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In their recent paper on “Challenges in mathematical cognition”, Alcock and colleagues (Alcock et al. 
[2016]. Challenges in mathematical cognition: A collaboratively derived research agenda. Journal of 
Numerical Cognition, 2, 20–41) defined a research agenda through 26 specific research questions. An 
important dimension of mathematical cognition almost completely absent from their discussion is the 
cultural constitution of mathematical cognition. Spanning work from a broad range of disciplines—
including anthropology, archaeology, cognitive science, history of science, linguistics, philosophy, and 
psychology—we argue that for any research agenda on mathematical cognition the cultural dimension 
is indispensable, and we propose a set of exemplary research questions related to it. 
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1 Introduction 
In a recent paper on “Challenges in mathematical cognition” (Alcock et al. [2016]. 
Challenges in mathematical cognition: A collaboratively-derived research agenda. Journal of 
Numerical Cognition, 2, 20–41), 16 researchers from the fields of neuroscience, psychology, 
and mathematical education presented 26 specific research questions “designed to generate a 
coherent agenda for research on mathematical cognition” (p. 20), commented on in three 
additional contributions (Berch, 2016; Chinn, 2016; Lee, 2016). Questions were grouped into 
six broad topics, most of which revolve around competence development. While the authors 
state that their list of questions “reflects a broad approach to understanding human 
mathematical cognition” (Alcock et al., 2016, p. 33), they also note the possible limitation of 
the exercise due to their specific experiences and knowledge, and they explicitly express the 
hope that their paper will stimulate debate. We take this up and argue here that an important 
dimension of mathematical cognition is almost completely absent from their discussion, 
namely its cultural constitution, together with the perspectives of several disciplines that deal 
with culture, including “anthropological, sociological, linguistic, semiotic, historical, and 
political viewpoints” and “situated, contextual, or ethnomathematical considerations” (Berch, 
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2016, p. 43). While Alcock and colleagues (2016) envisage that future interdisciplinary 
communication will result in further refinements of their considerations, we propose a 
corrective, rather than a refinement, of their list of research areas through the inclusion of the 
cultural dimension of mathematical cognition, and a set of exemplary research questions 
related to it. 
 The question of whether to include cultural aspects is not simply a matter of diverging 
research interests or a trade-off between comprehensiveness on the one hand and focus on the 
other. Rather than conceiving of cognition as taking place in the head of individuals and as 
being separate from the wider human context—and so rendering context seemingly optional 
for consideration—the two need to be understood as being intrinsically intertwined (Saxe & 
de Kirby, 2014). Culture is an integral aspect of mathematical cognition, a conditio sine qua 
non (Núñez, 2009, 2017). If the field aims at making substantial progress, its research agenda 
cannot afford to ignore the basic fact that, without culture, there is no mathematical 
cognition. 
 This is not to say that every single aspect of mathematical cognition is culturally 
mediated. It is generally accepted that humans share with other species two phylogenetically 
ancestral cognitive systems that may serve as preconditions for the development of numbers 
and hence for mathematical cognition in general: one for parallel individuation of small 
quantities in the subitizing range (i.e., for numbers smaller than 4) and one for magnitude 
approximation (e.g., Feigenson, Dehaene, & Spelke, 2004). However, as soon as we turn to 
specifically human competences in dealing with numbers and other mathematical concepts 
such as chance, logic, or graph theory, then individual cognitive processes are intrinsically 
tied to cultural practices (Núñez, 2017; for examples see Ascher, 1991, 2002; Crump, 1990; 
Saxe, Guberman, & Gearhart, 1987), and hence also changing over time, which is why 
mathematics is so different now than it was in the past (Dantzig, 1954). 
 Higher cognitive functions involving number presuppose cognitive tools; one 
fundamental instance is a conventionalized counting sequence for the exact assessment of 
quantities. Such tools emerged in human communities to serve specific purposes, they are 
socially transmitted, and have been developed over cultural evolutionary time in a continuous 
and iterative process of reproduction and alteration, involving microgenetic, ontogenetic, and 
sociogenetic changes (for a case study and a theoretical framework, see Saxe, 2012). During 
this process, these cognitive tools both were modified by adapting them to new mathematical 
problems, and they helped to modify the conceptual understanding of the underlying ideas. A 
strong influence of culture on mathematical cognition is also attested to by the extensive 
cultural diversity exhibited in which numerical tools are developed and used, how they are 
valued, taught, and culturally transmitted, and for which practical purposes they are regarded 
as relevant. 
 In this paper, we review lines of research that, while taking widely different starting 
points, all converge on the essential role of culture for mathematical thinking. The review 
includes perspectives on conventional systems of number representations, on the contribution 
of individual cognitive processes for the reproduction and alteration of these systems, and on 
their interaction with mathematical cognition. We then identify challenges to the field arising 
from a neglect of the cultural dimension before formulating a set of questions for future 
research. As we largely focus on tools for representing and dealing with natural numbers, we 
use the term numerical cognition instead of mathematical cognition unless more general 
questions are at stake. 



 

2 Culture, the missing dimension 
The most fundamental cultural tool for numerical cognition are numeration systems, which 
come in different modalities: in a verbal modality as number words, in an embodied modality 
as finger counting or other body-based representations, in a written modality as notational 
systems, and in other external modalities such as tally sticks, quipus, and abaci. Each system 
has structural properties that affect its learning and use. For instance, the system of number 
words in the verbal modality does not provide a durable and manipulable external 
representation due to the ephemeral nature of vocal utterances, whereas numeration systems 
in other modalities are more or less durable and open up possibilities for external interactions. 
Of the numerous ways in which numerical cognition is saturated with culture, we focus on 
three aspects. We begin by reviewing the origin and variability of numeration systems. Then, 
we address properties of such systems and their interplay with numerical thinking. Finally, 
we consider processes of enculturation and the cultural context of numerical cognition. 
2.1 Origin and variability of numeration systems 
The early archaeological evidence for numerical cognition is limited and therefore 
interpretations are hotly debated. The first unambiguous numbers—numerical notations in 
Mesopotamia and Egypt—do not appear until about 5,000 years ago. Earlier devices possibly 
used to accumulate, represent, and store numerical information include marine shell beads 
(Blombos Cave, South Africa, about 75,000 years old), notched bones (Border Cave, South 
Africa, about 42,000 years old), and hand stencils (Cosquer Cave, France, about 27,000 years 
old). Determining whether such devices represented numerical information has been 
challenging, because they might serve social purposes other than dealing with numbers (e.g., 
beads can be personal ornaments, notches decorations, and handprints part of rituals), and 
many of the more specific claims about their possible functions (e.g., as lunar calendars) have 
been discounted as unproven (d’Errico, 1989, 1995; Marshack, 1972). Still, such devices 
provide suggestive evidence that behaviourally modern Homo sapiens either possessed 
concepts like more, next in the sequence and (one-to-one) correspondence, or was at least 
engaged in behavioural patterns with the potential to generate such concepts (Overmann, 
2016c). Moreover, since emerging numeration systems (which often involve finger-counting 
or devices made of perishable materials) tend to leave little or no material trace, the 
archaeological record likely underestimates the time depth for numerical emergence 
(Overmann, 2017). 
 Two open questions are related to the role of language and communication: First, what 
was the interactional context for early symbol formation for number? Did notches or other 
semiotic forms emerge primarily in non-social settings in which individuals were trying to 
solve a problem for themselves, or in social settings in which individuals were trying to 
communicate an intended meaning, or both? A focus on primacy of communication would be 
consistent with Vygotskian and neo-Vygotskian perspectives (Vygotsky, 1986; Sfard, 2008) 
as well as with perspectives that focus on a bootstrapping of semiotic activities with 
numerical operations in communicative acts (Saxe, 2012; but also: Werner & Kaplan, 1963). 
Second, does the emergence of material forms that involve number presuppose a language for 
numbers or vice versa (cf. Overmann, 2016b)? While it is hard to imagine that sequences of 
notches on tallies beyond the limits of subitizing would have been used in the absence of 
number words, or used efficiently without modifications like grouping, devices such as the 
modern rosary hint at the possibility that some numerical problems could be solved without 
numerical language: By virtue of encoding numerical content, organization, and structure, 
material representations like rosaries may have supported an emerging understanding of 



 

number concepts (Overmann, 2016b, 2016c), which then may have been further moulded and 
elaborated by linguistic and cultural changes over time. 
 Processes whereby new systems of numeration emerge in contemporary groups can 
provide some insights on origins. For instance, when studying an urban community of 
unschooled candy sellers, Saxe (1991) found that child candy sellers in Brazil who were 
largely non-literate developed new forms of representation. They made use of the colours of 
bills rather than the digits printed on the notes (which they could not read) to both identify 
values of bills (with number words) and to engage in arithmetic computations with large bill 
values. Similarly, Oksapmin people in Papua New Guinea traditionally use a 27-body-part 
counting system in which they generate one-to-one correspondences between conventional 
positions on the body and countable objects. But the organization of the system is being 
altered as people participate in two new kinds of collective practices (Saxe, 2012). In one 
case, the Oksapmin’s formerly 27-part system became a 20-part system as people used it in 
collective practices of economic exchange with a Western currency system (counting 
Australian shillings to the 20th position which then signals an Australian pound). In another 
case, the Oksapmin’s unary 27-body part system became constituted as a 10-base-structured 
system as Oksapmin teachers made efforts to bridge indigenous numerical knowledge forms 
to Western numeration in collective practices of classroom life, which supports a base-10 
written numeration system. Studies like these indicate that the origins of numeration systems 
are unlikely to be the product of an “immaculate conception”. Rather, they emerge from prior 
cognitive and material resources as individuals engage with emergent problems, structuring 
those resources to serve new functions. 
 Given that numerical abilities and practices may date back ten-thousands of years, it 
will be hardly surprising that present-day numeration systems differ tremendously across 
languages on a range of dimensions (detailed in the next subsection). While this diversity is a 
hallmark of cultural forces and hence significant in its own right, it also inspires more 
profound questions on the nature of numerical cognition. Importantly, it puts into perspective 
the observation that there are also striking commonalities among numeration systems, as 
attested to by a well-described set of regularities in the world’s languages (Greenberg, 1978; 
and see Zhou & Bowern, 2015). A parallel but non-overlapping set of regularities has also 
been documented for written numerical notations (Chrisomalis, 2010). For instance, both the 
verbal and the written modality make frequent use of ordering from highest to lowest powers 
of the base, but differ in their use of fundamental operations to structure number 
representations. Whereas it is common to express addition through iteration in numerical 
notations (e.g., 300 = CCC), no known language expresses 300 as hundred hundred hundred. 
The existence of such regularities indicates that variability is not limitless, but constrained by 
a number of cognitive factors deserving further investigation (Chrisomalis, 2013). 
 Taking into account the extent of cross-cultural diversity in numeration systems will not 
only help us to delineate those aspects that are universal from those that are variable; 
mustering this information to reconstruct the changes in numeration systems over time, both 
on a small scale (e.g., Saxe, 2012) and a large scale (e.g., Calude & Verkerk, 2016; Kirby et 
al., 2016), will also allow us to identify the driving forces behind these changes. For a more 
comprehensive understanding of numerical cognition, uncovering the cognitive and cultural 
affordances and constraints involved in the emergence of cultural variability is therefore an 
essential step. 
2.2 Properties of numeration systems and their interplay with numerical thinking 
As semiotic tools, numeration systems have properties that vary across languages and 
cultures (Bender & Beller, 2012; Chrisomalis, 2004; Widom & Schlimm, 2012; Zhang & 



 

Norman, 1995). These properties include the extent of the system (defined by the largest 
possible number symbol), its structure and regularity, and the modality in which it is realised. 
These specific properties interact with how numbers are represented and processed, and may 
facilitate some numerical understandings and operations, but may also hinder others (e.g., 
Beller & Bender, 2011; Bender & Beller, 2017; Bender, Schlimm, & Beller, 2015; 
Chrisomalis, 2017; Nickerson, 1988; Schlimm & Neth, 2008). 
 One tremendously varying property is the extent of the system. Several languages 
contain number words that do not reach beyond the limit of subitizing, and few languages 
lack number words and numerical expressions altogether (Everett, 2005; Hammarström, 
2010), preventing their speakers from verbalizing even those quantities directly perceivable 
without counting (Hurford, 1987) and affecting their numerical cognition (Dehaene, Izard, 
Spelke, & Pica, 2008; Everett & Madora, 2012; Gordon, 2004; Pica, Lemer, Izard, & 
Dehaene, 2004). Other languages possess number words far beyond a million, crucially, 
developed even in the absence of numerical notations (e.g., Bender & Beller, 2006, 2014). 
Typically, the extent of numeration systems is expanded over time due to an increasing need 
to deal with higher numbers; if no such need emerges, words for higher numbers can also be 
dropped, resulting in reduced extent (Beller & Bender, 2008). Such changes in the extent of 
numeration systems point to the crucial role of the cultural context for nurturing numerical 
practices. Correlations between a system’s extent and markers of socio-political complexity 
(Beller & Bender, 2008; Divale, 1999; Epps, Bowerin, Hansen, Hill, & Zentz, 2012) allude to 
some of the sociogenetic processes involved in numerical cognition (cp. Saxe, 2012). 
 An even more important property concerns the representation of numerical information, 
which may give rise to representational effects (Zhang & Norman, 1995; Zhang & Wang, 
2005). For instance, when represented in a cumulative manner (as in “III”), magnitude (or 
ordinal) information on the value is explicit: that “III” refers to three entities and that it is 
more than “II” can be perceived directly. By contrast, when represented in a symbolic manner 
(as in “3”), the only information directly perceivable is category (or nominal) information on 
whether or not the number sign is equal to another one: that “3” is different from “2”. Which 
value it refers to or whether it is smaller or larger than “2” is something that remains implicit 
in the sense that it needs to be retrieved from memory, thereby increasing cognitive load 
during number processing (Zhang & Norman, 1995). Notation systems differ in the extent to 
which they employ cumulative or symbolic representations (Chrisomalis, 2010): for example, 
the Indo-Arabic digits belong to those symbolic systems in which almost all numerical 
information is implicit, coded in the value and the place of a digit, whereas Roman numerals 
combine symbolic and cumulative representations. 
 However, while such differences in representational format may affect cognitive 
processing (Schlimm & Neth, 2008), it should be kept in mind that notational systems are not 
used for one purpose only, but are embedded in a rich set of cultural practices and may 
alternatively or exclusively be recruited for calculating a numerical value (as in arithmetic), 
for indicating a quantity (as in measures and prices), or for simply distinguishing entities (as 
in phone numbers or bus routes). The Roman numerals, for instance, were used as a 
representational system only and not as a computational system; for arithmetic, the Romans 
and later medieval Europeans used the abacus as the principal material support for 
computation (Taisbak, 1965), complemented by finger math (Williams & Williams, 1995). 
 A third property particularly relevant for children’s acquisition of the numeration 
system is the regularity in composition. For instance, in various East Asian languages, 
number word construction mirrors the regular structure of written Indo-Arabic number 
notation, whereas word construction in Indo-European languages such as English, German, or 



 

French comes with several irregularities (e.g., Bender et al., 2015; Brysbaert, Fias, & Noël, 
1998; Calude & Verkerk, 2016; Miura, 1987). These irregularities include specific number 
words such as “eleven” and “twelve” (instead of regular constructions like “ten-and-one” and 
“ten-and-two”), the inversion of summands (as in number words from “thirteen” through 
“nineteen” in English, and those up to “neunundneunzig” [99] in German), or irregular 
multiples of the base (as in French “quatre-vingt-dix” [= 4 × 20 + 10]). Several studies 
suggest that such irregularities contribute to delays in the acquisition of the verbal system and 
in the comprehension of the place-value notational system, and impede the learning of 
algorithms for addition and subtraction that are based on the place-value notational system 
and take advantage of the decimal structure (Fuson & Kwon, 1991; Klein et al., 2013; Miller, 
Smith, Zhu, & Zhang, 1995; Miura, Okamoto, Kim, Steere, & Fayol, 1993). 
 Taking seriously the specific properties of numeration systems is therefore 
indispensable when investigating the processes involved in numerical cognition, and even 
more so when seeking ways to support and improve mathematical performance in education. 
But the system-specific properties are by no means the only way in which numerical 
cognition is intrinsically linked to culture; arguably even more relevant is the cultural context 
in which numerical cognition takes place. 
2.3 Processes of enculturation and the cultural context of numerical cognition 
Acquisition of the numeration systems themselves (such as the sequence of number words or 
a conventionalized finger counting pattern) as well as an understanding of their precise 
numerical meaning requires participation in enculturating practices of collective life, whether 
in counting games or other activities with older siblings or adults (and later on also in 
schooling). Such collective practices vary markedly within and across cultural groups. For 
example, in a study of working and middle class families and their 2.5- and 4-year-old 
children, Saxe, Guberman, and Gearhart (1987) identified a wide range of practices in which 
numerical problems emerged in the everyday lives of children. Some were invented by the 
children and their parents themselves, like jointly counting steps up to an apartment, pressing 
numbered elevator buttons, or setting a table, while others were rooted in store-bought 
materials, like reading of counting books or playing commercial games involving number. In 
these collective practices, four principal numerical functions emerged for number words: 
nominal functions (using number words without cardinal meanings), cardinal/ordinal 
functions (using number words to represent the sum of a count or ordinal positions in a 
count), comparative/reproductive functions (using number words as an intermediary to 
compare numerical values of two or more groups or to reproduce the number of a group 
through the creation of a second group), and arithmetical functions (composing/decomposing 
numerical values in arithmetical transformations). In the 2.5-year-old group, children were 
largely engaged with nominal and cardinal/ordinal functions, and in the 4-year-old group, the 
functions expanded to include comparative/reproductive and arithmetical functions. 
Importantly, children themselves played a role as agents in the kinds of numerical 
environments that emerged during social interactions, and mothers adjusted the numerical 
functions that were elaborated in relation to the actions of the child. 
 The range of number word functions is also attested to by other studies, some of which 
point to the progressive arithmetization of number words to serve cardinality functions in 
early development (e.g., Le Corre & Carey, 2007; Sarnecka & Carey, 2008; Wiese, 2003), 
while others focus on numerical comparison and reproduction functions (Saxe, 1977, 1979). 
The active and agentive role of both child and parent in enculturating practices is also 
observed in more challenging contexts. For example, deaf children to hearing parents invent 
their own home sign language, including gestures vaguely referring to quantities, but none 



 

with precise cardinal meaning (Spaepen, Coppola, Flaherty, Spelke, & Goldin-Meadow, 
2013; Spaepen, Coppola, Spelke, Carey, & Goldin-Meadow, 2011), indicating that 
appropriate cultural input is necessary to develop the respective numerical abilities. 
Likewise—and in contrast to a widely shared opinion that finger counting is a universal basis 
for learning numbers—congenitally blind children can develop an understanding of number 
words without support from finger-based representations (e.g., Crollen, Mahe, Collignon, & 
Seron, 2011; Crollen et al., 2014). 
 Learning to count and what to do with this ability also depends on how numbers are 
valued in a given community (Núñez, Cooperrider, & Wassmann, 2012; Saxe, 2012; 
Wassmann & Dasen, 1994) and on the properties of the cultural systems for number. For 
example, in traditional Oksapmin communities in 1978, young children knew many of the 27 
body parts in their numeration system, but were engaged with numerical activities 
infrequently compared to the levels documented in working and middle class populations in 
the US (see Saxe, 2012). Correspondingly, age norms for children’s performance on 
numerical comparison and numerical reproduction tasks among the Oksapmin differed 
markedly from those documented for Western children. Further, unlike their Western 
counterparts who acquire verbal numeration systems, Oksapmin children face a challenge 
linked to the spatial properties of their 27-body part numeration system, specifically from the 
fact that most body parts occur in symmetric pairs. When comparing the numerical value of 
symmetrical body parts, Oksapmin children therefore tended to regard them as indicating the 
same number (Saxe, 1981). Such challenges are not present for children in groups using only 
a verbal system. 
 In sum, we suggest that a careful study of the processes of enculturation and the cultural 
context in which numerical cognition takes place are important. This work will provide us 
with crucial insights on the active role that the child plays in the learning process itself, and in 
shaping the practices of collective life that guide them, rather than being a simple recipient of 
math education. 
 

3 Challenges to the field: Missing research questions 
Even though Alcock and colleagues (2016) point at the possibility of multiple pathways to 
mathematical success (p. 32), they tend to take as reference the skills, achievements, and 
learning trajectories of what they label “typical populations” (p. 33). Populations regarded as 
typical—that is, in most cases, members of Western, Educated, Industrialized, Rich, and 
Democratic (abbreviated as WEIRD) societies—are known to be outliers along various 
psychological dimensions (Henrich, Heine, & Norenzayan, 2010). The same is true for the 
children in these populations, raised in respective countries and influenced by the prevailing 
cultural patterns, including a specific way of schooling, from early on. Not even infants are 
truly unaffected by cultural input, as attested to by the fact that they recognize their mother 
tongue already at birth (Byers-Heinlein, Burns, & Werker, 2010; Moon, Cooper, & Fifer, 
1993). 
 Taking such WEIRD populations as reference may seem justified if one’s agenda is 
aimed at the education systems in North American and Western European countries, with 
“success in mathematics” being defined as mastery of the respective school curriculum. To 
the extent, however, that it is also intended as a research agenda on mathematical cognition 
more generally, neglecting the cultural nature of the phenomena investigated is problematic. 
If one’s goal is “a broad approach to understanding human mathematical cognition” (Alcock 
et al., 2016, p. 33), then such highly specific populations do not provide an appropriate basis 



 

from which to draw general conclusions, nor should they be the only target for one’s efforts 
to facilitate mathematical achievements—and even more so as, globally, populations become 
increasingly heterogeneous in terms of their cultural and linguistic composition. 
 Taking culture more seriously entails important implications. Most generally, it helps 
us elucidate the nature of mathematical thinking (the first of the six broad topics identified by 
Alcock et al., 2016). It does this by not only providing new insights to fundamental questions 
about mathematical thinking, but also by alerting us to such questions in the first place. The 
most fundamental questions would revolve around the forms of representation that have 
emerged in different cultures and the functions they serve in collective practices: How do 
form and function affect each other, and how do they become reproduced and altered in the 
activities of children and adults (Saxe, 2012)? More specific questions arise from the three 
aspects we focused on in this commentary, pertaining to (i) the origin and variability of 
numeration systems, (ii) the properties of such systems and their interplay with numerical 
thinking, and (iii) processes of enculturation and the cultural context of numerical cognition. 

3.1 Origin and variability of numeration systems 
What are the regulative processes that constrain and enable the emergence, reproduction, and 
alteration of numeration systems in human communities, and are these processes similar 
across different communities? For example, in his studies of economic exchange in 
Oksapmin communities, Saxe (2012) proposed that, as interlocutors communicate with one 
another about number-related issues in collective practices like economic exchange, they 
strive to make their communicative intents clear by using word forms that they assume are 
known by their audience, while at the same time adapting their communications to newly 
emerging communicative problems. In this way, participants in a community reproduce prior 
representational forms, but also alter them as they adjust their communications to the 
problems of daily life. In striving for both numerical coherence (that what is said in 
communication is rooted in mathematical sense) and communicative coherence (that what is 
asserted should be tailored so that the speaker’s communicative intent should be clear to the 
hearer), such a regulative process could well be a fundamental source of both continuity and 
discontinuity in representations in communities. 
 If these regulations are fundamental to the reproduction and alteration of numerical 
forms, how might they be manifest across situations when authority and power are similar or 
different across interlocutors, whether in adult-child interactions, peer interactions, or 
interactions between adult members of similar social positions? There is such a diversity of 
community-specific collective practices that the possibilities for detailed analysis are 
extraordinary. Examples include deaf children of hearing parents communicating with one 
another about number and new forms of representation that emerge as communication (e.g., 
Spaepen et al., 2011, 2013) and groups moving from pidgin languages to creoles in which 
numerical representations might become regularized (see Hammarström, 2008, for some 
analyses on this issue). 
3.2 Properties of numeration systems and their interplay with numerical thinking 
Language appears to have a profound effect on the thinking of individuals (e.g., Boroditsky 
& Gaby, 2010; Dolscheid, Shayan, Majid, & Casasanto, 2013), with number being a case in 
point. But more work is needed to understand the interplay between the representational 
forms that individuals come to use and the functions for which they use them. 
 A particularly illuminative example is the bootstrapping process in which individuals 
deploy problems that involve multiple conceptual resources supporting their transcendence of 
particular cultural forms of representation. For instance, more than half of the world’s 



 

population speaks more than one language, with numeration systems in these languages most 
likely differing from each other in at least subtle, if not fundamental ways. Moreover, even if 
monolingual, most people nowadays still use several numeration systems in parallel, such as 
the sequence of number words in one’s mother tongue and one or more notational systems 
(e.g., Indo-Arabic digits and Roman numerals). While serving partly different functions, 
these systems differ significantly in how they represent the same type of information. What 
then is the interplay between the different forms of numerical representation and the thinking 
of (developing) individuals? Do different ways of representing numbers interfere with one 
another during learning and when manipulating quantity, and do they interact with 
computational technologies such as counting-boards in the performance of arithmetical tasks? 
Which role do irregularities in numeration systems play? What were the impacts of 
straightening out the irregular systems in several French-speaking countries (except France), 
in Wales, and in Norway? And would the same be advisable for other Indo-European 
languages as well? 
 A related question concerns the treatment of external tools. When solving numerical 
problems, the work is distributed over the material tools with which one engages and 
cognitive (including cortical) processes recruited for numerical activities. When solving an 
arithmetic problem, in which ways then do these processes differ depending on whether one 
deploys a representational artefact like a digital calculator, paper and pencil, or mental 
arithmetic? Such variation in the way in which number is used in everyday life are 
commonplace, but understanding how cognition becomes distributed over the artefacts that 
we use and the cognitive processes involved with number (Hutchins, 1995; Larkin & Simon, 
1987; Zhang & Wang, 2005) poses difficult empirical challenges for the cognitive sciences 
and neurosciences. This is made even more challenging by the substantial restructuring of the 
brain through literacy (van Atteveldt & Ansari, 2014; Dehaene, 2013; Menary, 2015; 
Overmann, 2016a), which implies that patterns observed in Western participants cannot 
simply be generalized to non-literate (yet numeric) people. 
3.3 Processes of enculturation and the cultural context of numerical cognition 
What is the nature of and the variation in enculturating practices across communities? Saxe 
and colleagues (1987) documented a variety of collective practices in which young children 
were engaged in working and middle class families in New York City (as explained in the 
previous section), including the forms and functions of representation that emerged in the 
context of interactions and differential numerical cognitive developments associated with 
participation in those environments. But more such work is in dire need. What are similarities 
and differences that mark the emergent environments with regard to enculturating practices 
involving number across human communities? In what way do children personalize the 
conventions of their community such that the respective cultural forms become the child’s 
own forms and come to serve quantitative functions? In what way does participation in 
collective practices involving enculturation lead to the socialization of children’s personal, 
idiosyncratic approaches, leading to new ways of thinking and communicating with others? 
We do know that young children in the Western world are engaged in play with digital 
technologies like tablets, cell phones, and computers, but what are the characters of the 
environments that emerge in such play with computational media? How do these 
environments become interwoven with the number development of children as children 
develop fluency with digital technologies involving numerical problems with and without 
adult and/or peer support? Importantly, outside of such WEIRD communities, what are the 
collective practices that children in other parts of the world are engaged in (cp. Lancy, 2014)? 
What are the conventional systems of numeration that they are acquiring, and how is their 
understanding interwoven with the numerical ideas and representations that they form? 



 

 Answers to questions like these will allow us to modify and improve our models of 
numerical cognition such as the triple-code model described by Dehaene (1992). To date, 
model building has been unnecessarily constrained by nearly exclusively relying on research 
with literate participants familiar with a decimal place-value system based on the Indo-Arabic 
digits, and with individuals, rather than communities, as the units that are engaged in 
recurring numerical problems. Broadening the samples would open the way for incorporating 
arithmetic abilities and strategies of people using different notational systems or no notational 
system at all. After all, the numerical cognition developed and used by humans, for most of 
its existence, was not based on a decimal place-value notational system (which, in historic 
terms, is a very recent invention). 
 And finally, conceiving of cultural diversity in numeration systems and other ethno-
mathematical patterns (for examples see Ascher, 1991, 2002; Ascher & Ascher, 1981; 
Crump, 1990; D’Ambrósio, 1985; Powell & Frankenstein, 1997) as information rather than 
noise and as equivalent rather than inferior also enriches our understanding in a more general 
sense by uncovering the range of possibilities in human cognition (Levinson, 2012; Levinson 
& Gray, 2012). Ultimately, this enables us to address questions on the malleability of the 
cognitive architecture underlying mathematical cognition more generally, questions on which 
factors (if any) constrain the extent of diversity in mathematical cognition, or whether the 
latter is simply a product of arbitrary processes. Respective answers will then help delineate 
what the human mind is able to learn and process, and how using numeration systems shapes 
human cognition and culture more generally. 
 

4 Conclusion 
Culture is not only “out there”, in some exotic corners of the world, but everywhere around 
us and inherent in the material and conceptual systems we use and the practices in which they 
are embedded. We all are brought up in a structured environment, a social context, and a set 
of cultural practices and routines in which we acquire cultural tools, learn to use them in 
culturally agreed upon ways, and modify or alter them. Coming in closer contact with people 
having a different upbringing and speaking another language increases the exposure to, and 
hence awareness of, diversity in numeration systems (both verbal and notational) and 
number-related practices. While this situation may pose additional challenges for instance in 
mathematical education, it also opens new windows and provides opportunities for 
developing a deeper comprehension of mathematical concepts by comparing the different 
cultural instantiations. The same strategy would benefit the scientific approaches to the topic. 
Only if we recognize it as the quintessentially cultural phenomenon it is, and only if this 
insight is reflected in research agendas, will we be able to make substantial progress in 
understanding numerical cognition. 
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