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§1.
In Whitehead and Russell’s “Principia Mathematica,” the systematic development
of the logical propositional calculus is carried out by starting with five propositional
formulas as basic formulas (“primitive propositions”), from which every generally
valid combination of propositions [Aussagenverknüpfung ], i.e., one which is correct
for arbitrary values of the propositional variables occurring in it, can be obtained
by substitutions and the application of a single formal rule of inference.

This reduction of the theorems to the basic formulas is combined with a
reduction of the logical connectives to the two operations:

of negation

∼p (not p)

and of disjunction

p ∨ q (p or q; “or” in the sense of the latin “vel”),

from which are formed by combination:2

1The content of this article is taken to a large extent from an unpublished Habilitationsschrift,

which was submitted by the author to the Faculty of Mathematics and Natural Sciences at
Göttingen in 1918. The questions on the possibility of replacing of formulas by inference rules

investigated there has been left out of the present investigation.
2In order to avoid a proliferation of parentheses, dots shall be used as separating symbols, just
as in the Princip. Math., where the rule is that more dots separate more strongly than fewer

dots. This rule, however, applies only to the separation of symbols of the same kind. Whenever
two different symbols from among ∼, ∨, ⊃ compete, in general the convention shall hold that
for the separation of parts of the formula, ⊃ takes precedence over ∨ and ∼, as well as ∨ over
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the implication

p⊃ q (if p, then q), as abbreviation for ∼p ∨ q
and the conjunction3

p& q (p and q), as abbreviation for ∼(∼p ∨ ∼q).
The five basic formulas are

p ∨ p⊃ p,(Taut)

q ⊃ p ∨ q,(Add)

p ∨ q ⊃ q ∨ p,(Perm)

p ∨ · q ∨ r ⊃ q ∨ · p ∨ r,(Assoc)

q ⊃ r · ⊃ · p ∨ q ⊃ p ∨ r.(Sum)

When replacing the implication by the defining expression, they read:

∼(p ∨ p) · ∨ p,(Taut)

∼q ∨ · p ∨ q,(Add)

∼(p ∨ q) · ∨ · q ∨ p,(Perm)

∼(p ∨ · q ∨ r) : ∨ : q ∨ · p ∨ r,(Assoc)

∼(∼q ∨ r) · ∨ :∼(p ∨ q) · ∨ · p ∨ r.(Sum)

The rule of inference can be formulated as follows: From two formulas4

A, A⊃B (resp. ∼A ∨B)

the formula B is to be obtained.
The substitution rule says that any arbitrary formula can be substituted for

a propositional variable.
One may now easily convince oneself that each of the five basic formulas repre-

sents a generally valid combination of propositions when interpreted contentually.
And that the application of the rules only yields formulas of this kind.

At the same time, the system of basic formulas is complete in the sense that
from it all generally valid combinations of propositions can be obtained with using
the rules. This claim can even be strengthened as follows:

∼, as long as no other separation is indictated by parentheses. Accordingly, the formula

p⊃∼q ∨ : p ∨ · q ∨ r · ⊃ · p⊃ p ∨ :∼q ∨ · q ∨ r

has to be read in the same way as would be given without any further conventions by the following

way of putting parentheses:(
p⊃

(
(∼q) ∨

(
p ∨ (q ∨ r)

)))
⊃

(
p⊃

(
p ∨

(
(∼q) ∨ (q ∨ r)

)))
.

3In the Princip. Math. the symbol for conjunction is simply a dot.
4We shall use uppercase Fraktur letters as symbols used to indicate formulas of an indefinite
form.
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If A is any formula formed from the symbols introduced, then either it is
derivable from the five basic formulas according to the rules, or any arbitrary
formula B becomes derivable if A is added to the basic formulas.

The justification of this claim shall be indicated briefly.5 It results from con-
sidering the conjunctive normal form. A conjunctive normal form is a formula
which is formed from one or more “simple disjunctions” combined using & (con-
junction), i.e., such disjunctions in which every disjunct is either a variable or a
variable to which a negation is applied.

For instance,

p& (p ∨ ∼q ∨ r)
is a conjunctive normal form.

Now the familiar theorem holds, that every formula can be brought into a
conjunctive normal form; i.e., we have a procedure to find, for any given formula A,
a normal form N such that

A⊃N as well as N⊃ A

is derivable from the basic formulas. (As an aside, the determination of N for A is
not unique.)

One now sees immediately: If A is derivable, so is N, and conversely; further-
more, if N is derivable, then so is each one of the simple disjunctions occuring in
A (as conjuncts).

Our claim is thus reduced to the corresponding claim for simple disjunctions.
For those, however, it follows immediately; for a simple disjunction either contains
two disjuncts one of which is the negation of the other (such as p and ∼p); then it
is derivable; or the disjunction does not contain two such disjuncts; then from it
one can obtain, by substitution, a disjunction every disjunct of which is either the
variable p or the double negation of p, i.e., ∼(∼p). Fom such a formula, however,
the formula consisting only of the variable p is derivable, and from this one can
obtain any arbitrary formula by substitution.

This consideration at the same time yields a simple procedure to determine
whether a given formula A represents a generally valid combination of propositions,
or—and this amounts to the same thing—is derivable from the basic formulas: find
a conjunctive normal form N of A. If in each simple disjunction occurring in N two
disjuncts occur one of which is the negation of the other, then the given formula A
is generally valid, otherwise it is not.

This decision procedure solves the main problem of the propositional calcu-
lus completely, and if one only wanted to characterize the generally valid logical
combinations of propositions, one would be able to obtain this result more directly
than by the method of Principia Mathematica.

The insight, that the listed five basic formulas suffice for the derivation of
all generally valid combinations of propositions (using the rules), is nevertheless

5A slightly different proof can be found in the treatise by E. L. Post, “Introduction to a general
theory of elementary propositions” (American Journal of Math. 43 (1921)).
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significant in itself. In this light, the further question now arises whether the five
basic formulas are mutually independent in the sense of formal derivability.

This is indeed not the case, rather, the formula Assoc can be derived from
the other four. Therefore, the system of basic formulas can be replaced by that of
the four formulas

Taut, Add, Perm, Sum (System 1).

Of these four formulas, none are redundant, not even if one retains Assoc.

These claims shall be proved below. Our investigation of dependencies is not
exhausted by it, however. A number of further questions shall also be considered,
to which this result naturally leads and which arise from two remarks.

The first remark is that, in the event that Assoc is retained, the formula
Perm becomes provable, if instead of

Add : q ⊃ p ∨ q

the formula

Add∗ : p⊃ p ∨ q

is taken as a basic formula.

These two formulas are known to be mutually equivalent using Perm and
Sum, i.e., one can, using Perm and Sum, pass from the formula Add to Add∗, and
also back.

It will thus become apparent that the following four formulas suffice as a
system of basic formulas:

Taut, Add∗, Assoc, Sum (System 2).

This fact is not so surprising, since an exchange occurs in the formula Assoc.
One will therefore ask if the formula Perm is still dependent if instead of Assoc
the formula

Assoc∗ : p ∨· q ∨ r ⊃ p ∨ q ·∨ r,
which expresses the associative character of disjunction more purely, is chosen as
a basic formula.

It can be shown that this is not the case; i.e., in system 2 the formula Assoc
cannot be replaced by Assoc∗. It can, however, be replaced by Add and Assoc∗

together, so that the five formulas

Taut, Add, Add∗, Assoc∗, Sum (System 3)

suffice as a system of basic formulas. (That the formulas Assoc and Assoc∗ do
not have the same inferential power when Perm is removed does of course not
contradict the known fact that these two formulas are equivalent in the presence
of Perm and Sum.)
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The second remark is that in system 1, the formula Add can be replaced by
the specialized formula

Simp : q ⊃· p⊃ q

resp.

∼q ∨· ∼p ∨ q,

so that the four formulas

Taut, Simp, Perm, Sum (System 4)

suffice as basic formulas.
By an analogous specialization as that of Add to Simp, the formula

Comm : p⊃ · q ⊃ r :⊃ : q ⊃ · p⊃ r

resp.

∼(∼p ∨ · ∼q ∨ r) ∨ :∼q ∨ · ∼p ∨ r

results from Assoc, and the formula

Syll : q ⊃ r · ⊃ : p⊃ q · ⊃ · p⊃ r

resp.

∼(∼q ∨ r) ∨ :∼(∼p ∨ q) ∨ · ∼p ∨ r

from Sum. Now the question arises whether Assoc might not also be replaced by
Comm, or Sum by Syll . This question is decided in the negative. Neither Assoc in
system 2, nor Assoc∗ in system 3 can be replaced by Comm, and Sum cannot be
replaced by Syll in any of the systems 1, 2, 3, or 4. Furthermore, it is shown that
the forumla Add cannot be replaced by Simp in system 3.

Finally the relation of the formula

Id : p⊃ p

resp.

∼p ∨ p
to the formulas of systems 1, 2, 3, 4 shall be considered. Id is distinguished by being
the simplest generally valid combination of propositions. One would therefore hope
to use it as a basic formula. However, it cannot replace any of the formulas in any
of the systems 1, 2, 3, 4.

The simplest derivation of Id is that from

Taut ,Add ,Syll
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where one first obtains from Add by substitution the formula

Id∗ : p⊃ p ∨ p

resp.

∼p ∨ · p ∨ p.

Without applying Sum, one can derive Id

from Add and Assoc,

even already from Simp and Comm;

moreover from Taut ,Add∗,Assoc∗,

and also from Add∗,Perm,Assoc∗.

Carrying out these derivations, which are found easily, shall be left to the reader.
In every one of these derivations either Add or Simp or Add∗ is used. We will show
that without applying one of these formulas, the formula Id is no longer provable
from the remaining formulas in systems 1, 2, 3, 4.

Of course the formula Id is not a sufficient replacement for either of the
formulas Add , Add∗. It will be shown that by adding Id to the formulas so that
the four formulas

Taut ,Perm,Assoc,Sum

not even the formula Id∗ is provable, and moreover, that even if Id∗ is taken in
addition to Id , the formulas Add and Add∗ as well as Simp remain unprovable.

The claims put forward shall now be established, specifically, the claimed
dependencies on the basis of which the formula systems 1, 2, 3, 4 are recognized
to be sufficient systems of basic formulas will be proved in §2; in §3, proofs for the
independence claims will be given, and it shall be shown that none of the systems
1, 2, 3, 4 contains a redundant formula.

For the sake of convenience, let us collect the systems here again:

System 1: Taut ,Add ,Perm,Sum,

,, 2 : Taut ,Add∗,Assoc,Sum,

,, 3 : Taut ,Add ,Add∗,Assoc∗,Sum,

,, 4 : Taut ,Simp,Perm,Sum.

§2.
By way of explanation of the derivations below, we start with a few remarks.

If a formula is obtained by literal repetition or by substitution from a basic
formula or a formula already derived, then the reference label of said formula is
given on the left. A new reference label for a formula obtained is given on its right.
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The application of the inference rule follows the schema

A
A⊃B
B

Furthermore, we will use—in order to give an abbreviated description of proofs—
the schema

A⊃B
B⊃ C
A⊃ C

This is explained as follows: From the basic formula Sum one obtains, as mentioned
already, the formula

Syll : q ⊃ r · ⊃ : p⊃ q · ⊃ · p⊃ r
by substitution. By using this formula twice in conjunction with the inference rule,
one can derive the formula

A⊃ C

from the formulas
A⊃B and B⊃ C.

Therefore, we may proceed, wherever it is permitted to use the basic formula Sum,
as if we had an inference rule according to which the formula

A⊃ C

can be obtained from
A⊃B, B⊃ C.

And this we shall do, in order to avoid unnecessary complexities.
Reference labels introduced in a proof for derived formulas are given by nu-

merals in brackets; these labels need to be fixed only within a proof.
Furthermore let us remark that two formulas which result from one another

by applying the abbreviation

p⊃ q for ∼p ∨ q
shall count as equivalent in our considerations. Passing from one of the ways of
writing the formula to the other is indicated by “resp.”

We will now proceed to the proofs of the claimed dependencies. The theorems
will be numbered in such a way that the number of each theorem coincides with
that of the system of formulas which is established as complete by it.6

1. Derivation of Assoc from Taut , Add , Perm, Sum.

(Add) r ⊃ p ∨ r
(Sum) r ⊃ p ∨ r · ⊃ · q ∨ r ⊃ q ∨ · p ∨ r

q ∨ r ⊃ q ∨ · p ∨ r
6Note that negation does not occur explicitly anywhere in the derivations 1, 2, 3. The dependen-

cies 1, 2, 3 therefore still obtain if implication is considered as a primitive connective instead of
as a combination of negation and disjunction.
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(Sum) q ∨ r ⊃ q ∨ · p ∨ r · ⊃ · p ∨ · q ∨ r ⊃ p ∨ : q ∨ · p ∨ r
p ∨ · q ∨ r ⊃ p ∨ : q ∨ · p ∨ r

(Perm) p ∨ : q ∨ · p ∨ r ⊃ q ∨ · p ∨ r :∨ p
p ∨ · q ∨ r ⊃ q ∨ · p ∨ r :∨ p (1)

(Add) p⊃ r ∨ p
(Perm) r ∨ p⊃ p ∨ r

p⊃ p ∨ r
(Add) p ∨ r ⊃ q ∨ · p ∨ r

p⊃ q ∨ · p ∨ r
(Sum) p⊃ q ∨ · p ∨ r · ⊃ · q ∨ · p ∨ r :∨ p⊃ q ∨ · p ∨ r : ∨ : q ∨ · p ∨ r

q ∨ · p ∨ r :∨ p⊃ q ∨ · p ∨ r : ∨ : q ∨ · p ∨ r
(Taut) q ∨ · p ∨ r : ∨ : q ∨ · p ∨ r ⊃ q ∨ · p ∨ r

q ∨ · p ∨ r :∨ p⊃ q ∨ · p ∨ r (2)

(1) p ∨ · q ∨ r ⊃ q ∨ · p ∨ r :∨ p
(2) q ∨ · p ∨ r :∨ p⊃ q ∨ · p ∨ r

p ∨ · q ∨ r ⊃ q ∨ · p ∨ r

2. Derivation of Perm from Taut , Add∗, Assoc, Sum.

(Taut) p ∨ p⊃ p
(Sum) p ∨ p⊃ p · ⊃ · q ∨ · p ∨ p⊃ q ∨ p

q ∨ · p ∨ p⊃ q ∨ p (1)

(Add∗) q ⊃ q ∨ p
(Sum) q ⊃ q ∨ p · ⊃ · p ∨ q ⊃ p ∨ · q ∨ p

p ∨ q ⊃ p ∨ · q ∨ p
(Assoc) p ∨ · q ∨ p⊃ q ∨ · p ∨ p

p ∨ q ⊃ q ∨ · p ∨ p
(1) q ∨ · p ∨ p ∨ p⊃ q ∨ p

p ∨ q ⊃ q ∨ p

3. Derivation of Assoc from Taut , Add , Assoc∗, Sum.

(Add) r ⊃ p ∨ r
(Sum) r ⊃ p ∨ r · ⊃ · q ∨ r ⊃ q ∨ · p ∨ r

q ∨ r ⊃ q ∨ · p ∨ r
(Add) q ∨ · p ∨ r ⊃ r ∨ : q ∨ · p ∨ r

q ∨ r ⊃ r ∨ : q ∨ · p ∨ r
(Sum) q ∨ r ⊃ r ∨ : q ∨ · p ∨ r · ⊃ · p ∨ · q ∨ r ⊃ p ∨∴ r ∨ : q ∨ · p ∨ r

p ∨ · q ∨ r ⊃ p ∨∴ r ∨ : q ∨ · p ∨ r
(Assoc∗) p ∨∴ r ∨ : q ∨ · p ∨ r ⊃ p ∨ r · ∨ : q ∨ · p ∨ r

p ∨ · q ∨ r ⊃ p ∨ r · ∨ : q ∨ · p ∨ r
(Add) p ∨ r · ∨ : q ∨ · p ∨ r ⊃ q ∨∴ p ∨ r · ∨ : q ∨ · p ∨ r
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p ∨ · q ∨ r ⊃ q ∨∴ p ∨ r · ∨ : q ∨ · p ∨ r
(Assoc∗) q ∨∴ p ∨ r · ∨ : q ∨ · p ∨ r ⊃ q ∨ · p ∨ r : ∨ : q ∨ · p ∨ r

p ∨ · q ∨ r ⊃ q ∨ · p ∨ r : ∨ : q ∨ · p ∨ r
(Taut) q ∨ · p ∨ r : ∨ : q ∨ · p ∨ r ⊃ q ∨ · p ∨ r

p ∨ · q ∨ r ⊃ q ∨ · p ∨ r

4. Derivation of Add from Taut , Simp, Perm, Sum.

(Taut) ∼p ∨ ∼p⊃∼p
(Sum) ∼p ∨ ∼p⊃∼p · ⊃ · ∼(∼p) ∨ · ∼p ∨ ∼p ∨ ∼p⊃∼(∼p) ∨ ∼p

∼(∼p) ∨ · ∼p ∨ ∼p⊃∼(∼p) ∨ ∼p (1)

(Simp) ∼p⊃ · p⊃∼p
resp.

∼(∼p) ∨ · ∼p ∨ ∼p
(1) ∼(∼p) ∨ · ∼p ∨ ∼p⊃∼(∼p) ∨ ∼p

∼(∼p) ∨ ∼p
(Perm) ∼(∼p) ∨ ∼p⊃∼p ∨ ∼(∼p)

∼p ∨ ∼(∼p)
resp.

p⊃∼(∼p)
(Sum) p⊃∼(∼p) · ⊃ · q ∨ p⊃ q ∨ ∼(∼p)

q ∨ p⊃ q ∨ ∼(∼p)
(Perm) q ∨ ∼(∼p)⊃∼(∼p) ∨ q

q ∨ p⊃∼(∼p) ∨ q
resp.

q ∨ p⊃ · ∼p⊃ q (2)

(Taut) p ∨ p⊃ p
resp.

∼(p ∨ p) ∨ p
(Perm) ∼(p ∨ p) ∨ p⊃ p ∨ ∼(p ∨ p)

p ∨ ∼(p ∨ p)
(2) p ∨ ∼(p ∨ p)⊃ · ∼

(
∼(p ∨ p)

)
⊃ p

∼
(
∼(p ∨ p)

)
⊃ p

(Sum) ∼
(
∼(p ∨ p)

)
⊃ p · ⊃ · q ∨ ∼

(
∼(p ∨ p)

)
⊃ q ∨ p

q ∨ ∼
(
∼(p ∨ p)

)
⊃ q ∨ p (3)

(Perm) ∼
(
∼(p ∨ p)

)
∨ q ⊃ q ∨ ∼

(
∼(p ∨ p)

)
(3) q ∨ ∼

(
∼(p ∨ p)

)
⊃ q ∨ p

∼
(
∼(p ∨ p)

)
∨ q ⊃ q ∨ p

(Sum) ∼
(
∼(p ∨ p)

)
∨ q ⊃ q ∨ p · ⊃ · ∼q ∨ · ∼

(
∼(p ∨ p)

)
∨ q ⊃∼q ∨ · q ∨ p

∼q ∨ · ∼
(
∼(p ∨ p)

)
∨ q ⊃∼q ∨ · q ∨ p (4)
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(Simp) q ⊃ · ∼(p ∨ p)⊃ q
resp.

∼q ∨ · ∼
(
∼(p ∨ p)

)
∨ q

(4) ∼q ∨ · ∼
(
∼(p ∨ p)

)
∨ q ⊃∼q ∨ · q ∨ p

∼q ∨ · q ∨ p
resp.

q ⊃ q ∨ p
(Perm) q ∨ p⊃ p ∨ q

q ⊃ p ∨ q

§3.
The task is now to prove the theorems claimed in §1 about independence—to which
also the claims about non-replaceability belong. That a formula A is not dispens-
able within a system of formulas, resp., that it cannot be replaced by another
formula B, is established if we show that some generally valid formula C cannot
be derived from the formula system which remains after deleting the formula A,
resp., which results by replacing the formula A by the formula B.

Taking the established dependencies into account, one sees that the claimed
independence claims are justified, provided the following independencies are shown:

I. Taut cannot be derived from Add , Perm, Assoc, Sum;
II. Sum ,, ,, ,, ,, Taut , Add , Add∗, Perm, Assoc,

Assoc∗, Syll ;
III. Simp ,, ,, ,, ,, Taut , Perm, Assoc, Sum, Id , Id∗;
IV. Id∗ ,, ,, ,, ,, Taut , Perm, Assoc, Sum, Id ;
V. Id ,, ,, ,, ,, Taut , Perm, Assoc, Sum;

VI. Add ,, ,, ,, ,, Taut , Add∗, Simp, Assoc, Sum;
VII. Add∗ ,, ,, ,, ,, Taut , Add , Assoc∗, Sum;

VIII. Assoc∗ ,, ,, ,, ,, Taut , Add , Add∗, Comm, Sum;
IX. Assoc∗ ,, ,, ,, ,, Taut , Add , Assoc, Sum.

The proofs of these theorems will be given according to the usual method
used for such investigations, viz., the method of exhibition: in each case, a finite
group (in the extended sense of the word) is given, i.e., a finite totality of elements,
for which the “disjunction” is defined as a two-place operation, and “negation” as
a one-place operation, by giving the course-of-values (the operation in general need
not be associative, uniquely invertible, nor commutative).7

Furthermore, a subtotality of “designated values” is singled out from the
group.

A formula is then called a “correct formula” with respect to the group under
consideration, if it always yields a designated value for any substitution of elements
of the group for the propositional variables.

7The elements will be designated by lowercase Greek letters.
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From this it is first of all clear that every propositional formula which results
from a correct formula by substitution is also correct. Furthermore, the groups will
be set up in such a way that one obtains applying the inference rule to two correct
formulas yields another correct formula. For this it is sufficient that the following
condition B is satisfied:

The disjunction ∼p ∨ q, which is formed from the negation of a designated
value p and an arbitrary element q, has a designated value only if q is a designated
value. If this condition is satisfied, it follows that every formula which is derivable
from correct formulas is also corect.

In order to prove that a formula F is independent of certain other formulas
A, . . . , K, one only has to find a group which satisifes condition B and for which
A, . . . , K are correct formulas while F is not a correct formula.

For each of the independence theorems I through IX we will now give a
corresponding group. They are specified as follows: First the elements are enumer-
ated within parentheses, and the designated values between braces. Then negation
and disjunction are are defined.8 (If a defining equation contains a propositional
variable, this means that the equation shall hold for every value of the variable.)
Subsequently the formulas that have to be verified as correct are listed.

This verification is left to the reader; for the more complex formulas it can
be abbreviated significantly by suitable case distinctions.

Finally, a specific substitution of values is given for the formula to be shown
independent, under which the formula yields a non-designated value, which shows
that it is not a correct formula.

In order to facilitate the verification, the following should be remarked: If the
formula Id is a correct formula for a group, then

if disjunction is commutative, Perm is also a correct formula;
if disjunction is associative, Assoc∗ is also a correct formula;
if disjunction is commutative as well as associative, Assoc is also a correct

formula;
if p ∨ p = p (for every value of p), then Taut is a correct formula;
For each of the groups, condition B is satisfied. This has to be established

for each group separately, but we will not mention it every time.

Group I.

(α, β, γ); {α}.
∼α = β, ∼β = α, ∼γ = γ,

α ∨ p = p ∨ α = α,

β ∨ p = p ∨ β = p,

γ ∨ γ = α

The disjunction so defined can be represented arithmetically as multiplication
of the three congruence classes 0, 1, 2 mod 4.

8Here the equality sign is used in the sense of definitional equality.
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Id , Add , Perm, Assoc, Sum are correct formulas; by contrast, Taut is not a
correct formula, since

∼(γ ∨ γ) ∨ γ = ∼α ∨ γ = β ∨ γ = γ

Group II.

(α, β, γ, δ); {α}.
∼α = β, ∼β = α, ∼γ = δ, ∼δ = α

α ∨ p = p ∨ α = α,

β ∨ p = p ∨ β = p,

p ∨ p = p,

γ ∨ δ = δ ∨ γ = α

The disjunction can be represented arithmetically as multiplication of the
congruence classes 0, 1, 3, 4 mod 6.

Id , Taut , Add , Add∗, Perm, Assoc, Assoc∗, Syll are correct formulas; but
not Sum, since

∼(∼δ ∨ β) ∨ · ∼(γ ∨ δ) ∨ (γ ∨ β)

= ∼(α ∨ β) ∨ · ∼α ∨ γ = ∼α ∨ · β ∨ γ
= β ∨ γ = γ.

Group III.

(α, β, γ, δ); {α, γ}.
∼α = β, ∼β = α, ∼γ = δ, ∼δ = γ

α ∨ p = p ∨ α = α,

β ∨ p = p ∨ β = β for p 6= α,

p ∨ p = p,

γ ∨ δ = δ ∨ γ = γ

Id , Id∗, Taut , Perm, Assoc, Sum are correct formulas; but not Simp (and
consequently neither is Add), since

∼γ ∨ · ∼α ∨ γ = δ ∨ · β ∨ γ = δ ∨ β = β.

Group IV.

This group differs from group III only in that

γ ∨ γ = β

is specified:
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(α, β, γ, δ); {α, γ}.
∼α = β, ∼β = α, ∼γ = δ, ∼δ = γ

α ∨ p = p ∨ α = α,

β ∨ p = p ∨ β = β for p 6= α,

γ ∨ γ = β,

γ ∨ δ = δ ∨ γ = γ

δ ∨ δ = δ.

Id , Taut , Perm, Assoc, Sum are correct formulas; but not Id∗, since

∼γ ∨ · γ ∨ γ = δ ∨ β = β.

Group V.

(α, β, γ); {α}.
∼α = β, ∼β = α, ∼γ = γ

α ∨ p = p ∨ α = α,

β ∨ β = β ∨ γ = γ ∨ β = γ ∨ γ = β.

Taut , Perm, Assoc, Sum are correct formulas; but not Id , since

∼γ ∨ γ = γ ∨ γ = β

Group VI.

(α, β, γ); {α}.
∼α = β, ∼β = α, ∼γ = γ

α ∨ p = α, β ∨ p = p, γ ∨ p = γ.

Id , Taut , Add∗, Simp, Assoc∗, Comm, Sum are correct formulas; but not
Add (and consequently neither is Assoc), since

∼α ∨ · γ ∨ α = β ∨ γ = γ.

Group VII.

(α, β, γ); {α, γ}.
∼α = β, ∼β = α, ∼γ = β

α ∨ p = α,

β ∨ p = γ ∨ p = p.

Id , Taut , Add , Assoc∗, Sum are correct formulas; but not Add∗, since

∼γ ∨ · γ ∨ β = β ∨ β = β.
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Group VIII.

(α, β, γ, δ); {α}.
∼α = β, ∼β = α, ∼γ = α, ∼δ = γ

α ∨ p = p ∨ α = α,

β ∨ p = p ∨ β = p,

p ∨ p = p,

γ ∨ δ = α, δ ∨ γ = δ.

Id , Taut , Add , Add∗, Comm, Sum are correct formulas; but not Perm (and
consequently neither are Assoc and Assoc∗), since

∼(γ ∨ δ) ∨ · δ ∨ γ = ∼α ∨ δ = β ∨ δ = δ.

Group IX.

(α, β, γ, δ); {α, γ}.
∼α = β, ∼β = α, ∼γ = δ, ∼δ = γ

α ∨ p = p ∨ α = α,

β ∨ p = δ ∨ p = p,

γ ∨ β = β,

γ ∨ γ = γ ∨ δ = γ.

Id , Taut , Add , Assoc, Sum are correct formulas; but not Assoc∗ (and conse-
quently neither are Add∗ and Perm), since

∼(γ ∨ · β ∨ δ) ∨ : γ ∨ β · ∨ δ

= ∼(γ ∨ δ) ∨ · β ∨ δ
= ∼γ ∨ δ = δ ∨ δ = δ.

(received April 7, 1925.)

Paul Bernays


