written and used in my classes a quite extensive version of this paper, and I think some 
students even suspected I took some things from Leblanc without due credit. The 
important thing, however, is that much of the formal work in this paper is contained in 
earlier publications, at least in its essentials. Accordingly, it repeats some results the way 
one expects from a textbook and not from an original research piece. 
 On the other hand, the philosophical or conceptual discussions contained here 
are, I believe, original. They both defend TVS against objections found in the literature 
and – unlike most of the literature on it – also claim it has conceptual advantages over 
MTS. Such material might be essential for the rehabilitation of TVS. 
 I have used TVS in some of my published works on the Quantified Argument 
Calculus (Quarc), as has since been done by others as well (Ben-Yami 2014, 2020; 
Pavlović & Gratzl 2019, 2023; Yin & Ben-Yami 2023; Ben-Yami & Pavlović 2023). In 
some of these works some of the mentioned objections are addressed. However, I 
thought it is worthwhile having them together at one place, as well as developing TVS 
independently of Quarc, applied to widely used calculi. 
 So, the purpose of this work is to provide an introduction and justification of the 
truth-valuational, substitutional approach. I think TVS should be better known and have 
much wider currency in logic than it currently has. I am also not familiar with any similar 
work in the literature. Leblanc wrote a survey forty years ago for Gabbay and 
Guenthner’s Handbook of Philosophical Logic (Vol. I, 1983), which is still helpful, but it 
contains next to no conceptual discussion of the kind contained in this work, and our 
formal approaches are different in some important respects. 
 I didn’t try to be original in this work; rather, I wanted to write a useful piece. 
 I shall probably update the paper now and then. So, if cited, please cite the full 
date of the version used, found in its footer. I also hope to transfer the work at some 
stage to a different processor, which will facilitate many formatting features. 
 My work on TVS has gained from teaching it, and from feedback and work of 
my students. I especially like to mention my supervisees, past and present, Edi Pavlović, 
Péter Susánszky, Simon Vonlanthen, and Hongkai Yin, who have also incorporated TVS 
in some of their work, which often goes beyond what is found here. 
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I. Reasons for Discontent with Model Theory, and Motivation for an 
Alternative Approach 

Model Theory is currently used in the standard proofs on the system of predicate logic, 
modal logic and other logic systems, proofs that relate provability to validity. Namely, 
properties of the proof system, primarily soundness and completeness, are proved using 
Model Theory. The significance of Model Theory for logic, which goes beyond these 
proofs, is anchored in this role. 
 Validity concerns relations between possible truth values: an argument is valid 
just in case its conclusion is true if its premises are. Since methods of proof in formal 
logic address only the question of which sentences can be written after which in virtue of 
their form, irrespective of the truth values of these sentences, some theory that discusses 
truth is necessary in order to relate provability to validity. Model Theory does that by 
providing a theory of truth: it says what should be the case in the world, or in the domain our 
sentences are about, for these sentences to be true. By means of it we can determine the 
possible relations of the truth values of the premises to that of the conclusion, and in this 
way determine the validity of arguments. Since Model Theory relates truth to form, while 
proof theory relates provability to form, together they can relate provability to truth and, 
as a result, to validity. 
 Yet Model Theory is a problematic theory of truth. Let us consider a few valid 
arguments of the same form: 
 

1. Socrates is a man 
All men are mortal 
Hence, Socrates is mortal 

 
2. Courage is a virtue 

All virtues are rare 
Hence, courage is rare 

 
3. The defeat of the Persians was a great victory 

All great victories are bought at a high price 
Hence, the defeat of the Persians was bought at a high price1 

 
Due to their identical form, logic should explain the validity of these three arguments in 
the same way. Model Theory does that by describing in the same terms the situation in 
the world or in a domain for the three arguments or their formal translations; and by 
describing in the same terms the way the different sentences relate to the world or to the 
domain. According to it, ‘Socrates’ stands for a particular person, who is among the 
particulars of a domain; ‘courage’ stands for a particular character trait, which is among 
the particulars of a domain; and ‘the defeat of the Persians’ stands for a particular event, 
which is among the particulars of a domain. Particular persons and their names, 
particular character traits and their names, particular events and their names: all are 
treated in the same way by Model Theory. The name designates (refers to, stands for…) 
a person, a character trait, an event, or whatever; and the domain is constituted by 
particulars or objects of any sort. The interpretations or structures of Model Theory, 
writes Hodges, explain ‘what objects some expressions refer to’ (2009: §1; italics added). 

 
1 Unlike the former two arguments, this one uses the past tense in its conclusion and first premise, and not 
present tense in all three sentences. But this difference, whether or not it is significant for the logic of 
natural language, is irrelevant to the aspects of Model Theory I am considering here.  
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 But surely the aspects of the use of ‘courage’ that make it mean what it means are 
quite unlike what makes ‘Socrates’ the name of Socrates, and neither are like what makes 
‘the defeat of the Persians’ stand for what it stands for (and examples can easily be 
multiplied). There is no relation that ‘reference’, ‘designation’ or any other related term 
expresses in all these cases. 
 Moreover, to say that a domain may contain persons, character traits or events, 
or that all these are objects in some sense, is to impose a merely apparent uniformity 
where the differences are great and the affinity negligible. There is no sense of ‘domain’ 
in which it can be indifferently applied in all these cases, and no sense of ‘objects’ (or 
‘particulars’ or ‘things’) in which Socrates, courage and the defeat of the Persians are all 
objects. 
 We can specify a meaningful notion of reference and of an object or particular; by 
‘reference’ we may mean, say, the relation of a person’s name to the person it names, and 
we can then consider people as ‘objects’ or particulars. But then our notion of reference 
would not apply, for instance, to the relation of names of character traits to what they 
name, and our notion of object or particular would similarly not apply to character traits. 
If we specify meaningful notions of reference and object, our explanation of the validity 
of inferences cannot apply, as it should, to all arguments of the same form. 
 But surely you won’t deny that ‘Socrates’ refers to Socrates, ‘courage’ to courage, and so on; so, 
there is a common notion of reference that applies to these terms. – When we write this, the use of 
inverted commas misleads us. It makes us think that when the words occur without the 
inverted commas, we are using them to talk about courage, say, and so on. But in this 
case we in fact ignore what these words mean when making our assertion, which 
amounts only to saying that ‘courage’ is used the way it is used, and so on. The words are 
only mentioned, in either of their occurrences. Accordingly, no meaningful use of 
‘reference’ was made here. 
 The affinity of all the arguments above is in the grammar of their sentences alone, 
and not in what their sentences are about or in what it takes for them to be about it. In 
all these cases we have, for instance, a singular term in the same grammatical role, 
although the ways these different terms acquire meaning are radically different. 
Accordingly, in order to account in the same way for the validity of these different 
arguments of the same form, we should rely only on their uniform grammar. We should 
not rely on any alleged uniformity in the way their sentences are endowed with meaning 
or in what these sentences say. Yet the latter is exactly what Model Theory does. 
 Independently of these rather philosophical reasons for discontent with Model 
Theory, let us consider an additional, formal reason for dissatisfaction with the way 
Model Theory relates validity and provability. Validity concerns a relation of truth values, 
the one holding between the possible truth values of the premises and those of the 
conclusion. But Model Theory basically provides something different: a theory of when a 
sentence is true, and not a theory of the relations between truth values of sentences. 
From a logical point of view, we get in this way more than we need. From a logical point 
of view, if a theory could provide an account of truth value relations, without committing us 
to a theory of truth, and be sufficient for our meta-logical needs, it would be more 
appropriate, as carrying no additional unnecessary theoretical commitments but being 
closely tailored to what is required. So, independently of the doubts above concerning 
Model Theory as a theory of meaning, we have a logico-mathematical reason for 
developing a different, more minimal theory (minimalism being a mathematical virtue), 
one directly relating the truth values of formulas, which should also be sufficient for 
relating provability and validity. 
 Such a theory is familiar from the Propositional Calculus. Truth tables do not say 
what should be the situation in the world or in some domain of discourse for any of the 
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propositions or formulas to be true. Rather, they only specify what the relation is between 
the truth value of a complex formula and the truth values of the formulas that 

immediately compose it. For instance, p  q is true in case p is true and q is true, and false 
otherwise; and nothing is said about what should be the case in the world for p to be 
true, or on how p may come to acquire a truth value. And this truth table treatment is of 
course sufficient for proving the adequacy, namely the soundness and completeness of 
the Propositional Calculus with its standard proof systems. 
 I develop in this paper such an approach – the truth-valuational approach – to 
the first order Predicate Calculus with identity and to Modal Propositional Calculus. I 
shall prove the adequacy of these calculi by means of an account of the relations of truth 
values of formulas. This would establish that from this logical point of view, Model 
Theory is redundant for these calculi. 
 One might decide to call also an account as the one I am going to develop a 
model, as is occasionally done, and in this way have a non-problematic notion of model. 
In this paper, however, I restrict this notion to accounts that involve both a domain and 
a relation of designation of particulars, as is done by Model Theory. 
 Another, different sense of ‘model’ and ‘interpretation’ is that according to which 
we replace the meaningless symbols of our formulas by meaningful terms. Our formulas, 
before they are interpreted, are schemas which represent the logical structure of a variety 
of possible languages. When their symbols – a, b, c…, P, Q, R … – are replaced with 
meaningful words – say 1, 2, 3… even, odd, prime … – we get a meaningful language that 
has the logical properties we have been investigating. It is not that a designates 1, b 2, P 
the set of even numbers and so on, and in this way the formal language becomes 
meaningful; rather, those symbols are replaced by these meaningful terms. And how these 
terms get their meaning is irrelevant. Different possible terms might get their meaning in 
diverse ways, as was discussed above. We presuppose meaning, and do not provide a theory 
of meaning or a semantics. 
 With this sense of model or interpretation, there need not be any mentioning of a 
domain, and interpretation is not used in the sense of the interpretation function of model 
theory, which assigns objects and sets to names and predicates. Rather, the interpretation 
replaces a language-structure by a language. Even if we consider such a replacement a 
model, we should note that we then use this term not in the sense it is used by Model 
Theory. This model is not what we talk about, but a specific talking. 
 Models in this sense can serve to demonstrate various logical properties of a 
language with a given logical structure. For instance, if we wish to show that a linear 
order need not be dense, we consider a language with the two-place predicate ‘greater 
than’ and with the names for natural numbers as our constants, and show that the 
required properties hold for it. We can similarly show the independence of certain 
formulas, and more. But again, it would be a misunderstanding to say that in this case we 
found a domain in which to interpret our given formal language. 
 Additional, independent reasons for interest in Model Theory, say as a field of 
mathematical investigation, are possible. But they would not bestow on it the role in logic 
it currently has. 
 The question, which facts about the world and language’s relation to it make this 
or that sentence true, is of course legitimate. Yet it need not be asked by formal logic, 
which should focus on the possible relations of truth values of sentences due to their 
forms, irrespective of their relations to the world in virtue of which they acquire these 
truth values. 
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II. Introduction of the Truth-valuational Substitutional Approach to 
Quantification 

The basic idea of the truth-valuational approach is to provide rules that relate the truth 
value of a complex sentence to those of sentences from which it can be generated. In this 
sense, it is a theory of truth value relations, and not a theory of truth. A set of basic 
sentences are ascribed truth values, and the truth values of all other sentences are 
determined based on this assignment. We are familiar with such approach from the 
Propositional Calculus: the propositional variables form the set of basic sentences, all 
other sentences are recursively generated by means of sentential connectives, and there 
are rules relating the truth value of a generated sentence to those of the sentences from 
which it is generated. When considering other calculi, their specific properties should 
determine how this approach can be applied to them. As mentioned above, I shall 
develop it in this paper for the Predicate Calculus with identity and for Modal 
Propositional Calculus. These applications can serve as a model for additional ones. Such 
applications to other calculi are sometimes straightforward – see for instance the 
application to Quarc in (Ben-Yami 2014) and elsewhere – but successful applications in 
specific cases cannot guarantee general applicability. The limits of the approach should 
therefore be determined by further attempts to apply it to other calculi. 
 I start with considerations on the application of the truth-valuational approach to 
quantified sentences. The application to modal calculi will be considered in Section VII. 
 In the case of a quantified sentence, the truth-valuational rules relate its truth 
value to those of its substitution instances. Here is an illustration within natural language. 
The sentence 
 

4. Every philosopher is mortal 
 
is true just in case every substitution of a name of a philosopher for ‘every philosopher’ 
yields a true sentence. Namely, all sentences like 
 

5. Socrates is mortal 
 
should be true for sentence (4) to be true. 
 The corresponding rules for the relation of the truth value of a quantified 
sentence to those of its instances in the Predicate Calculus will be: 
 

-Rule: A sentence of the form xφ(x) is true just in case so is some sentence of 
the form φ(a), where a is any name that has replaced all occurrences of x in φ(x). 
 

-Rule: A sentence of the form xφ(x) is true just in case so is every sentence of 
the form φ(a), with a as above. 

 
Similar rules were suggested by Barcan Marcus (1962), Dunn and Belnap (1968), Leblanc 
(1968), Kripke (1976: 330) and others. I shall formulate these rules more rigorously once 
I introduce the formal language in the next section. 
 I assumed in the illustration from natural language above that every philosopher 
has a name. This assumption is necessary, for otherwise, in case there is an unnameable 
immortal philosopher, sentence (4) is false although it has no false substitution instance. 
However, while such an assumption might be justified when the subject is philosophers, 
certainly we cannot assume a similar nameability when we talk about all grains of sand in 
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the world, say, or all real numbers. Isn’t this a major difficulty with the substitutional 
approach? 
 Despite common claims to the contrary, going back at least to Quine,2 this 
nameability assumption is not a disadvantage of the substitutional approach vis-à-vis 
Model Theory. Roughly speaking, the objectual-referential semantics of Model Theory 
has analogously to assume that all particulars in the domain can be the values of interpretation 
functions. More precisely, Model Theory assumes that for every interpretation function i, 
for every variable v and for every particular p in the domain, there is an interpretation 
function i*, different from i at most in its value for v, for which i*(v) = p (variations on 
this assumption will face corresponding issues). This assumption is as problematic as that 
of the substitutional approach, this time with respect to interpretation functions instead 
of names. Like naming, interpretation is a human activity; and those who cannot name 
everything cannot provide all possible interpretations either. The substitutional 
approach’s treatment of names is no more in need of justification than Model Theory’s 
of interpretations. 
 But both approaches can resolve the issue in the same way. What the formal 
approach does is provide an abstraction or idealisation, for the purposes of a formal 
study, of a method in which the truth value of a quantified sentence is determined in 
practice. In both informal and formal contexts, we may determine it by substituting 
names for the relevant part of the sentence; and in formal contexts we may also do that 
by providing variable interpretations as described above. And when we consider an 
idealised formal system – idealised not in the sense of being better than actual languages 
or actual applications, but more in the sense of a frictionless limit – we abstract also from 
the limitations of actual practice. 
 The criticism of Model Theory in the former section was not for its being an 
idealisation of the kind just described. The main criticism there was that Model Theory 
tries to account for uniform logical relations between kinds of sentence by assuming 
uniform relations between the terms that such sentences contain and the world 
(designation of objects and of sets), relations that in fact obtain in any meaningful sense 
only in a limited group of cases. Namely, Model Theory looks at the wrong place (word–
world relations) to account for these uniform logical relations. Because of this feature of 
the theory, it cannot be justified on the lines mentioned above. 
 In addition, in the standard Henkin proofs of the completeness of the calculus, 

witnessing constants are introduced so that every statement of the form xφ(x) is true 
just in case so is its substitution instance φ(a), with a the Henkin witnessing constant for 

xφ(x).3 The case is similar when the proof uses Lindenbaum’s Lemma. Within the 
framework of Model Theory, this amounts to the assumption that if a quantified formula 
has instances, then at least some of them can be named. Accordingly, for the purposes of 
the acceptability of standard proofs on the system, Model Theory makes a nameability 
assumption close to that made by the substitutional approach. 
 Peter van Inwagen has claimed that substitutional quantification, if it is not to 
mean what is meant by objectual-referential quantification, has not been given any sense 
(van Inwagen 1981; cf. van Inwagen 2004). Introducing the symbol Σ for the existential 

quantifier read substitutionally, and keeping  for the same quantifier read Model-
theoretically, he claims that the truth conditions of a quantified sentence using Σ are 
specified, for instance, as follows: 

 
2 The earliest discussions of this issue of which I am aware are found in Quine’s papers, ‘Ontological 
Relativity’ and ‘Existence and Quantification’, reprinted in (Quine 1969). 
3 This is not the place to present Henkin’s proof, which however is developed in a modified form in 
Section V. Readers not familiar with the proof would then be able to assess the claim made in this 
paragraph. 
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‘Σx x is a dog’ is true … iff x x is a term and ┍x is a dog┑is true 

 
But, he continues, in addition it is said that ‘Σx x is a dog’ does not mean the same as 

‘x x is a term and ┍x is a dog┑is true’. What it does mean, he adds, is not specified. 

Accordingly, no meaning has been specified for ‘Σx x is a dog’. 
 However, van Inwagen’s specification of the truth conditions should be rejected: 
advocates of substitutional quantification do not consider themselves as using objectual-
referential quantification in the metalanguage to explain substitutional quantification in 
the formal language. Rather, they consider its use in the constructed formal language as 
modelled on that in natural language, which is used to explain it. Van Inwagen writes that 
‘our understanding of the (objectual) quantifier-variable idiom resides in our ability to 
translate sentences couched in it into quantificational idioms of which we have a prior 
grasp, viz. those of ordinary language’. But this can be maintained by the advocate of 
substitutional quantification as well, who may also claim that ordinary language 
quantification is better explained substitutionally. 
 Lastly, van Inwagen is wrong to think that he has a clear understanding of 
quantification as objectual-referential. As we saw in the previous section, these concepts 
of object and of reference are hollow. There is no sense of ‘object’ which applies to 
human beings, fictional characters, numbers, events, character traits, ‘tables and tones 
and vibrations and thoughts’ – yet we quantify when we talk of all these things. An 
objectual-referential account of our general quantificational language is not an option. 
 An attempt to replace model-theoretic semantics with a truth-valuational 
approach should address an argument derived from Kreisel, which tries to establish that 
for first-order logic, intuitive validity is captured by model-theoretic validity.4 Kreisel 
himself was interested in a different issue, the vindication of the intuitive notion of 
validity, but in the process he provided an argument for the above equivalence (1967: 89-
91). Kreisel’s ‘squeezing’ argument proceeds roughly as follows: from the time of Frege 
on, the derivation rules of the Predicate Calculus have been recognised as intuitively 
valid, so 
 

Derivability → Intuitive Validity. 
 
On the other hand, a Predicate Calculus argument for which there is a counter-model is 
intuitively invalid, so by contraposition: 
 

Intuitive Validity → Model-Theoretic Validity 
 
In addition, as Gödel and Henkin proved, the calculus with model-theoretic semantics is 
complete: 
 

Model-Theoretic Validity → Derivability 
 
Combining these entailments, we get, 
 

Intuitive Validity ↔ Model-Theoretic Validity 
 
And so, the model-theoretic notion captures our intuitive notion of Predicate Calculus 
validity. 

 
4 I am indebted to Ran Lanzet for drawing my attention to this argument and for helpful discussion. 
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 What this line of thought shows is that, for the Predicate Calculus, intuitive 
validity and model-theoretic validity coincide; what it does not show is that the meaning of the 
former is captured by the latter (nor did Kreisel intend it to show that). If our models 
were restricted to domains consisting only of pebbles, as many as we wish, we would still 
have the equivalence between pebble model-theoretic validity and intuitive validity, yet 
the former obviously does not capture the latter. (In that case we would also have 
meaningful concepts of object and designation: object = pebble, designation = talk about 
pebbles.) Similarly, validity in Aristotelian logic coincides with validity according to Venn 
diagrams, yet the latter does not give the meaning of the former. Accordingly, what 
Kreisel’s argument establishes is that to be faithful to our intuitive notion of validity, a 
truth-valuational approach should preserve the set of Predicate Calculus arguments that 
are model-theoretically valid (and we shall see that it does); it does not show that the 
model-theoretic concept of validity captures the intuitive notion. 
 I proceed to the formal part of the paper. 

III. A Formal System, Validity and Soundness for the Predicate Calculus 

Similar formal systems have been developed several times in the past, in most detail in 
(Leblanc 1976), and formally, much of what I do below is not new. I still develop such a 
system here for several reasons. First, the specific version below is not found in any 
earlier publication. This is partly because I make several choices which I find better 
justified conceptually than those found in the literature. The system which results is 
therefore, I think, better justified in this respect as a framework for logic than earlier 
ones. Some of my choices are not of this nature: for instance, the truth-valuational 
approach need not employ the specific proof method I use. The discussion below makes 
clear which features of the system I take to be essential to the approach and which could 
be replaced by others. Secondly, I address along the way conceptual issues and possible 
objections – this being one of the main objectives of this work – and these require 
familiarity with the formal system and reference to it. This makes the development of the 
system practically necessary, especially as many readers might not be familiar with earlier 
work. All the same, given the availability of earlier work, as well as the conceptual focus 
of this paper, I shall allow myself to be concise at places. 
 
The Language 
For reasons made clear below, when validity is discussed, TVS requires varying the set of 
individual constants of the language. Formally, that means that we shall define a language 
without specifying its set of individual constants. 
 

Definition (Language). A language, 𝔏, of the Predicate Calculus (PC) consists of: 
• Individual constants: a non-empty, denumerable set of symbols, disjoint from all 

other symbols listed below. 
• for each n > 0, n-ary predicates: P1

n, P2
n, … 

• connectives: ¬, , , → (but we shall use only ¬ and → in proofs) 
• variables: x1, x2, … 

• quantifiers: ,  
• parentheses: (, ) 

 
The set of individual constants can also be finite, as long as it is not empty, but making it 
denumerable simplifies some proofs. We shall use a, b, c, …, possibly with subscripts, for 
arbitrary individual constants; x, y, z, … for arbitrary variables; P, R, S, … for arbitrary 
predicates; φ, ψ, … for formulas. We shall usually use ‘names’ and not ‘individual 



The Truth-valuational Approach  Ben-Yami 

09 February 2024  P a g e  | 11 

constants’, apart from formal definitions. And occasionally, instead of talking of language 

𝔏2 different from 𝔏1 in its set of names, we shall talk about adding or removing names 
from a language. 
 

Definition (Formulas). Let 𝔏 be a PC language. The formulas of 𝔏 are: 
• Atomic formulas: Pa, Rab, etc. (Atomic formulas do not contain variables.) 

• Let φ and ψ be formulas, then so are ¬φ, (φ  ψ), (φ  ψ) and (φ → ψ). 

• If φ(a/x) is a formula then so are xφ(x) and xφ(x). (φ(a/x), here and below, is 
the formula in which a replaced all occurrences of x in φ(x).) 

 
Parentheses shall be omitted as standard. Formulas do not contain free variables. Since 
the introduction of identity, =, into the system requires some theoretical discussion, I 
postpone it to the next section. 
 
Proofs 
My method of writing proofs in Natural Deduction is based on the system introduced by 
Jaśkowski (1934) and further developed and streamlined by Fitch (1954), Lemmon 
(1978) and others. 
 
Definition (Proof). A proof is a sequence of lines of the form <L, (i), φ>, where L is a 
possibly empty list of line numbers, written without repetition in ascending order; (i) is 
the line number in parenthesis; φ a PC formula; and the line is written according to the 
derivation rules specified below. We shall usually write to the right of the formula the 
name of the rule according to which the line is written, possibly followed by line 
numbers. (Proofs in which a line can be written according to more than a single rule, or 
according to the same rule applied to different lines, are possible, but we shall not 
encounter any in this work.) That rule is the justification of φ. φ is said to depend on the 
formulas listed in L. The formula in the last line of the proof is its conclusion. If there is a 

proof with the formula φ as conclusion, depending only of formulas from the set 𝔖, then 

φ is provable from 𝔖, or 𝔖 ⊢ φ. If there is a proof in which the last formula is φ and it 

does not depend on any formula, then φ is a theorem and we write ⊢ φ. 

 
 Before listing the derivation rules, I provide a simple, intuitive example of a 
proof. I first note that if a formula is written as a premise then it is taken to depend only 
on itself, and to the left of the line-number is written the line-number of that very line. 
The example also uses conjunction elimination and modus ponens: 
 

1 (1) p→q Premise 

2 (2) p  r Premise 

2 (3) p -Elimination 2 
1, 2 (4) q Modus Ponens 1, 3 

 
 I proceed to the definition of the derivation rules. Since in the proofs on the 

system we shall use only ¬ and →, I don’t provide rules for the other connectives. In 
lists of line numbers, ‘L1, L2’ stands for the list of all line numbers occurring in L1 or L2. 
‘L – j’ stands for the line numbers occurring in L apart from j. The lines before a rule’s 
last lines need not occur in the order they occur in the schema, the lines need not be 
consecutive or different from each other. When convenient, I use ‘L’ to refer to the 
formulas in lines L. 
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Definition (Derivation Rules). The derivation rules below specify all the ways for writing 
new lines in a proof, the last line in any of the rules. 

Premise 
i (i) φ Premise 

 

Negation Introduction, ¬I 
i (i) φ Premise 
L1 (j) ψ  
L2 (k) ¬ψ  
(L1, L2) – i (l) ¬φ ¬I i, j, k 

 

Negation Elimination, ¬E 
L (i) ¬¬φ  
L (j) φ ¬E i 

 

→I 
i (i) φ Premise 
L (j) ψ  
L – i (k) (φ → ψ) →I i, j 

 

→E 
L1 (i) (φ → ψ)  

L2 (j) φ  
L1, L2 (k) ψ →E i, j 

 

I 
L (i) φ(a/x)  
L (j) xφ(x) I i 

 

E 
L1 (i) xφ(x)  

j (j) φ(a/x) Premise 
L2 (k) ψ  
L1, (L2 – j) (l) ψ E i, j, k 

Constraint: a does not occur in xφ(x), ψ, any of L1, and any of L2 apart from 
φ(a/x). 

 

I 
L (i) φ(a/x)  
L (j) xφ(x) I i 
Constraint: a does not occur in any of L. 

 

E 
L (i) xφ(x)  

L (j) φ(a/x) E i 
 



The Truth-valuational Approach  Ben-Yami 

09 February 2024  P a g e  | 13 

 
Truth Value Assignments 
Definition (Valuation). An assignment of truth values will be called a valuation, a 
function from formulas of a language to truth values. Every valuation assigns to any 

formula in 𝔏 a single truth value, T or F, in which case we say that the formula is true or 
false, respectively, on that valuation. Truth values are assigned to formulas recursively, as 

follows. For any valuation 𝒱, every atomic formula is either true or false (notice that we 

do not relate these formulas to any domain). If φ is a formula, then 𝒱[¬(φ)] = T in case 

𝒱[φ] = F, and 𝒱[¬(φ)] = F in case 𝒱[φ] = T; similarly for all other sentential connectives. 
The rules for assignments of truth values to quantified sentences elaborate the rules 
given in Section II for the relation of the truth value of a quantified sentence to those of 
its instances: 
 

(-valuation) xφ(x) is true on a valuation in case φ(a/x) is true on that valuation 
for some individual constant a, otherwise it is false 

(-valuation) xφ(x) is true on a valuation in case φ(a/x) is true on that 
valuation for every individual constant a, otherwise it is false. 

 
It is easy to see that every assignment of truth values to atomic formulas uniquely 
determines the assignment of truth values to all formulas.5 
 
Validity 
When we come to define validity, we should avoid the mistake of identifying universal 
quantification in general with applicability to a given set of individual constants or names, 
and similarly for existential quantification. When I talk of specific things, say the ten books 
on my shelf, then if a predicate P is true of b1 to b10, these being the titles of my books, 

the universal quantification over it, xP(x), is then true as well; this fact justifies the 
substitutional approach to the truth of quantified sentences. But no fixed set of names 
yields such equivalence independently of subject matter, and therefore no fixed set of 
names can yield validity. We shouldn’t therefore define validity while assuming a fixed set 
of names. We do that by allowing names to be added to our language and eliminated 
from it, and by defining validity relative to such different sets of names. Of course, when 
considering the validity of a specific argument, we consider only languages containing all 
the names occurring in it. 
  
Definition (Validity). An argument whose premises are all and only the formulas in the 
set Ψ and whose conclusion is φ is valid just in case every valuation that makes all 
formulas in Ψ true makes φ true as well, in any language whose set of names contains all 

names occurring either in Ψ or φ. We then write, Ψ ⊨ φ. We also say that Ψ entails φ. In 

case Ψ is {ψ1, … ψn}, we also write ψ1, … ψn ⊨ φ. In case a formula φ is true on all 

valuations in any language whose names include all names occurring in φ, φ is called a 

logical truth or tautology, and we write ⊨ φ. 

 
Having defined validity, we may also define its dual notion, satisfiability. A formula φ is 
satisfiable if and only if ¬φ is not a logical truth. Accordingly, on the truth-valuational 
approach, a formula φ is defined as satisfiable just in case, in some language containing all 
its names, φ is true on some valuation. A set of formulas Ψ is satisfiable just in case, in 

 
5 This is proved in (Kripke 1976: 330-331) for a more general case. 
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some language containing all the names occurring in Ψ, all the formulas of Ψ are true on 
some valuation. 
 This definition of validity, which takes addition and elimination of names to and 
from the language into consideration, correctly renders arguments like the following 
invalid. Suppose the only name we had in our language was a; then any valuation that 

would make P(a) true would also make xP(x) true. If we did not allow adding names to 

the language, then the argument with P(a) as its premise and xP(x) as its conclusion 
would be valid. But since we may now add, say, the name b, this argument is not valid 
according to our definition: a valuation can make P(a) true, P(b) false and consequently 

xP(x) false as well. And the case is the same with any fixed set of names, finite or not. 
 The problem with a definition of validity with a constant set of names mentioned 
in the previous paragraph was first noted by Dunn and Belnap (1968: 180). Although 
they primarily criticise substitutional quantification because of it, they add one paragraph, 
as if an afterthought, in which they write that the problem could be overcome if we use 
‘a notion of logical consequence which permits enrichment of the elementary language in 
question by the addition of new names’. They find this ‘a good notion of logical 
consequence, for it immediately ensures […] that relations of logical consequence be 
preserved upon extension of a language’ (183). I don’t think this is a sufficient 
justification of the modified notion: this preservation of validity should be derived from 
what we understand by validity, and not stipulated into its definition. By contrast, I tried 
to provide an independent justification of my modified definition, based on the concept 
of universality. Moreover, these considerations brought us to allow not only adding 
names to the language, as Dunn and Belnap do, but also eliminating names from it. 
Consequently, this modified definition of validity doesn’t have the ad hoc character, 
being tailored to overcome ‘technical failings’, that Dunn and Belnap’s modification 
might seem to have.6 
 Technically, however, to get a satisfactory notion of validity it is enough if, with 
Dunn and Belnap, we only allow enriching the language with names, without eliminating 
names. This is because we do not add to the possible truth values of a set of formulas by 
eliminating from the language a name not occurring in any of them, as long as the 
language contains some names. Eliminating names cannot therefore make an argument 
invalid. This can be seen from the following considerations. Instead of eliminating a 
name a, we can assign to any atomic formula containing it the same truth value as that we 
assign to the formula in which another name, b, has replaced all occurrences of a. 
Informally, the formulas then say by a what they also say by b, and a doesn’t contribute 
anything that b doesn’t anyway contribute. Consequently – this is an immediate corollary 
of the lemma proved in the next subsection – the truth value of any formula not 
containing a will be the same as it would if a were eliminated from the language. 
 Despite this technical result, I preferred to define validity above by allowing also 
the elimination of names from the language, the language’s names allowed to be any non-
empty set of names that contains all names occurring in the argument’s formulas, 
because this is what is justified by the idea of validity on the substitutional approach. 
Other, formally equivalent possibilities should be proved. As we shall see in Section VI, we 
can in fact allow adding a limited number of names per argument, determined by the 
number of quantifiers in the argument’s formulas, and still get the same set of valid 
arguments. However, this result should also be proved, and not serve as part of the 
original definition of validity. 

 
6 Dunn and Belnap also write there that once the modified definition of logical consequence is adopted, 
the calculus will be complete; but they seem not to have realised that this will require significant changes in 
the completeness proof, which they do not provide. 
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 Leblanc (1968: §4) also noted the problem with the standard definition, but he 
adopted a different solution. Allowing denumerably many variables to his calculus (and 
as is standard, these function when free like our names), he relied on the compactness 
theorem and demanded that an infinite set of formulas Ψ will imply formula φ just in 
case some finite subset Ψ’ of Ψ implies φ according to the standard definition, namely, 
every valuation that makes all formulas of Ψ’ true makes φ true as well. But I don’t think 
compactness is part of our understanding of validity, and indeed it does not generally 
hold in higher-order logics. I therefore find Leblanc’s suggestion in his 1968 paper ad 
hoc and unjustified. 
 In his later book (1976), Leblanc changed his definition of validity, following a 
suggestion of Hintikka’s (p. 49). He defines validity through semantic consistency (p. 19). 
First, a non-empty set of formulas Ψ is defined as verifiable by means of a valuation if 
there is a valuation that makes all formulas of Ψ true. Next, a non-empty set Ψ is 
semantically consistent in the truth value sense if there is a verifiable set of formulas Ψ1 to which 
Ψ is isomorphic. A set which is not semantically consistent in this sense is inconsistent in 
the truth value sense, and φ is a semantic consequence of Ψ in the truth value sense – i.e., 

Ψ ⊨ φ – if Ψ ∪ {¬φ} is semantically inconsistent in that sense. On pages 49–51 Leblanc 

shows the equivalence of this definition with his former one and with Dunn and 
Belnap’s, which is also essentially the one used in this work. 
 Leblanc does not explain, however, why this definition through isomorphism 
captures or at least approximates what we intuitively understand by validity. The formal 
adequacy appears in this way as a kind of trick, which does provide the results in which 
we were interested for other reasons, but does not yield any understanding of what validity 
is or why it should be defined in this way.7 Indeed, Leblanc writes in his Preface that 
 

we have limited ourselves to technical matters. A philosophical appraisal of our 
semantics is very much in order, but this did not seem a suitable occasion for 
embarking upon it. (ix) 

 
The formal adequacy of his definition was therefore sufficient for his purposes. But as 
the current work tries to justify the truth-valuational approach, Leblanc’s definition is 
unsatisfactory for it.8 
 Later still, in his 1983 paper, Leblanc changed again his definition of validity, this 
time adopting (Dunn and Belnap 1968)’s term extensions definition, finding it ‘handier 
and admittedly more natural’ (p. 190). Being handier, however, is an insufficient 
justification for the use in the definition of validity: the justification for such definitions 
should explain why we get in this way an intuitive or correct concept of validity. And just 
stating that the term extensions definition is more natural leaves unspecified why we find 
it so – which is what I tried to explain above in my considerations on generality, validity, 
and name lists. 
 
Soundness 
Before we prove that the calculus is sound, we shall prove the following useful lemma: 
 

 
7 This is true also of Garson’s definition of validity for the substitution interpretation of quantification in 
(Garson 2013, p. 215). Garson also adds there that valuations over different languages will entail ‘a major 
complication’. If complexity in proofs is meant, it will be seen below that this is not the case. 
8 Relatedly, although Leblanc contributed more than any other logician to the formal research into the 
truth-valuational approach, primarily in his book, he does not criticise Model Theory as a semantic 
approach, a criticism central to this work. The only worry with Model Theory which he expresses in his 
1983 paper, for instance, is that Model Theory’s overt or covert use of sets might be unjudicious (259). 
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Lemma. Suppose we add to a language a name c and extend a valuation 𝒱 so 
that for some name b, if φ(c) is any atomic formula containing c, then 

𝒱[φ(c)] = 𝒱[φ(b/c)], where b replaced all occurrences of c in φ(c). Then (1) the 

truth value on 𝒱 of any formula ψ(c) is that of ψ(b/c); and (2) the truth value on 𝒱 
of any formula not containing c has not changed. 

 
The idea behind the Lemma is that if the ‘basic truths’ in which a new name is involved 
are the same as those involving an old one, then the new name does the same work as 
the old one: it is everywhere substitutable by the latter and it doesn’t affect the truth 
values of any of the older formulas, because whatever is said with it has already been said 
with the old name. 
 

Proof. The proof of both parts is by induction on the stages in which a formula 
is generated from atomic formulas. We start with (1). 
 The base case is that of atomic formulas, and for it, it is true by definition 

that 𝒱[φ(c)] = 𝒱[φ(b/c)]. 

 Next, if φ(c) is any formula for which 𝒱[φ(c)] = 𝒱[φ(b/c)], then 

𝒱[¬φ(c)] = T iff 𝒱[φ(c)] = F, namely only in case 𝒱[φ(b/c)] = F; but this is so iff 

𝒱[¬φ(b/c)] = T; so 𝒱[¬φ(c)] = T iff 𝒱[¬φ(b/c)] = T. Similar proofs apply to all 
other sentential connectives. 
 Now assume that φ(a1, … am) is a formula generated in n steps, in which 
the ai are occurrences of names, and that for any case in which one or more of 

the a’s is c, 𝒱[φ(c)] = 𝒱[φ(b/c)]. Let us look at xφ(x, c), in which x replaced one 

or more of the ai’s and some of the other ai’s are c. 𝒱[xφ(x, c)] = T iff, for some 

d, 𝒱[φ(d/x, c)] = T. (i) If d ≠ c, then according to our assumption 𝒱[φ(d/x, c)] = T 

iff 𝒱[φ(d/x, b/c)] = T, and therefore for any such d, 𝒱[xφ(x, b/c)] = T as well. 
(ii) If d = c, then 

T = 𝒱[φ(d/x, c)] = 𝒱[φ(c/x, c)] = 𝒱[φ(b/(c/x), b/c)] = 𝒱[φ(b/x, b/c)], and 

therefore 𝒱[xφ(x, b/c)] = T. So if 𝒱[xφ(x, c)] = T, then also 

𝒱[xφ(x, b/c)] = T. 
 To prove the other direction, assume that in φ(x, c), x replaced one or 
more of the ai’s in φ(a1, … am) and one or more of the remaining ai’s are c. Let us 

now assume that 𝒱[xφ(x, b/c)] = T. This is so iff, for some d, 

𝒱[φ(d/x, b/c)] = T. (i) If d ≠ c, then according to our assumption 

𝒱[φ(d/x, b/c)] = T iff 𝒱[φ(d/x, c)] = T, and therefore for any such d, 

𝒱[xφ(x, c)] = T as well. (ii) If d = c, then 

T = 𝒱[φ(d/x, b/c)] = 𝒱[φ(c/x, b/c)] = 𝒱[φ(b/(c/x), b/c)] = 𝒱[φ(b/x, b/c)] = 

𝒱[φ(b/x, c)], and so b provides an instance that makes xφ(x, c) true. 
 A similar proof applies to the universal quantifier, and this completes our 
proof of part (1). 

 We now have to prove, (2), that the truth value on 𝒱 of any formula not 
containing c has not changed. This is true by definition for atomic formulas, 
which constitute the base case. The proof for sentential connectives is similar to 
that in part (1). We consider again the case of the existential quantifier. Assume 
that φ(a1, … am) is a formula generated in n steps for which (2) holds for any 

combination of a1, … am that does not include c, and consider xφ(x), in which x 

has replaced at least one of the ai’s, and which does not contain c. 𝒱[xφ(x)] = T 

iff for some d, 𝒱[φ(d/x)] = T. (i) If d ≠ c, then 𝒱[φ(d/x)] did not change due to 

the introduction of c, and so also did not 𝒱[xφ(x)]. (ii) If d=c, then according to 
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(1), 𝒱[φ(c/x)] = 𝒱[φ(b/x)], and since the latter did not change following the 

introduction of c, this also holds for 𝒱[xφ(x)]. A proof on similar lines applies to 
the universal quantifier. This concludes the proof. 

 
I shall now prove that the calculus is sound, namely, that if φ is derivable from ψ1 to ψn, 
then if the latter are true in a language on a valuation so is the former. That is, if 

ψ1, … ψn ⊢ φ then ψ1, … ψn ⊨ φ. It immediately follows that if Ψ ⊢ φ then Ψ ⊨ φ even if 

Ψ contains infinitely many formulas. It can then also be shown that if ⊢ φ then ⊨ φ. If a 

proof establishes that ψ1, … ψn ⊢ φ, while it is also the case that ψ1, … ψn ⊨ φ, we say 

that the proof preserves validity. I assume in this paper the soundness, and later the 
completeness, of the Propositional Calculus. 
 We prove soundness by induction on proof length. If a proof is one line long 
then its single line is a premise, since all other derivation rules mention earlier lines in 
order to write a new one. A one-line long proof is thus of the form 
 

1 (1) φ Premise 
 

and it shows that φ ⊢ φ, where φ is any formula. But if φ is true on a valuation then φ is 

true on that valuation, and therefore φ ⊨ φ. So any one-line proof preserves validity. 

 We now assume that any proof with up to n lines preserves validity, and show 
that any n+1-line long proof also does. The n+1 line can be a premise, and then validity 
is preserved for the same reason we have just specified. Or it can be written according to 
the derivation rules of the Propositional Calculus, which we assume preserve validity. We 
thus have to show that the four derivation rules for quantifiers preserve validity. We start 

with the -Introduction rule. The n+1-line proof would then look like this: 
 

L (i) φ(a/x)  
L (n+1) xφ(x) I i 

 

Suppose L are true on a given valuation 𝒱. Then according to the inductive hypothesis 

(IH), as φ(a/x) is derived from L in a proof of at most n lines, since L are true on 𝒱 so is 

φ(a/x). But according to our rule for the assignment of truth value to xφ(x), this 
formula is true on a valuation just in case so is some sentence of the form φ(a/x). So if L 

are true on 𝒱 then so is xφ(x), and the n+1 long proof preserves validity. 

 We next prove that the rule of -Elimination preserves validity. The n+1 lines 
proof would now look as follows: 
 

L1 (i) xφ(x)  

j (j) φ(a/x) Premise 
L2 (k) ψ  
L1, (L2 - j) (n+1) ψ E i, j, k 
 

And the constraint is that a does not occur in xφ(x), ψ, any of L1, and any of L2 apart 
from φ(a/x). Now let us assume that all premises L1, (L2 – j) are true on a given valuation 

𝒱, and we have to show that so is ψ. Since L1, the formulas on which line (i) depends, do 
not contain any occurrence of a, formula (j) is not one of them, and so they are all true 

on 𝒱. From IH is follows that xφ(x) is true on 𝒱. Consequently, according to the rule 
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for the relation of the truth value of xφ(x) to those of its instances, there is some name 

b such that φ(b/x) is true on 𝒱. 
 If we could replace all occurrences of a in the proof by b, line (j) would then be 
true and so would all L2 and consequently it would follow that ψ is true. However, such a 

replacement might create a problem: some formulas among L1, L2, xφ(x) and ψ might 

contain the name b, and then the derivation would not be according to the E rule. 

Moreover, if I was used anywhere in the proof, a similar problem might arise with it. 
We therefore must use a name that does not occur in the proof. For this purpose, we add 

a name c to the language, to do the work done by b, so to say. We extend 𝒱 so that for 

any atomic formula φ(c), 𝒱[φ(c)] = 𝒱[φ(b/c)]. According to the Lemma proved above, (1) 

the truth value on 𝒱 of any formula φ(c) is that of φ(b/c), where b replaced all occurrences 

of c in φ(c); and (2) the truth value on 𝒱 of any formula not containing c has not changed. 
 Let us now replace all occurrences of a in the proof by c. Since the rules of 
inference depend on sameness and difference of symbols in different formulas but not 
on the identity of a symbol, the proof up to line n is still according to the derivation rules 

and therefore, given IH, preserves validity. Now since xφ(x) did not contain any 
occurrence of a, replacing all occurrences of x in φ(x) by a and then replacing all 
occurrences of a in φ(a/x) with c gives us φ(c/x), and line (j) is therefore now φ(c/x). 

According to the Lemma, 𝒱[φ(c/x)] = 𝒱[φ(b/x)], and it is therefore true. In addition, 
since no formula of L2 apart from (j) contained a, none of these formulas changed when 
a was replaced by c, and according to the Lemma none changed its truth value. 

Accordingly, all formulas L2 are now true on 𝒱 and therefore, according to IH, so is the 
formula in line (k), namely ψ. But ψ did not contain a, and therefore it did not change 

following the substitution of c for a. According to the Lemma, ψ was therefore true on 𝒱 
also before c was added to the language. And since ψ is also the formula in line (n+1), we 
have proved what we wished to prove. 

 Next, suppose the n+1-line was written according to the -Introduction rule. It 
would then look like this: 
 

L (i) φ(a/x)  
L (n+1) xφ(x) I i 

 

And a does not occur in any of L. Suppose L are true on a given valuation 𝒱. Then 
according to IH, as φ(a/x) is derived from L in a proof of at most n lines, and since L are 

true on 𝒱, so is φ(a/x). But we should show that for any constant b in the language, 

φ(b/x) is true. As in the soundness proof for E, if we could replace all occurrences of a 
in the proof by b, the formula then in line (i), namely φ(b/x), would be true according to 
the IH and the proof would be done, yet such a replacement might create a problem in 
case b already occurs in the proof. 

 We therefore again add a name c to the language, and extend 𝒱 so that for any 

atomic formula φ(c), 𝒱[φ(c)] = 𝒱[φ(b/c)]. According to the Lemma, (1) the truth value on 

𝒱 of any formula φ(c) is that of φ(b/c), where b replaced all occurrences of c in φ(c); and 

(2) the truth value on 𝒱 of any formula not containing c has not changed. We replace all 
occurrences of a in the proof by the fresh c, and the proof up to line n is still according 
to the derivation rules and therefore, given IH, preserves validity. Since formulas L did 
not contain a, they did not change by the c/b replacement, and thus remain true. 

Accordingly, by IH, the formula in line (i), namely φ(c/x), is true. But 𝒱[φ(c)] = 𝒱[φ(b/c)], 

and so, 𝒱[φ(b/x)] is also true, as we wished to prove. 
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 I skip the proof for the rule E, which is straightforward. It follows that every 
proof preserves validity, and therefore that the calculus is sound. QED 
 Accordingly, the proof system for the Predicate Calculus is sound on the truth-
valuational substitutional approach. 

IV. Identity 

If we try to do without models in the Predicate Calculus, we should also specify and 
justify truth value assignment rules for identity. We cannot say that a = b is true just in 
case both a and b refer to one and the same particular in the domain, for we do not make 
use of the notion of reference or of any related notion, nor of that of a particular, object 
or thing. 
 This is not a disadvantage of the truth-valuational approach. To revert to our 
opening critical discussion of Model Theory, there is no common notion of reference and 
none of object with which it is correct to say that each of the three following sentences is 
true just in case the two terms flanking the copula refer to the same object: 
 

Cicero is Tully 
Bravery is courage 
The Great War is World War I 

 
All the same, despite their semantic differences, these three sentences can be used in 

inferences of the same form, for instance a = b, Pa  Pb: 
 

Cicero is Tully 
Tully was an important Roman statesman 
Hence, Cicero was an important Roman statesman 

 
Bravery is courage 
Courage is a virtue 
Hence, bravery is a virtue 

 
The Great War is World War I 
World War I was a tragic event 
Hence, The Great War was a tragic event 

 
What is common to these three inferences is not the way their sentences relate to the 
world but their structure. In addition, these inferences are valid for the same reason. 
Accordingly, logic, being the science of inference, should not concern itself with how 
identity statements relate to the world but with their function within language and the 
way their truth values relate to those of other statements. The notion of a model is 
logically redundant also when identity statements are concerned. 
 From the formal system’s point of view, an identity sentence a = b is true on a 
truth value assignment just in case both names function in the same way on that 
assignment or valuation. In this way, the formal system does not commit itself to any fact 
about the relation of identity statements to the world.9 Since, given the rules listed in the 

 
9 This view of identity answers the difficulty Garson thought truth value semantics faces when trying to 
account for identity (2006: 266–8). Garson thought that a = b should be explained as true in case the terms 
refer to the same thing, and truth value semantics obviously lacks such resources. He did not consider the 
explanation provided here, relating to the terms’ identical functioning in the language on a valuation. Apart 
from this interpretative aspect, my formal treatment of identity is close to that of Garson. 
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previous section, a valuation is determined by the truth values it assigns to atomic 
formulas, this means that if a valuation makes a = b true, the truth value it assigns to an 
atomic formula in which b has replaced a should not be affected by this substitution. 
 With this understanding of identity in mind, I proceed to introduce it into the 
calculus in this section, before proving in the next one the completeness of the Predicate 
Calculus with identity. The formation rules for identity are the standard ones: for any two 
names a and b, not necessarily different, a = b is a formula of the language. A formula of 
the form a = b is considered an atomic formula, ‘=’ being a two-place predicate. The 
rules for valuations that relate to identity are as follows: 
 

(Law of Identity, LoI) a = a is true on all valuations. 
 

(Indiscernibility of Identicals, IoI) If a = b is true on a valuation 𝒱 and 

P…a… is an atomic formula containing a, then if P…a… is true on 𝒱 then so is 
P…b/a…, where b has replaced all or some occurrences of a in P…a…. 

 
(A more cautious IoI rule would allow b to replace only a single occurrence of a, and 
derive the rule for the case in which b replaces several occurrences of a. Since the rule as 
formalised above follows immediately from this more cautious formulation, I use it to 
save space below.) The Indiscernibility of Identicals rule is a constraint on valuations of 
atomic formulas, and once introduced the truth values of different atomic formulas 
cannot generally be assigned independently of each other. For instance, a valuation that 
makes a = b and Pa true but Pb false is unacceptable. 
 I did not stipulate in IoI that also if P(… a …) is false then so is P(… b/a …), 
although this is part of what one would expect from indiscernibility. I didn’t do that since 

it follows from the two rules above. First, assume a = b is true on a valuation 𝒱. Then, 

since a = a is true on 𝒱 (LoI), replace in this formula the first occurrence of a by b, and 

we get that b = a is true on 𝒱 (IoI). So if a = b is true on 𝒱, then so is b = a. Accordingly, 

if a = b is true on 𝒱, then since b = a is also true, it follows that if P…b/a… is true on 𝒱 

then so is P…a… (IoI). So if a = b is true on 𝒱 and P…a… false, P…b/a… is also false. 
 The Indiscernibility of Identicals rule has to be formulated for atomic formulas, 
and not for any formula, since we have rules that determine the truth values of non-
atomic formulas according to those of atomic formulas. However, it can be proved that 
the Indiscernibility of Identicals generalises, namely, that if a = b is true on a valuation, 
then the truth value of φ(a) is the same as that of φ(b/a) for any formula φ. I shall now 
provide a sketch of the proof (see Mendelson 1996: 96). 

 We need to show that if a = b is true on 𝒱, then the truth value of φ(a) is the 
same as that of φ(b/a) for any formula φ, where b replaced all or some occurrences of a in 
φ(a). We do that by induction on formula complexity, C(φ). 
 
Definition (Complexity). We define the complexity C of an atomic formula as zero, that of 

¬φ as 1+C(φ), that of (φ  ψ), (φ  ψ) and (φ → ψ) as 1+Max{C(φ), C(ψ)}, and that of 

xφ(x) and xφ(x) as 1+C(φ(a/x)). (Note that substituting one name for another in a 
formula does not change its complexity.) 
 
Since IoI was defined for all formulas of complexity 0, and given its generalisation to the 
case of falsity which we have just proved, the claim holds for the induction base. 
Suppose it holds for all formulas of complexity n or less, and let us prove it for formulas 
of complexity n+1. If φ(a) is of the form ¬ψ(a), with ψ(a) having complexity n, then the 
truth value on a valuation of φ(b/a) is true (false) just in case that of ψ(b/a) is false (true); 
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but the truth value of the latter, being of complexity n, is identical to that of ψ(a); and the 
truth value of ψ(a) is false (true) just in case that of φ(a) is true (false); so the truth value 
of φ(b/a) is the same as that of φ(a). Similar proofs apply to the other connectives. 

Suppose next that φ(a) is of the form xψ(x, a), with ψ(c/x, a) of complexity n; so φ(b/a), 

namely xψ(x, b/a), is true on a valuation just in case there is some name c such that 
ψ(c/x, b/a) is true; but any formula ψ(c/x, b/a) is of complexity n, and therefore is true 
just in case so is ψ(c/x, a); so some formula of the form ψ(c/x, b/a) is true just in case so 
is some formula of the form ψ(c/x, a); but some formula of the form ψ(c/x, a) is true just 

in case xψ(x, a), namely φ(a), is true; as we wished to prove. Similarly for the case in 

which φ(a) is of the form xψ(x, a), which completes our proof. 
 I next add two derivation rules involving identity, =I and =E: 
 

=I 
 (i) a = a =I 

 
=E 
L1 (i) a = b  
L2 (j) P…a…  
L1, L2 (k) P…b/a… =E i, j 

 
Unlike the standard rule for elimination of identity, I limited the =E rule to atomic 
formulas alone, to make the derivation rules and valuation ones for identity match each 
other. However, it can be proved by induction on formula complexity that the rule 

generalises to any formula φ, namely that a = b, φ(a) ⊢ φ(b/a). I shall now sketch the 
proof. 
 The induction basis is complexity zero, namely atomic formulas, where this is 
simply an application of the rule =E. 
 Suppose the claim is true for any formula of complexity not greater than n, and 
let us prove it for any formula of complexity n+1. If the formula of complexity n+1 is of 
the form ¬φ(a), then φ(a) is of complexity n, and IH holds for it, and also for b = a, 

φ(b/a) ⊢ φ(a). We proceed as follows: 
 

1 (1) a = b Premise 
2 (2) ¬φ(a) Premise 
3 (3) φ(b/a) Premise 
 (4) a = a =I 
1 (5) b = a =E 1, 4 
1, 3 (i) φ(a) provable from (5) and (3) according to IH 
1, 2 (i+1) ¬φ(b/a) ¬I 3, i, 2. 

 
Similar proofs can be provided for the other sentential connectives. I shall now prove the 

claim for the case in which the formula of complexity n+1 is of the form xφ(x, a), 
where φ is of complexity n and so IH holds for it. 
 

1 (1) a = b Premise 
2 (2) xφ(x, a) Premise 

2 (3) φ(c/x, a) E 2; c is not b and does not occur in xφ(x, a). 
1, 2 (i) φ(c/x, b/a) Provable from (1) and (3) according to IH 
1, 2 (i+1) xφ(x, b/a) I i. 
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A similar proof can be provided for the existential quantifier. This completes the proof. 
 Given our valuation rules it is simple to check that these rules preserve validity 
and that the proof system remains sound when they are added to it. Notice also that now 
a one-line proof can be written not only according to the premise rule but also according 
to the =I rule. Since according to LoI every valuation makes a = a true, it follows that 

⊨ a = a, and any one-line proof still preserves validity. 

 Having introduced identity into the system, we can answer a difficulty which was 
raised against the substitutional approach by Harry A. Lewis (1985).10 We have defined 
the relation between the truth value of a quantified sentence and those of its instances 
for the universal and existential quantifiers – the ‘standard’ quantifiers used in logic – but 
when we come to extend the approach to other, ‘nonstandard’ quantifiers (the terms are 
Lewis’s) – for instance, ‘two’, ‘many’ or ‘most’ – as we obviously should, a simple 
generalisation would not work. To illustrate from natural language, we cannot say that 
 

6. Two men married Olivia Langdon 
 
is true because its following two substitution instances are true, 
 

7. Mark Twain married Olivia Langdon 
8. Samuel Langhorne Clemens married Olivia Langdon. 

 
This is because the two substituted names name the same person. 
 To overcome this difficulty, one might have suggested to stipulate that no two 
names designate the same person or, more generally, object. This stipulation, however, is 
ad hoc and unacceptably restrictive as far as name use is concerned; it would make the 
only identity sentences that are true those of the form a = a and thus trivialise identity; 
and it uses the very concepts we wanted to avoid, namely the overly general ‘designate’ 
and ‘object’. This stipulation shouldn’t therefore be adopted.11 
 The way to resolve the difficulty is different. All these nonstandard quantifiers 
presuppose the concept of identity: in order to know whether we counted two items, 
many items, or most items we need to know whether we counted the same item more than 
once. 
 This is seen in the case of numerical quantifiers by the possibility of defining 

them by means of standard quantifiers and identity. The dual quantifier 2, for instance, is 
defined as follows: 
 

2xφ(x) ↔ xy(¬x = y  φ(x)  φ(y)). 
 

Once defined this way, it is clear that 2xφ(x) is true just in case it has two substitution 
instances a and b for which a = b is false. 
 Generally, for quantifiers that presuppose the concept of identity, we should use 
only names for which a = b is false. For instance, if we introduce a quantifier M for 
‘most’ into the calculus,12 then Mxφ(x) is true just in case most substitution instances of 
the following kind are: for all substitution instances a and b, a = b is false; and there’s no c 
that hasn’t been substituted for x in φ(x) for which a = c is false for all names a that have 
been so substituted. We can call the set of names generated in this way, a maximal 
substitution set. Since all these nonstandard quantifiers involve the notion of identity, the 

 
10 I have addressed this issue in (Ben-Yami 2022: §2.7.2). 
11 This stipulation is suggested and rejected, for some of these reasons, by Lewis. 
12 As is well-known, this quantifier cannot capture natural language’s ‘most’, but this is a different issue. 
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suggested resolution of the difficulty is not ad hoc. And unlike the ‘one name per object’ 
stipulation, neither is it restrictive as far as name use is concerned, nor does it trivialise 
identity or use the concepts of designation or object. 

V. The Completeness of the Predicate Calculus13 

The completeness proof below is based on Henkin’s standard proof (Henkin 1949). As 
will be seen, it is somewhat simpler than the standard proof; the reasons for this will be 
discussed later. 
 Henkin’s proof consists of a few stages: adding witnessing constants; defining 
Henkin’s theory; proving the elimination theorem; defining the Henkin construction; and 
some final steps. The proof developed below departs from standard proofs in its 
replacement of the Henkin construction, which is the step in the standard proof in which 
models are introduced, by what I shall call the Henkin assignment, and in the final steps 
that depend on it. For this reason I allow myself to be concise in the presentation of the 
elimination theorem (the first two stages are mainly definitional). Also, to simplify the 
proof, I use only the existential quantifier: the universal one can be introduced as a 

defined symbol, xφ(x)  ¬x¬φ(x), and then its valuation and derivation rules are 
derived rules of the system. 
 
Adding witnessing constants 

Let 𝔏 be a PC-language. For any formula xφ(x) of 𝔏 we define the witnessing constant cφ(x). 

Adding these witnessing constants to the language 𝔏 enriches it into language 𝔏1, which 

also has some new formulas of the form xφ(x). We repeat this process for these new 

formulas of 𝔏1, defining new witnessing constants and in this way generating 𝔏2. Iterating 

this process, we get the Henkin language 𝔏H, which adds to 𝔏 all symbols each of which 

belongs to some language 𝔏n, with n any natural number. The stage of formation of a 
witnessing constant is called its date of birth. No witnessing constant occurs in a formula 
that belongs to a language formed earlier than its date of birth. 
 
The Henkin Theory 

This is a set of formulas of 𝔏H, called the Henkin axioms, comprising all formulas of the 
following forms: 
 
H1 xφ(x) → φ(cφ(x)/x) (the Henkin witnessing axioms) 

H2 φ(c/x) → xφ(x)  

H3 c = c  
H4 c = d → (P…c… → P…d/c…)  

 
If c1 and c2 are two witnessing constants, and the date of birth of c2 is not earlier than that 
of c1, then c2 does not occur in the witnessing axiom of c1. All formulas H2 to H4 are 

theorems of 𝔏, derivable by means of the derivation rules listed above. 
 

 
13 The formal work in this section overlaps with that found in publications by Hugues Leblanc, but to the 
best of my knowledge nowhere in his work does he prove exactly what is proved here. As noted above, 
Leblanc adopted Dunn and Belnap’s term extension approach, which is close but not identical to that 
followed here, only in his 1983 paper. However, in that paper he does not discuss identity; he occasionally 
refers for proofs to his earlier work that follows a different approach; and the discussion is done by 
comparing and handling a wide variety of semantic approaches, so that the parts of the proof which 
overlap with the one provided here are scattered along his paper. 
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The Elimination Theorem 

I first list a few propositions and lemmas used to prove the theorem. 𝔗 is a set of 
formulas of our language, and φ, ψ, and ξ are formulas. 
 

Proposition 1 (Deduction Theorem). If 𝔗, φ ⊢ ψ then 𝔗 ⊢ φ → ψ 

Proposition 2. If 𝔗, φ1, … φn ⊢ ψ, and for each i = 1, … n, 𝔗 ⊢ φi, then 𝔗 ⊢ ψ. 

(This is an immediate consequence of the Deduction Theorem.) 

Lemma 3.1. If 𝔗 ⊢ φ → ψ and 𝔗 ⊢ ¬φ → ψ then 𝔗 ⊢ ψ. 

Lemma 3.2. If 𝔗 ⊢ (φ → ψ) → ξ, then 𝔗 ⊢ ¬φ → ξ and 𝔗 ⊢ ψ → ξ. 

Lemma 4. Suppose c is an individual constant that does not occur in 𝔗, xφ(x) or 

ψ. Then if 𝔗 ⊢ φ(c/x) → ψ, then 𝔗 ⊢ xφ(x) → ψ. (This is provable with the E 

rule.) 

Lemma 5 (Eliminating witnessing axioms). Suppose c is an individual constant that 

does not occur in 𝔗, xφ(x) or ψ. Then if 𝔗, xφ(x) → φ(c/x) ⊢ ψ, then 𝔗 ⊢ ψ. 

(This is proved by applying first the Deduction Theorem, then Lemma 3.2, then 
Lemma 4 on the second result of Lemma 3.2, and then Lemma 3.1.) 

We can now prove the Elimination Theorem: 
 

Proposition 6 (Elimination Theorem). If ψ is a formula of 𝔏 derivable from 

formulas φ1, … φn of 𝔏 together with formulas h1, … hk from the Henkin Theory, 

then ψ is derivable from φ1, … φn alone; namely, if φ1, … φn, h1, … hk ⊢ ψ then 

φ1, … φn ⊢ ψ. 

 The proof is by induction on the number k of formulas from the Henkin 
theory from which ψ is derivable. If ψ is derivable from no formulas from the 

Henkin Theory (k = 0), φ1, … φn ⊢ ψ, then there are no Henkin axioms to 

eliminate. Suppose next that the claim is true for any formula derivable from at 
most k Henkin axioms, and let us prove it for a formula ψ derivable from k+1 
Henkin axioms. We distinguish two cases. First Case: If one of the Henkin 
axioms is of the form H2 to H4, then it is a theorem, and therefore derivable 
from φ1, … φn and the other k Henkin axioms. It follows from Proposition 2 that 
ψ is derivable from φ1, … φn and the other k Henkin axioms, and therefore, by 
IH, that it is derivable from φ1, … φn alone. Second Case: all the Henkin axioms 

fall under H1, namely, they are of the form xφ(x) → φ(cφ(x)/x). Let us choose a 
Henkin axiom whose witnessing constant c has a date of birth which is greater 
than or equal to that of any of the witnessing constants of the other Henkin 
axioms (suppose it is hk+1). Accordingly, c does no occur in any of the other 

Henkin axioms, and obviously not in any formula that belongs to 𝔏, namely none 

of φ1, … φn and ψ. We accordingly have, φ1, … φn, h1, … hk, xφ(x) → φ(cφ(x)/x) 

⊢ ψ. By Lemma 5, xφ(x) → φ(cφ(x)/x) can be eliminated, and we accordingly 

have, φ1, … φn, h1, … hk ⊢ ψ. By IH, the k Henkin axioms can also be eliminated, 

and φ1, … φn ⊢ ψ. QED 
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The Henkin Assignment (Proposition 7) 

Suppose 𝒱 is a valuation that assigns truth values to the formulas of 𝔏H while respecting 

the valuation rules for the connectives of the Propositional Calculus, and that 𝒱 also makes 

all the Henkin axioms true. Then 𝒱 also respects the valuation rules for quantified 
sentences and the valuation rules that involve identity. 
 Proof: First, the existential quantifier. The rule for the relation of the truth value 

of a formula of the form xφ(x) to those of its instances is that this formula is true just in 
case so is some formula of the form φ(a/x), where a is any name that has replaced all 

occurrences of x in φ(x). Given our assumption that 𝒱 makes all the Henkin axioms true 
and respects the valuation rules for the connectives of the Propositional Calculus, and by 

the Henkin witnessing axioms H1, namely, xφ(x) → φ(cφ(x)/x), it follows that if xφ(x) is 
true then so is φ(cφ(x)/x), which is of the form φ(a/x). On the other hand, if for some 
name a, φ(a/x) is true, then since on our assumption the Henkin axioms H2, namely 

φ(c/x) → xφ(x), are true and 𝒱 respects the valuation rules for the connectives of the 

Propositional Calculus, so is xφ(x). So 𝒱 respects the truth value assignment rule for 
existentially quantified sentences. 
 Secondly, identity. We have two valuation rules that involve identity: the Law of 
Identity and the Law of the Indiscernibility of Identicals. The Law of Identity says that all 

formulas of the form c = c are true. Since 𝒱 makes all Henkin axioms true, and in 

particular H3, namely c = c, the Law of Identity is respected by 𝒱. The Law of the 
Indiscernibility of Identicals says that if a = b is true then if P…a… is true, then so is 

P…b/a…. Since 𝒱 makes true the Henkin axioms H4, namely 

c = d → (P…c… → P…d/c…), and since 𝒱 respects the valuation rules for the 
connectives of the Propositional Calculus, it follows that if a = b and P…a… are true, 

then so is P…b/a…. So 𝒱 respects the Law of the Indiscernibility of Identicals. QED 
 
Final Steps 

Assume now that formulas 𝔗 and formula φ all belong to 𝔏 (namely, they contain no 

witnessing constant). Suppose also that 𝔗 ⊨ φ, that is, even if we add names to our 

language 𝔏 and eliminate names from it, any valuation that respects all assignment rules 
of the sentential connectives of the Propositional Calculus, of the existential quantifier 

and of identity, and which makes 𝔗 true, makes φ true as well. Since 𝔏H differs from 𝔏 
only by having additional names (the witnessing constants), and as even if we add names 

to 𝔏 any assignment that makes 𝔗 true makes φ true as well, 𝔗 ⊨ φ also in 𝔏H. We now 

need to prove that 𝔗 ⊢ φ. By Proposition 7 (the Henkin Assignment), any valuation that 

assigns truth values to the formulas of 𝔏H while respecting the valuation rules for the 
connectives of the Propositional Calculus and makes all the Henkin axioms true, respects 
the assignment rules of the existential quantifier and identity as well; accordingly, any 

such assignment that makes 𝔗 true, makes φ true as well. Let us designate by H the 

Henkin Theory. That means that in the Propositional Calculus, H, 𝔗 ⊨ φ. But since the 

Propositional Calculus is complete, φ is derivable in it, namely, H, 𝔗 ⊢ φ. But now (since 

any proof depends on a finite number of premises) it follows from the Elimination 

Theorem (Proposition 6) that 𝔗 ⊢ φ. QED 

 
We have thus proved, on the truth-valuational substitutional approach and without the 
use of models, that the Predicate Calculus with its standard proof system is complete. 
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 Those familiar with standard Henkin completeness proofs that use Model Theory 
would have noticed that the proof above is somewhat simpler than them, especially in its 
treatment of identity. The reason for this is as follows. What in fact matters for 
completeness is the relations between possible truth values of sentences in the language, 
namely, the thing the truth-valuational approach claims to be relevant. Henkin had 
therefore to find a way to discuss these, although his semantic rules forced him to discuss 
models. He consequently made language its own domain and the basis of his model, and 
in this way managed to return to language by making a detour through models. This 
indicates that in fact models are not what is essential for questions of completeness, since 
completeness expresses a property of language irrespective of its relation to the world. 
And indeed, the proof above addresses directly language and the possible relations of 
truth values between its sentences, and in this way avoids Henkin’s detour. 
 Model Theory is thus unnecessary for the basic proofs on the system of the 
Predicate Calculus – a result that should be welcomed, given the reasons for discontent 
with this semantic theory that were discussed in the first section. The successful 
application of the truth-valuational approach to other major systems of logic would show 
that Model Theory is generally inessential for these fundamentals of logic. Below I shall 
apply the approach to Modal Propositional Calculus. 

VI. Model Theory: Working Parts and Useless Wheels 

The arguments and proofs so far support the claim that Model Theory is conceptually 
problematic and, at least as regards the Predicate Calculus, formally unnecessary for 
formulating some central logic concepts and proving its adequacy, since the truth-
valuational approach can replace it as providing a framework for the study of truth in 
that calculus while not being beset by its conceptual problems. 
 We can, however, push our criticism even further. We have seen that the 
adequacy of the formal system is independent of the way its sentences relate to the 
world. Accordingly, if the conclusions of Model Theory about the soundness and 
completeness of the system are to have full generality, its mentioning of objects in a 
domain and of a designation relation between words and objects should in fact be idle, 
the actual work being done only by reference to language structure. This is because any 
content these concepts of object and designation might have would limit the application 
of language in an unjustified way. The fact that they are indeed idle was intimated, I 
suggested, by Henkin’s original completeness proof, in which he used language as its own 
model, in this way making the reference to anything beyond the structure of language in 
fact otiose. I shall now try to show that this is even more fundamentally the case, namely, 
as regards Model Theory’s concepts of truth and validity as well. 
 What I shall try to show is that the general talk of a model for our language is 
equivalent to a talk about a language that contains an image of the atomic formulas of the 
Predicate Calculus, and possibly additional sentences of the same structure. We assign 
truth values to the sentences of this potentially richer language, and in this way assign 
truth values to all sentences of the Predicate Calculus as well. And these assignments are 
according to the truth-valuational approach. The functioning part of Model Theory 
emerges as a way of inquiring into language which is in fact equivalent in a sense to the 
truth-valuational approach and which is not committed to any specific way in which 
language relates to the world. 
 I shall provide only a sketch of the correspondence with the truth-valuational 
approach, as the full technical details are not necessary for appreciating the idea. 

 Suppose we have a standard Predicate Calculus language 𝔏 and we discuss its 
relation to a model <D, i>, with D a domain and i an interpretation function, assigning 
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to each name a a particular α of D and to each n-place predicate a subset of the n-ary 
Cartesian product set of the domain. Suppose P is a one-place predicate and that 

i(P) = Π  D. We now say that Pa is true in the model just in case i(a)i(P), or αΠ, and 
that otherwise it is false, and similarly for many-place predicates. I shall write below, 
instead of i(a) and i(P), ai and Pi. 

 The work that the symbol  has done so far amounts to providing us with a 

binary relation, enabling us to say that either α is related to Π or not. If  has any 
additional content in set theory, this content has not played any role yet. I therefore 

suggest a typographical variation: instead of writing, ‘αΠ’, I shall write, ‘Πα is true’. 

Even if one thinks that this is not what  generally means – and I am not contesting this 
here – any additional meaning it has hasn’t contributed so far to our use of model talk. 

So far, we can think of D and its subsets as constituting a language, 𝔇, with Πα etc. as its 
formulas. 
 Accordingly, in the model, Pa is true just in case Piai is true. Similarly, Pa is false if 

and only if it is not the case that Piai is true (namely, it’s not the case that aiPi); we may 
then say, Piai is false. By contrast, ¬Pa is false in a model in case Piai is true, and true 

otherwise, namely if Piai is false. Pa  Qb is true just in case Piai is true and Qibi is true, and 
similarly for other sentential connectives. Although we haven’t defined for our 

description of the relations in 𝔇 a ‘sentence’ paralleling ¬Pa or Pa  Qb but only 

sentences paralleling 𝔏’s atomic formulas (i.e. Πα), the truth values of these non-atomic 

𝔏 sentences are determined by those of 𝔇’s atomic ones. 
 I continue with the existential quantifier. There are several ways to define the 

truth value of the formula xφ(x) in a model <D, i>. Since in my definition of a model, i 

has as arguments names but not variables, I shall define it as follows. The formula xφ(x) 
is true in a model <D, i> just in case there is an interpretation i*, different from i at most 
in its value for a name a which does not occur in φ(x), for which i*(φ(a/x)) is true. For 

instance, xPx is true just in case Piai* is true for some such i*. Namely, we think of xPx 
as true not necessarily in case P has an instance a for which Pa is true, but in case Pi has 

an instance α in the sense that Piα is true. That is, we apply the TVS valuation rule for  

to the language 𝔇. We think of 𝔇 as a possibly richer language than 𝔏, containing more 

names, and the truth values of the sentences in 𝔏 are determined indirectly according to 
the TVS rules. 
 So far, the model with its Pi, ai, and so on has functioned as a language with 
predicates and individual constants, without any constraint on the latter’s number or 
cardinality – D need not even contain just denumerably many items or ‘names’. In this 

way we can change the set of names of the languages 𝔇 we use to determine truth values 

of the language 𝔏, which is effectively like changing the set of names of 𝔏 on the truth-
valuational approach. 

 i need not be an injection, and in case 𝔏 contains, in a model, a true sentence of 
the form ‘a = b’ with two different names, it cannot be an injection: ai =i bi is true just in 

case ai is bi. (‘ai =i bi is true’ is our way of writing, <ai, bi>=i.) We therefore cannot 

generally speak of 𝔇 as containing under i an isomorphic image of 𝔏’s atomic sentences. 

In this respect, we treat 𝔏 and 𝔇 differently. But this does not amount to treating 𝔇 as 

anything beyond a language. (We could also draw 𝔇 closer to 𝔏 by having =i not as the 
identity relation, for which each α is identical only to itself, but as an equivalence relation, 
and imposing the additional condition, if α=iβ, then if Πα then Πβ. i could then be an 

injection from 𝔏 to D. But I rather not deviate here from the standard way of construing 
models.) 
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 Finally, a formula is a logical truth just in case it is true in all models. Interpreting 

𝔇 as a Language, which contains an image of the atomic sentences of 𝔏 with the 
reservation just noted about identity and injection, and which can have as its items or 
names a non-empty set of any cardinality, we see that according to Model Theory, 

validity amounts to the following. A formula φ of 𝔏 is a logical truth just in case on any 

assignment of truth values to any language 𝔇 to which 𝔏 is correlated as above, which 

determines the truth values of sentences of 𝔏 according to the valuation rules of the 
truth-valuational approach, φ is true. Namely, Model Theory can be reinterpreted as a 
covert truth-valuational approach. 

 One might object that although 𝔇 can be such a language, it need not be. Since we 
put no limitations on the entities that the domain D may contain, linguistic items may 
constitute it as well, and then my interpretation above is valid. But the domain can also 
be something else, not a language, and therefore my reductive interpretation of models is 
unjustified. 
 However, what I was trying to show is not that a language can also serve as a 
model, but that our general talk of a model is equivalent to our talk of a language with 

truth values as specified above. Our use of the symbol  creates the impression that we 
are doing something different, but this is unjustified, for the reasons mentioned. What 
the equivalence does show, however, is that the talk of truth commits us to very little about 
that concept – I’ll say more on this at the end. 
 I claimed in the first section that Model Theory cannot in its generality offer an 
alternative conception of validity, since its ideas of a domain with its particulars and of a 
designation relation between language and reality, conceived in their intended generality, 
are empty. And we indeed now see that these ideas do no real work in the theory, which 
in fact develops a truth-valuational substitutional approach under a notational veil, which 
creates the illusion that something else is doing the work while in fact it reconsiders a 
language under an alternative notation. 
 Model-theoretic semantics works not because it provides a good theory of truth, 
but because it provides all the possible truth value relations between sentences of a 
language that the truth-valuational approach requires. 

VII. The Truth-valuational Approach to Modal Propositional Calculus 

If philosophers have taken themselves to be considering, by doing model-theoretic 
semantics, the relation of language to the world, they have thought that when applied to 
modal logic it brings them even further, into an inquiry of all possible worlds. Despite 
the logician’s refrain, that anything can count as a possible world, the technic and 
terminology of possible world semantics suggested that we are dealing with something 
with significant ontological import. Much metaphysics has been provoked in this way. 
 By contrast, applying the approach developed above to the relevant calculi offers 
a different perspective on what modal logic is committed to: we again look at language 
alone, without any reference either to reality, to possible reality, or to what language can 
be about; and we consider the possibilities open to specific truth value calculi. Modal 
logic turns out to be a way of reflecting within language possibilities for assigning truth 
values to its own formulas. Moreover, as we shall see, the truth-valuational approach 
suggests along the way different choices than those prevalent in possible world 
semantics. 
 Whether applied to Modal Propositional Calculus or to Modal Predicate Calculus, 
the principles of the application of the truth-valuational approach are the same. The 
proofs of soundness and completeness, on the other hand, and other formal 
characteristics of the system, are more complex when applied to Modal Predicate 
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Calculus. This additional complexity, however, is not a result of the truth-valuational 
principles. I shall therefore discuss in detail and prove soundness and completeness only 
of Modal Propositional Calculus, which should suffice to demonstrate the way the truth-
valuational approach works. All the same, the truth-valuational approach has some 
interesting immediate results when applied to Modal Predicate Calculus, and I discuss 
some of these in Section IX. 
 
Language and Proof System 
The language I use is the standard language of the Propositional Calculus, with 
denumerably many propositional variables p1, p2 … and negation and implication as 
sentential operators, enriched by the necessity operator box, □, and the possibility 
operator diamond, ◊. In proofs on the system, we shall consider the possibility operator 
as defined, ◊φ being another way of writing, ¬□¬φ. 
 The different modal systems are distinguished in the proof system by the 
different derivation rules they admit. All systems include all derivation rules of the 
Propositional Calculus. In addition, all standard systems have the following derivation 
rule, NEC: 
 

NEC 
– (i) φ  
– (j) □φ NEC i 

 
φ in line (i) does not depend on any other formula. This is indicated by the dash, –, which 
is not part of the language and is used here only for clarity. In addition, we shall consider 
only normal modal system, namely, those in which the K-rule, or (K), holds. In our 
Lemmon-style natural deduction system, (K) is formulated as follows: 
 

K 
L1 (i) □(φ → ψ)  

L2 (j) □φ  
L1, L2 (k) □ψ K i, j 

 
When inquiring into a stronger modal system, we shall consider T, which contains in 
addition to NEC and (K) also (T): 
 

T 
L (i) □φ  
L (j) φ T i 

 
(T) is a rule also of systems B, S4 and S5. We shall not generally discuss B, S4, S5 or 
other systems below: I am mainly interested in developing the principles of the truth-
valuational approach as applied to modal systems, and the additional complexities 
accruing as we inquire into more and more complex systems do not contribute to the 
clarification of the principles or of the way they are applied. This leaves open the 
possibility that inquiries into modal systems on the truth-valuational approach will reveal 
some interesting facts about these systems as incorporated in this approach. I shall list 
the additional derivation rules of B, S4 and S5: 
 

B (included in systems B and S5) 
L (i) φ  
L (j) □◊φ B i 
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4 (included in systems S4 and S5) 
L (i) □φ  
L (j) □□φ 4 i 

 
5 (included in S5) 
L (i) ◊φ  
L (j) □◊φ 5 i 

 
If we include the last, (5) rule in the modal system S5, we don’t need to include in it (B) 
and (4). This is not specific to the truth-valuational approach and I shall not discuss it 
any further here. 
 Since we have several proof systems, derivability will be relative to proof system. 

Since all our systems contain NEC and (K), we shall write Ψ ⊢ φ if φ can be proved from 

a finite number of ψ1, ψ2, … ψn  Ψ by means of the derivation rules of the 
Propositional Calculus, NEC and (K). If it can be similarly proved by these rules and (T), 

we write Ψ ⊢T φ; if from the above, (T) and (B), we write Ψ ⊢B φ; etc. 
 
Truth Value Assignments and Validity 
The approach developed in this paragraph is close to that suggested in (Leblanc 1973, 
p. 11) and later developed in (Leblanc 1976, §8.3). 
 

Definition (Valuation). Any truth value assignment or valuation 𝒱 assigns to each atomic 
formula either truth or falsity, and the truth values of all other formulas are determined 

as follows. With any valuation 𝒱 we associate a set of valuations S𝒱, 𝒱’s valuation set. The 
following assignment rules hold: 
 

• ¬φ is true on 𝒱 in case φ is false on 𝒱, and false otherwise. 

• φ → ψ is true on 𝒱 in case φ is false or ψ true on 𝒱, otherwise it is false. 

• □φ is true on 𝒱 in case φ is true on every valuation 𝒲S𝒱; otherwise it is false. 

• ◊φ is true on 𝒱 in case φ is true on some valuation 𝒲S𝒱; false otherwise. 
 
The last point introduced ◊φ not as another way of writing ¬□¬φ but treated ◊ as an 
independently defined symbol. We shall see below that the two formulas are equivalent 
in their truth values. 

 For simplicity, we assume below that for any 𝒱, S𝒱 isn’t empty. This assumption 

makes □φ → ◊φ into a logical truth. If eliminated, there are several ways to proceed, 
including three-valued logics. None of these will be explored here. 
 As can be seen from the definition of valuations, we always consider a collection 
of valuations, such that each valuation in the collection has part of the collection as its 
valuation set. (I use here ‘collection’ and not ‘set’ only to distinguish verbally the 
collection from the valuation set.) We call each such collection a frame. 
 Truth values are assigned recursively as follows. First, on any valuation in the 
frame, we assign truth values to atomic formulas (in our case, propositional variables), 
and then, according to the rules for sentential connectives, to all other formulas that do 
not contain any modal operator. Next, we assign on every valuation truth values 
according to the modal rules to all formulas of the form □φ or ◊φ, where φ is a formula 
to which a truth value has already been assigned. We then again assign truth values to any 
formula which is formed only by means of sentential connectives from formulas to 
which we have already assigned a truth value and which hasn’t yet been assigned a truth 
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value. We repeat this process denumerably many times, until on any valuation every 
formula has been assigned a truth value. 
 Each formula is assigned on all valuations in a frame a truth value at the same 

stage. Notice that two different valuations 𝒱 and 𝒲 may coincide on the truth values 

they assign to atomic formulas but differ because they have different valuation sets S𝒱 

and S𝒲 and consequently they do not coincide on the truth values they assign to 
formulas containing modal operators. 
 However, valuations are functions, and these are determined by the values they 
assign to all items in their domain. The question then arises, can we have the same 
valuation with different assignment sets? – The answer depends on the specific language 
and kinds of frame we are using in our calculus. 
 Suppose we do not allow any logical operator apart from □ and ◊, and that our 
language has only two propositional variables, p and q. We consider the following 
valuations, defined on atomic formulas: 
 

𝒱1: 𝒱1(p)= true, 𝒱1(q) = false. 

𝒱2: 𝒱2(p)= true, 𝒱2(q) = false. 

𝒲1: 𝒲1(p)= true, 𝒲1(q) = true. 

𝒲2: 𝒲2(p)= false, 𝒲2(q) = false. 

𝒲3: 𝒲3(p)= true, 𝒲3(q) = false. 
𝒲4: 𝒲4(p)= false, 𝒲4(q) = true. 

 

Although 𝒱1, 𝒱2 and 𝒲3 are identical in the value they assign to p and in that they assign 
to q, they shall have different valuation sets. Consider now the following frame: 
 

Valuations: {𝒱1, 𝒱2, 𝒲1, 𝒲2, 𝒲3, 𝒲4}; S𝒱1 = {𝒲1, 𝒲2}, S𝒱2 = {𝒲3, 𝒲4}, 

i = 1, 2, 3, 4 S𝒲i = {𝒲2}
 

 

Although S𝒱1 is different from S𝒱2, 𝒱1 is identical to 𝒱2. A simple check shows that for 
i = 1, 2: 
 

𝒱i(p) = true, 𝒱i(q) = false, 𝒱i(◊p) = 𝒱i(◊q) = true, 𝒱i(□p) = 𝒱i(□q) = false. 
 

And since the assignment set of all 𝒲i is 𝒲2, any formula with more than a single modal 

operator is assigned the same truth value on 𝒱1 and 𝒱2. Accordingly, 𝒱1 = 𝒱2. (We shall 
get the same identity result if we also allow negation, ¬.) 
 By contrast, in case we allow all standards connectives to our language, including 

¬ and  or equivalents, and any valuation set contains a finite number of valuations, then 
any two valuations different in their valuation sets are different from each other. Let us 
prove that. 

 We prove for such a case that if S𝒱 ≠ S𝒲, then 𝒱 ≠ 𝒲. Since S𝒱 ≠ S𝒲, at least 
one of the two sets contains a valuation different from all those of the other; say it’s 

𝒱1  S𝒱. Accordingly, any 𝒲i  S𝒲 assigns to some formula φi a truth value different 

from 𝒱1(φi). Since our system contains ¬, we can assume that 𝒱1(φi) = true and 

𝒲i(φi) = false. Suppose S𝒲 contains n valuations, and consider the formula, 

◊(φ1φ2…φn). Since on 𝒱1, 𝒱1(φi) = true for each i, 𝒱1(φ1φ2…φn) = true, and 

therefore 𝒱(◊(φ1φ2…φn)) = true. However, given our construction, φi is false on 𝒲i, 

and therefore on each 𝒲j, 𝒲j(φ1φ2…φn) = false, and thus 𝒲(◊(φ1φ2…φn)) = false. 

Accordingly, 𝒱 ≠ 𝒲. 
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 However, if the cardinality of the valuation set is allowed to be infinite, the 
construction above cannot work. Moreover, cardinality considerations show that there 
must be identical valuations with different valuation sets: if the cardinality of a language’s 

formulas is 0א, the cardinality of its valuation set is 2א = 0א, and that of its sets of 

valuation sets 2א. It follows that there is no bijection of valuations to valuation sets. (I 
owe this proof to Hongkai Yin.) 
 Accordingly, it seems that unless we wish to force ad hoc constraints on frames, 
we should allow frames to have several occurrences of the same valuation, each occurrence 
with different valuation sets. Two occurrences of the same valuation will count as 
different if either their valuation sets contain different valuations (not just different 
occurrences), or their valuation sets contain different occurrences of the same valuation. 
The latter clause makes the definition recursive, but since the former shall provide the 
base case, the definition requires that different occurrences of the same valuation 
involve, at some stage down the chain of valuation sets, different valuations. It blocks, 
for instance, frames that contain only two occurrences of the same valuation, each 
occurrence being the only member of the valuation set of the other occurrence. 
 
 Validity is defined relative to frames. A set Ψ of formulas entails a formula φ 
relative to a frame F, or the argument with Ψ as premises and φ as conclusion is valid 

relative to F, or Ψ ⊨F φ, iff φ is true on any valuation of the frame on which all formulas 
of Ψ are true. In case a formula φ is true on all valuations in a frame F, φ is a logical truth 

or tautology relative to F, and we write ⊨F φ. If SF is a set of frames, then a set Ψ of 

formulas entails a formula φ relative to the set of frames SF, or Ψ ⊨SF φ, iff Ψ ⊨F φ for 

every F  SF. Similarly for ⊨SF φ. 
 On these rules, □φ is equivalent with ¬◊¬φ, namely, for each set of frames, □φ 

entails ¬◊¬φ and ¬◊¬φ entails □φ. Let us see that. On any valuation 𝒱, ¬◊¬φ is true iff 

◊¬φ is false. Thus, on any valuation 𝒱, ¬◊¬φ is true iff on no valuation 𝒲S𝒱 is ¬φ 

true. So, on any valuation 𝒱, ¬◊¬φ is true iff on every valuation 𝒲S𝒱, φ is true. 
Accordingly, on any valuation, ¬◊¬φ is true iff □φ is. 
 In possible world semantics, different sets of frames are characterised by 
conditions on an accessibility relation between ‘worlds’. The analogue of this on the truth-
valuational approach developed here would be to put various constrains on the 
membership relation in a valuation set. For instance, we can require that it be ‘reflexive’, 

each valuation being a member of its valuation set, 𝒱S𝒱. This, however, is not the 
approach we shall adopt here. 
 It is more natural to characterise features of a truth theory by the concept of 
truth or related ones. Moreover, constraints on the membership relation, or the 
accessibility relation, have no obvious logical status. Accordingly, we shall characterise sets of 
frames by the formulas which they make logical truths. 
 we characterise the set of frames T, B, S4 and S5 by the following schemata: 
 

• T: □φ → φ 

• B: φ → □◊φ 

• 4: □φ → □□φ 

• 5: ◊φ → □◊φ 
 
And the characterisation is then standard: 
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• The set of frames T is that containing all and only frames in which all instances 
of schema (T) are logical truths. 

• The set of frames B: similarly for schemas (T) and (B). 

• Set of frames S4: similarly for schemas (T) and (4). 

• Set of frames S5: similarly for schemas (T), (B) and (4); or (T) and (5). 
 
If all instances of a schema are logical truths, we say that the schema is a logical truth. 
 We don’t need to similarly characterise a set of frames for the schema (K): 
 

• K: □(φ → ψ) → (□φ → □ψ) 
 
This is because all instances of schema (K) are logical truths on all frames. Let F be a 

frame, 𝒱F a valuation, and φ and ψ be any two formulas. For □(φ → ψ) → (□φ → □ψ) 

to be false on 𝒱, 𝒱[(□(φ → ψ)] and 𝒱[□φ] should be true and 𝒱[□ψ] false. But the former 

are true just in case 𝒲[φ → ψ] and 𝒲[φ] are true on any 𝒲S𝒱. But then 𝒲[ψ] = T for 

any 𝒲S𝒱, and therefore 𝒱[□ψ] = T as well. Accordingly, the set of all frames on which 
schema (K) is a logical truth is the set of all frames. 
 What kind of fact about the truth value assignment rules for modal operators does 
schema (K) then represent? It is at least related to the condition that valuation sets are not a 
function of the formula being assigned a truth value. We could, in principle, have the valuation 

set of a valuation 𝒱 change from one formula to another, and so, for the two formulas φ 

and ψ, S𝒱(φ) need not have been identical to S𝒱(ψ). I in fact proved above that schema 

(K) is a logical truth in case S𝒱(φ) = S𝒱(ψ) for any valuation 𝒱 in the frame and any two 
formulas φ and ψ. So the condition was shown to be sufficient. 
 I now prove that if we don’t put that constraint, namely, if valuation sets can be a 
function of the formula being assigned a truth value, then a frame in which schema (K) 

isn’t a logical truth can be constructed. Consider the valuation 𝒱 on which 𝒱(p) = T and 

𝒱(q) = T, and let the valuation 𝒲 be such that 𝒲(p) = T and 𝒲(q) = F. Further, make 

S𝒱(p → q) = S𝒱(p) = {𝒱}, while S𝒱(q) = {𝒲}. Let us now determine the truth value that 

𝒱 assigns to □(p → q) → (□p → □q). Since both p → q and p are true on all valuations 

in their valuation sets, namely on 𝒱, it follows that both □(p → q) and □p are true on 𝒱. 

Since q is false on the valuation in its valuation set, namely 𝒲, it follows that 𝒱(□q) = F. 

Accordingly, □(p → q) → (□p → □q) is false on 𝒱, and schema (K) isn’t a logical truth. 
 Although this shows that there is a frame to which the constraint does not apply 
and in which schema (K) isn’t a logical truth, it does not show that in any frame to which 
the constraint does not apply, schema (K) isn’t a logical truth. I doubt that that’s the case, 
but I leave the question open. 
 Characterising the above sets of frames by the formulas which are logical truths 
in them is not always equivalent to characterising them by constraints on the relation of 
membership in valuation sets. We shall show that for the T set of frames. 

 A sufficient condition on the membership relation in a frame for the schema □φ → φ 

to be a logical truth on that frame is that for any valuation 𝒱, 𝒱S𝒱: On any valuation 𝒱, 

any formula □φ is either true or false. If it is false, then □φ → φ is true on 𝒱. If □φ is true 

on 𝒱, then by definition, φ is true on all valuations in S𝒱. Since 𝒱S𝒱, φ is true on 𝒱 as 

well, and so is □φ → φ. So if 𝒱S𝒱 then □φ → φ is true on 𝒱 for any φ. And if for any 

𝒱F, 𝒱S𝒱, the schema □φ → φ is a logical truth on that frame. 
 However, we shall show that this condition is not necessary for the schema 

□φ → φ to be a logical truth on a frame. 
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 In possible world semantics, the reflexivity of the accessibility relation can be 

shown not to be a necessary condition on a frame for □φ → φ being a logical truth as 
follows. The frame can contain exactly two, identical ‘worlds’, in the sense that any 
propositional variable true at the one is true at the other as well, and have each world 
accessible only to the other (so accessibility isn’t reflexive). In this way, every formula has 
identical truth values in both worlds. However, the truth-valuational approach developed 
here cannot adapt this example, for this would require that each of the two occurrences 
of the same valuation is the only member of the valuation set of the other occurrence. 
But, since no different valuations (not only occurrences) are members of this frame, they 
would not count as different occurrences of the same valuation. We should therefore 
provide a different counterexample for the necessity of reflexivity. 

 First, we show that if for a valuation 𝒱 in a frame F, 𝒱S𝒱, then if S𝒱 contains a 

finite number of valuations, 𝒱1 to 𝒱n, then □φ → φ is false on 𝒱 for some formula φ, 

which we construct. Since 𝒱 is different from each 𝒱i, then for every 𝒱i, for some ψi, 

𝒱i(ψi) ≠ 𝒱(ψi). If 𝒱i(ψi) = T, and therefore 𝒱(ψi) = F, we set φi = ψi; if 𝒱i(ψi) = F, we set 

φi = ¬ψi. We now define φ = φ1φ2…φn. Given our construction, 𝒱i(φi) = T, and 

therefore 𝒱i(φ) = T; it follows that 𝒱(□φ) = T. On the other and, since 𝒱(φi) = F, it 

follows that 𝒱(φ) = F. Accordingly, 𝒱(□φ → φ) = F. It follows that, to show reflexivity 
isn’t necessary for the validity of the T schema in a frame, each valuation in the frame 
which is not in its valuation set should have infinitely many valuations in its valuation set. 

 We construct the frame as follows. Suppose the language 𝔏 has denumerably 

many propositional variables, p1, p2, p3 … . We consider a valuation 𝒱0, which assigns to 

these variables the truth values 𝒱0(p1), 𝒱0(p2), 𝒱0(p3) … at random. We now construct the 

valuations that form 𝒱0’s valuation set, 𝒱1,1, 𝒱1,2, 𝒱1,3 … . For every i, 𝒱1,i coincides with 

𝒱1 on the truth values it assigns to all propositional variables up to pi, and differs from it 

on all the rest. For instance, 𝒱1,2(p1) = 𝒱0(p1), 𝒱1,2(p2) = 𝒱0(p2), and for every i > 2, 

𝒱1,2(pi) ≠ 𝒱0(pi). This construction guarantees that any valuation in 𝒱0’s valuation set is 

different from 𝒱0, and therefore 𝒱0S𝒱0. Next, for any valuation 𝒱1,i, we construct its 

valuation set 𝒱2,i,1, 𝒱2,i,2, 𝒱2,i,3 …, repeating the previous method of construction. Namely, 

for each j, 𝒱2,i,j(pk) = 𝒱2,i(pk) if k ≤ j, and 𝒱2,i,j(pk) ≠ 𝒱2,i(pk) otherwise. We repeat this 
process denumerably many times. In this way our frame F is constructed. 
 The idea behind this construction is guided by the fact that any formula φ 
contains a finite number of propositional variables. Suppose the last one from the list p1, 

p2, p3 … is pm. Consider any valuation 𝒱 in the frame F. The m-th valuation in its 

valuation set is identical to 𝒱 in the values it assigns to p1, p2 … pm, and as its valuation 

set was constructed in the same way as 𝒱’s, it is therefore identical to 𝒱 in the values it 
assigns to all formulas whose only propositional variables are from p1, p2 … pm. The 

valuation set of 𝒱 is thus ‘as good as’ reflexive for the formula φ. 

 To prove that □φ → φ is a logical truth on F, we rely on the following Fact, which 
we won’t prove: the truth value on a valuation of a formula φ does not depend on the truth value on 
any valuation of a propositional variable that does not occur in φ. (The proof would be by 
induction on formula complexity. We extend the above definition of complexity to the 
Modal Propositional Calculus by defining, C(□φ) = C(◊φ) = 1 + C(φ).) We need consider 
only the cases in which □φ is true. Moreover, since all valuation sets are constructed in 

the same way, it is enough that we prove that □φ → φ is true on 𝒱0 for any φ. Suppose 

that for some formula φ, 𝒱0(□φ) = T, and that its propositional variable with largest 

index is pm. Since 𝒱0(□φ) = T, 𝒱1,i(φ) = T for any i; in particular, 𝒱1,m(φ) = T. Now, given 

our construction, 𝒱0(pi) = 𝒱1,m(pi) for any i ≤ m. Moreover, given our construction, 

𝒱1,j(pi) = 𝒱2,m,j(pi) too, for any i ≤ m and for any j. And so on for any corresponding pair 
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of valuations. Namely, the whole structures of the two valuations 𝒱0 and 𝒱1,m, their 
valuation sets, their valuation sets and so on for the whole hierarchy of the valuations, 
coincide on the truth values it assigns to any pi, for any i ≤ m. Given Fact – the truth 
value on a valuation of a formula does not depend on the truth value on any valuation of 

a propositional variable that does not occur in it – it follows that 𝒱0(φ) = 𝒱1,m(φ) = T. 

But then 𝒱0(□φ → φ) = T. QED 

 In the construction above, some valuations coincide. For instance, 𝒱0 and 𝒱2,1,1 
coincide on the values they assign to all propositional variables, and also on all the 
valuation in the hierarchy of valuation sets proceeding from them. They therefore 

coincide on the values they assign to any formula. This means that 𝒱0 = 𝒱2,1,1. Similarly, 
since any two valuations in our construction that are identical in the values they assign to 
all propositional variables also have the same structure of valuations proceeding from 
them, any such two valuations coincide on the truth value they assign to any formula and 
they are one and the same valuation. We therefore do not have two valuations that 
coincide on the truth values they assign to any formula yet have different valuation sets, 
and no two occurrences of the same valuation. 
 We shall not try to provide proofs for parallel results for the other schemata. 
Namely, 
 

B, φ → □◊φ: Symmetry. 𝒲S𝒱  𝒱S𝒲. 

4, □φ → □□φ: Transitivity. 𝒲S𝒱 & 𝒰S𝒲  𝒰S𝒱. 

5, ◊φ → □◊φ: Euclidean Relation. 𝒲S𝒱 & 𝒰S𝒱  𝒰S𝒲. 
 
We leave it an open question whether these conditions are also sufficient, necessary in 
the finite case, but not necessary in the infinite one. 
 
Soundness 

Soundness is understood as follows. We need to show that if Ψ ⊢ φ, then Ψ ⊨ φ, where 
the provability is by the derivation rules of the Propositional Calculus, NEC and K, and 

validity is according to any set of frames. We need similarly to show that if Ψ ⊢T φ, then 

Ψ ⊨T φ, where provability is by the above and (T), and as set of frames we allow all and 

only those in which schema T, □φ → φ, is a logical truth. Likewise for the other modal 
systems. 
 The soundness of the different systems or sets of frames is proved by induction 
on proof length as follows. We should show that if all premises listed on a line of a proof 
are true on a valuation in an appropriate frame, then the conclusion is also true on that 
valuation. By appropriate frame is meant: any frame for the rule (K); any frame in which 

□φ → φ is a logical truth for the rule (T); and so on. 
 First, any one-line proof is a premise, say φ, and then the one-line long proof 

shows that φ ⊢ φ; but for any formula, φ ⊨ φ on any frame, namely, on any valuation in 
any frame, if φ is true then φ is true. So any one-line proof preserves validity. 
 Next, suppose that for a given n, any n-line long proof preserves validity on a 
given frame of the set of frames we consider, and let us prove this for n+1. The n+1 line 
is (1) either again a premise; or (2) derived from earlier lines by derivation rules of the 
Propositional Calculus; or (3) derived from earlier lines by (a) NEC, (b) (K), or if we are 
considering a stronger modal system, by the additional modal derivation rules it allows – 
we shall consider only (c) the set of frames T with the (T) derivation rule. 
 Case (1) has just been discussed, and for case (2) we again assume that the 
Propositional Calculus is sound. 



The Truth-valuational Approach  Ben-Yami 

09 February 2024  P a g e  | 36 

 For case (3a), if the formula in the n+1 line was derived by NEC, then it is of the 
form □φ and depends on no other formula, and there is an earlier line k with the formula 
φ, which also depends on no other formula. The inductive hypothesis (IH) entails that 

since ⊢ φ, ⊨ φ as well, namely φ is true on all valuations in each relevant frame. In 
particular, φ is also true on all valuation in the valuation set of any valuation, and 

therefore that □φ is true on any valuation of each relevant frame. Accordingly, ⊨ □φ and 
the n+1-line proof preserves validity. 
 For case (3b), if the formula in the n+1 line was derived by (K), then it is of the 
form □ψ, and the premises Γ on which it depends include the premises Γ1 on which a 

formula □(φ → ψ) occurring in an earlier line depends, and those Γ2 on which a formula 

□φ occurring in another earlier line depend. If all formulas Γ are true on a valuation 𝒱, 

then so are all formulas Γ1 and Γ2, and according to IH, also □(φ → ψ) and □φ are true 

on 𝒱. But we have shown earlier that the schema K, □(φ → ψ) → (□φ → □ψ), is a logical 

truth, and therefore it is true on 𝒱. Accordingly, if □(φ → ψ) and □φ are true on 𝒱 then 

□ψ is true on 𝒱 as well, and (K) preserves validity. 
 For case (3c), we are considering the set of frames T, which is constituted by all 

frames in which the schema □φ → φ is a logical truth, and which contains in addition to 
the rules considered so far also (T). Assume the formula in the n+1 line was derived by 
(T), then it is of the form φ, depending on the premises Γ, and on these premises 

depends also a formula □φ occurring in an earlier line. If Γ are true on a valuation 𝒱, 

then, according to IH, so is □φ. Since we are considering only frames in which □φ → φ is 

a logical truth, then, since 𝒱(□φ → φ) = true and 𝒱(□φ) = true, it follows that 

𝒱(φ) = true too, and the T-rule preserves validity in the T set of frames. 

 Accordingly, for any m, if ψ1, … ψm ⊢ φ then ψ1, … ψm ⊨ φ and if ψ1, … ψm ⊢T φ 

then ψ1, … ψm ⊨T φ. Since any proof uses a finite number of premises, the result follows 

immediately for any set of formulas Ψ: if Ψ ⊢ φ then Ψ ⊨ φ and if Ψ ⊢T φ then Ψ ⊨T φ. 
The soundness proof for the other modal systems we mentioned is similar. QED 

VIII. Completeness of the Modal Propositional Calculus 

We show that if Ψ ⊨ φ then Ψ ⊢ φ, where validity is according to any set of frames and 
provability is by the derivation rules of the Propositional Calculus, NEC, and K. We 

similarly show that if Ψ ⊨T φ, then Ψ ⊢T φ, where the set of frames consists of all those 

in which schema T, □φ → φ, is a logical truth, and provability is by the above and (T). 
The proof for other modal systems is similar. 
 I start by constructing maximal consistent sets of formulas and stating some of 
their properties. Most of these properties are proved in the Propositional Calculus, and 
most of these, not pertaining specifically to modal logic, will not be proved below. I then 
show that a valuation that makes all and only formulas in a maximal consistent set true, 
and that is associated with an appropriate valuation set and frame, observes the rules for 
the assignment of truth values to formulas. A few final steps then yield completeness. I 
do not presuppose the completeness of the Propositional Calculus: if the parts specific to 
modal logic are dropped from the proof, then one has a completeness proof for the 
Propositional Calculus. 
 I use only negation, implication, and the necessity operator as sentential 
operators. I start with a few definitions and lemmas. 
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Definition 1: Derivability. A formula ψ is derivable from a set of formulas Φ iff for 

some finite number of formulas φ1, … φn  Φ, φ1, … φn ⊢ ψ. We then write, 

Φ ⊢ ψ. 
 
Definition 2: Inconsistency. A set of formulas Φ is inconsistent iff some formula ψ 

and its negation are both derivable from Φ, namely, Φ ⊢ ψ and Φ ⊢ ¬ψ. 
 
Definition 3: Consistency. A set of formulas Φ is consistent iff it is not 
inconsistent. 
 
Definition 4: A maximal consistent set is a consistent set that would be made 
inconsistent if any formula which it does not contain is added to it. 
 

Lemma 5: If Φ is a consistent set and Φ ⊢ ψ, then adding ψ to Φ leaves it 
consistent. We shall not prove this lemma. 
 
Lemma 6: Any consistent set is contained in some maximal consistent set. We 
shall not prove this lemma either. 
 

Lemma 7: If Φ is a maximal consistent set and Φ ⊢ ψ, then ψ belongs to Φ. This 
follows from Lemma 5 and the fact that Φ is maximal. 
 
Lemma 8: If Φ is a maximal consistent set and ψ a formula, then exactly one of ψ 
and ¬ψ is contained in Φ. 
Proof: Φ does not contain both ψ and its negation because it is consistent. If Φ 
does not contain ψ, then since it is a maximal consistent set, adding ψ to it would 
render it inconsistent. So from a finite set of Φ formulas, which must contain ψ, 

one can prove, say, both η and ¬η: φ1, … φn, ψ ⊢ η, ¬η. By negation 

introduction, φ1, … φn ⊢ ¬ψ. From lemma 7 it follows that Φ contains ¬ψ. Φ 
therefore either contains ψ or contains ¬ψ. QED 
 

Lemma 9: If Φ is a maximal consistent set then φ → ψ  Φ iff either ¬φ  Φ or 

ψ  Φ. We shall not prove this lemma here. 
 

Lemma 10, Deduction Theorem: If Φ  {φ} ⊢ ψ, then Φ ⊢ φ → ψ. We shall not 
prove this theorem. 

 
 Consider now a valuation that makes all and only the formulas of some maximal 
consistent set Φ true, all others false. Let us call such a valuation a canonical valuation, and 

designate it 𝒱Φ. We next associate with it a valuation set. We start by defining □–(Φ) as 
the set to which a formula φ belongs just in case □φ belongs to Φ. We now consider all 
maximal consistent sets that contain □–(Φ) (Φ might be among them). Each of these has 

its canonical valuation: let the set of these canonical valuations, S𝒱Φ, be the one 

associated with 𝒱Φ. (If a system contains the T derivation rule, which allows the 
inference from □φ of φ, then if Φ is consistent so is □–(Φ), which is a subset of Φ. This 
is not true of a system not containing (T), in which case there might not be any maximal 

consistent set containing □–(Φ) and S𝒱Φ is empty.) We also need to associate a valuation 

set with each of the canonical valuations of S𝒱Φ. We do that by iterating the process: with 

any canonical valuation 𝒲 of a maximal consistent set Ψ that contains □–(Φ), we 
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associate all the canonical valuations of the maximal consistent sets that contain □–(Ψ); 
and so on. The set of all these valuations constitutes our frame. 
 We now prove the following theorem: 
 

Theorem 11: If Φ is a maximal consistent set containing the formula ¬□φ, then 
some maximal consistent set contains both ¬φ and □–(Φ). 
Proof: Let Φ be a maximal consistent set containing the formula ¬□φ. We first 

show that □–(Φ)  {¬φ} is consistent. Suppose for reductio that it is not, so for 

some η, both it and its negation are derivable from □–(Φ)  {¬φ}. That is, for 

some ψ1, … ψn  □–(Φ), 

ψ1, … ψn, ¬φ ⊢ η, ¬η. 
(η and ¬η might be derivable without ¬φ, but then they are derivable with ¬φ as 
well. In case {¬φ} is already inconsistent, some simple changes are needed in the 
proof below.) By negation introduction and then negation elimination, we get 

ψ1, … ψn ⊢ φ. 
By iteration of Lemma 9, the Deduction Theorem, we now get 

⊢ ψ1 → (ψ2 → … (ψn → φ)…). 
We now apply NEC and get 

⊢ □(ψ1 → (ψ2 → … (ψn → φ)…). 
Next, by (K), we can prove as a theorem any instance of the K schema, 

⊢ □(φ → ψ) → (□φ → □ψ) 
We therefore have by appropriate substitution: 

⊢ {□(ψ1 → (ψ2 → … (ψn → φ)…)} → {□ψ1 → □(ψ2 → … (ψn → φ)…)
}. 

Applying Modus Ponens we get: 

⊢ □ψ1 → □(ψ2 → … (ψn → φ)…). 

Iterating this inference, and since if ⊢ p → q and ⊢ q → r then ⊢ p → r, we then 
get: 

⊢ □ψ1 → (□ψ2 → (… (□ψn → □φ)…). 
Accordingly, 

□ψ1 , □ψ2 , … □ψn ⊢ □φ 
And since □ψ1 , □ψ2 , … □ ψn belong to Φ, which is a maximal consistent set, it 
follows from Lemma 7 that □φ also belongs to Φ. But Φ also contains ¬□φ, and 
it is therefore inconsistent, which is a contradiction. So our assumption that 

□– (Φ)  {¬φ} is inconsistent was wrong. 

 Since □–(Φ)  {¬φ} is consistent, it follows from Lemma 6 that it is 
contained in some maximal consistent set. 
 Since the only derivation rules we used are those of the Propositional 
Calculus, NEC and (K), which are included among the rules of all modal proof 
systems we are considering, the result holds for all these systems. QED 

 

Suppose now that Φ is a maximal consistent set, 𝒱Φ its canonical valuation, and that the 

set of valuations associated with 𝒱Φ is S𝒱Φ, the set of the canonical valuations of all 

maximal consistent sets that contain □–(Φ). We show that 𝒱Φ assigns truth values in 
accordance with our rules for truth value assignments. Namely, we should show that 
each atomic formula is assigned a unique truth value, and that the rules for negation, 
implication and necessitation are observed. 
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Proof: First, each atomic formula is either in Φ, in which case 𝒱Φ assigns to it the 
truth value T, or not in Φ, in which case it is assigned the truth value F. So each 
atomic formula is assigned a unique truth value. 

 We proceed with negation. We should show that if 𝒱Φ assigns T to a 
formula φ it assigns F to its negation, ¬φ, and if it assigns F to φ it assigns T to 
¬φ. Although this proof belongs to the Propositional Calculus, I provide it here. 

 First, if 𝒱Φ(φ) = T, then φ is in Φ, in which case its negation is not in Φ, 

for Φ is consistent. So 𝒱Φ(¬φ) = F. Secondly, if 𝒱Φ(φ) = F, then φ is not in Φ. 
But since Φ is a maximal consistent set, it follows from Lemma 8 that ¬φ is in Φ. 

Accordingly, 𝒱Φ(¬φ) = T. So 𝒱Φ assigns truth conditions according to the rules 
for negation. 
 I shall not provide a parallel detailed proof for implication. One should 

show that 𝒱Φ assigns T to φ → ψ just in case it assigns F to φ or T to ψ, namely, 
just in case φ is not in Φ or ψ is in Φ. This follows immediately from Lemma 9. 
 We proceed with necessitation. We should consider the case in which □φ 
is true and then the case in which it is false. 

 If 𝒱Φ(□φ) = T, then □φ is in Φ. Since each associated valuation of 𝒱Φ is 
one that assigns truth to all formulas of some maximal consistent set that 
contains the formulas of □–(Φ), and one of these formulas is φ, each associated 
valuation assigns truth to φ, which is according to the rules for truth value 
assignment to necessitation. 

 Next, if 𝒱Φ(□φ) = F, then □φ is not in Φ. Since Φ is a maximal consistent 
set, it follows from Lemma 8 that ¬□φ is in Φ. Now, according to Theorem 11, 
some maximal consistent set contains both ¬φ and □–(Φ). This maximal 
consistent set does not contain φ. The canonical valuation of this maximal 
consistent set thus assigns F to φ, while since this maximal consistent set contains 

□–(Φ), its canonical valuation is associated with 𝒱Φ. So this case is again 
according to the rules for truth value assignment to necessitation. QED 

 

Since any valuation in 𝒱Φ’s valuation set is also a canonical valuation of a maximal 
consistent set, and so are the valuation in its valuation set, and so on for the whole 
frame, all these valuations assign truth values in accordance with our rules for truth value 
assignments. All of them are therefore among the valuations of Modal Propositional 
Calculus, and the frame constituted in this way is a frame of valuations of that calculus. 
 We also need to prove that in case our proof system is T, then the frame 

generated in this way is a T set of valuations, namely, one in which the schema □φ → φ is 
a logical truth. Any instance of this schema can be proved by (T): 
 

1 (1) □φ Premise 
1 (2) φ T 1 
 (3) □φ → φ →I 1, 2 

 
Accordingly, all maximal consistent sets contain all instances of schema T, and therefore 
all canonical valuations in a frame assign truth to all instances of the schema, and the 
schema is a logical truth on any of the frames we are considering. 
 We can now prove the completeness of the calculus, namely, that if Ξ is a set of 

formulas and Ξ ⊨ φ, then Ξ ⊢ φ; and likewise, if Ξ ⊨T φ, then Ξ ⊢T φ. 
 

Proof: Suppose first that Ξ is inconsistent. Then some formula η and its 

negation, ¬η, are both derivable from Ξ, and, therefore, also from Ξ  {¬φ}. 



The Truth-valuational Approach  Ben-Yami 

09 February 2024  P a g e  | 40 

Namely, Ξ  {¬φ} ⊢ η, ¬η. By negation introduction, Ξ ⊢ ¬¬φ, and thus by 

negation elimination, Ξ ⊢ φ. This holds for any modal system. 

 Suppose next that Ξ is consistent. Suppose also that Ξ  {¬φ} is 
consistent. Then, according to Lemma 6, some maximal consistent set contains Ξ 
and ¬φ. But then, the canonical valuation that makes the sentences of this 

maximal consistent set true makes ¬φ true; while because Ξ ⊨ φ and a canonical 
valuation is according to the rules for truth value assignment, it also makes φ true. 

But this is impossible. So it is not the case that Ξ  {¬φ} is consistent. So some 

formula η and its negation, ¬η, are derivable from Ξ  {¬φ}, and as we saw in 

the previous paragraph, it follows that Ξ ⊢ φ. This proof again applies to all 
modal system considered here. QED 

 
 We noted above that since valuations are functions, a frame can contain two 
occurrences of the same valuation only if each occurrence has different valuation sets, 
and to be different these should contain different valuations or different occurrences of 
the same valuation. We should make sure that this holds for the construction above of 
the frame of canonical valuations. We do that as follows. The construction of the frame 
started with a maximal consistent set Φ, and the canonical valuation assigned truth 
exactly to its formulas. Next, the valuation set of Φ consisted of the canonical valuations 
of all maximal consistent sets that contain □–(Φ), and we noted that Φ might be among 
them. If this happens, we consider this the same occurrence of Φ, and its canonical 
valuation is identified with the initial one. We identify in this way all identical canonical 
valuations that might occur in the construction. We thus have no two different 
occurrences of the same valuation in the construction. 
 We have seen that the truth-valuational approach is sufficient to account for the 
adequacy of Modal Propositional Calculus. Moreover, it is also straightforward to 
generalise it to standard Modal Predicate Calculus, and adequacy proofs can then be 
provided as well (Leblanc 1976; but is should be checked whether the deviations from 
Leblanc in this work affect his results). Accordingly, the questions on modal logic that 
had been answered by means of possible world semantics (Kripke 1959, 1963), and in 
this way were responsible for the rise of the philosophical interest in this semantics, do 
not require it. Whether there is any other reason for a philosophical interest in possible 
world semantics remains to be seen. 

IX. Applying the Truth-valuational Approach to Modal Predicate Calculus: 
Contingent Identity 

In this short section I mainly show why it is natural to have contingent identity on the 
truth-valuational approach to modal logic, namely, why it is natural not to have 

a = b → □(a = b) as a logical truth. 
 The rules for truth value assignments for identity and those for modal operators 
were formulated independently, as they should: we have modal systems without identity 
(Modal Propositional Calculus) as well as systems with identity without modal operators 
(the Predicate Calculus with identity). When we have a system with both identity and 
modality, the obvious option is to combine both sets of rules without modifying either of 
them: such a modification would amount to a change of meaning of the symbol whose 
rules have been modified, and we are not interested in that. Perhaps new kind of formula 
might be added in such a merge, and additional rules might be needed for them, but this 
is not to indicate an inadequacy in the original rules. However, combining these truth 
value assignment rules for identity and modality would not force us to make a = b true 
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on all valuations in S𝒱 in case it is true on a valuation 𝒱, and thus while a = b is true, 
□(a = b) need not be so. 
 Moreover, as mentioned above, modality on the truth-valuational approach can 
be seen as representing the possibilities of language within language itself. In that case, 
since language does not give us any reason for keeping the truth value of a = b fixed 
across different valuations, we have an additional reason for allowing a = b to be true on 

𝒱 but not on all valuations in S𝒱. 
 I turn to the deductive system. Our derivation rules for identity were: 
 

=I 
 (i) a = a =I 

 
=E 
L1 (i) a = b  
L2 (j) P…a…  
L1, L2 (k) P…b/a… =E i, j 

 
P…a… is an atomic sentence with a as one of its arguments; in P…b/a…, b replaced all 
or some of the occurrences of a in P…a…. 
 We saw above that it can be proved, for any formula φ(a) that does not contain modal 

operators, that a = b, φ(a) ⊢ φ(b/a). However, this is not generally the case if φ(a) contains 

modal operators. For instance, a = b, □Pa ⊬ □Pb. This can be proved on the basis of the 
soundness of Modal Predicate Calculus. The proof system is thus in harmony with the 
truth-valuational one, and identity is contingent on both. As far as logic is concerned, 
Hesperus might not have been Phosphorus. 
 Quine (1953: 156), and later others, proved the necessity of identity by relying on 

the universal form of Leibniz’s Law of substitutivity of identicals, a = b, φ(a) ⊢ φ(b/a) for 
any φ(a). Although the necessity of identity generated much discussion and controversy, 
the universal form of Leibniz’s Law on which its proof relies has rarely been criticised. 
Burgess (2014), in a careful study of the history of the issue, while critically considering 
many assumptions made along the way, never suggests that it can be questioned. 
However, from the point of view of the truth-valuational approach, this law cannot be a 
basic postulate, for the reasons discussed above, and there is no logical reason to add it 
to the list of truth value assignment rules. From this point of view, Leibniz’s Law should 
be postulated only for atomic formulas. The model-theoretic approach to truth prevented 
logicians from realising that the universal form of the law involves a non-trivial 
assumption and that from a logical point of view this assumption, and with it the 
necessity of identity, are unjustified. However, once the possibility and way of making 
identity logically contingent is realised, it can also be adopted by model theory (see Ben-
Yami 2018). 
 Another related observation is that rigidity cannot be defined on the truth-
valuational approach. In model theory, a name is rigid if the interpretation assigns to it 
the same object at every world, this assignment being a formal version of reference. 
According to Kripke, ‘a designator rigidly designates a certain object if it designates that 
object wherever the object exists’ (1980: 48–49). However, valuations do not assign 
objects to names but only truth values to formulas. Nothing in the formal system can 
therefore reflect the concept of reference or designation, and therefore of rigidity. 
Rigidity is consequently not a notion of logic. This leaves it possible that some notion akin 
to rigidity can be defined elsewhere in semantics (see Ben-Yami 2014a). 
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X. Conclusion 

This work raised arguments against model-theoretic semantics and developed the truth-
valuational approach as an alternative. I argued that the truth-valuational approach is 
preferable from a conceptual point of view, and we saw that it also provides logic with a 
satisfactory framework for considering soundness, completeness, satisfiability, and 
related notions. We saw it applied to the Propositional Calculus, Predicate Calculus, and 
both calculi extended to modal logic. As mentioned above, the approach has also been 
applied in several publication to the Quantified Argument Calculus. The way to extend 
the truth-valuational approach to second-order logic is straightforward, as is the way to 
apply it to many-valued systems.14 I am not familiar with a logic system to which Model 
Theory but not the truth-valuational approach is applicable. I therefore think that from a 
logical point of view, Model Theory as a semantics is both conceptually problematic and 
does not provide the only or best formal framework. 
 Although the truth-valuational approach provides the necessary framework for 
addressing soundness, completeness, satisfaction, and other related concepts, not all 
concepts that have interested people working with model-theoretic semantics have a 
parallel on the truth-valuational approach. We noted in the previous section that rigidity 
cannot be defined on this approach. Another important concept might be that of 
categoricity: a theory is said to be categorical in case all its models are isomorphic (Button 
and Walsh 2018: 139). Once the truth-valuational approach is adopted and models are 
eliminated, is there any substitute in logic for the concept of categoricity? We can still ask, 
whether a language we use to characterise a structure, a structure which is not a logical 
entity, characterises it up to isomorphism. I haven’t investigated whether this change in 
question amounts to any significant change in the research into categoricity. 
 As for semantics, it might gain by adopting the truth-valuational approach. Model 
Theory, as an instance of a ‘Fido’–Fido theory of meaning, might actually have been an 
obstacle to semantics, offering a merely apparent account of the meaning of words and 
creating an illusion of an explanation, making any further investigation into meaning 
seem redundant. The uses of words are far too varied for a semantics to rest content 
with a ‘names refer to objects’ idea, yet as long as Model Theory seems necessary to 
formal logic, with no satisfactory alternative available, the pressure to use it as a basis for 
the understanding of meaning is considerable. The truth-valuational approach should 
dissolve this pressure. We might then look afresh at the relations of language to the 
world. 
 The truth-valuational approach cannot be considered a semantic theory: it does not 
try to provide a theory of meaning, only one of truth value relations. How language relates 
to the world does not interest it. It takes logic to be the study of bivalent and other 
calculi, irrespective of their manner of application – while meaning is generated exactly 
through this application. 
 The concept of truth, however, is a semantic concept: what we say is true if things 
are as we say they are. But even this is misleading, for this concept commits us to very 
little when it comes to meaning. What it takes for ‘The cat is on the mat’ to be true is 
quite unlike what it takes for Fermat’s last theorem to be so, and both are unlike what the 
truth of ‘Had it rained I would have stayed home’ amounts to. Language is used in 
different ways in different areas, and the criteria for something being true vary with the 
variation of domains. Once we admit such alethic pluralism, we have an additional 
argument against model-theoretic semantics and in support of the truth-valuational 
approach, which is not committed to any theory of truth but only to one of truth 
relations. 

 
14 Much valuable formal work on such systems is found in (Leblanc 1976). 
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 Accordingly, logic does not involve a semantics. Philosophers have thought that 
by means of Model Theory language looks out into the world, but in fact it has been 
staring at itself all along, as we saw in Section VI. The truth-valuational approach makes 
this explicit. Logic is the study of the possible truth value relations of a language; it is not 
committed to any theory of meaning and it cannot serve as a basis for any metaphysics. 
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