Execution Architectures for Program Algebra

Jan A. Bergstra® Alban Ponsé
aUniversity of Amsterdam, Programming Research Group, Kruislaan 403,
1098 SJ Amsterdam, The Netherlands

bUtrecht University, Department of Philosophy, Heidelberglaan 8,
3584 CS Utrecht, The Netherlands

Abstract

We investigate the notion of an execution architecture in the setting of the program algebra
PGA, and distinguish two sorts of thesmalytic architectures, designed for the purpose

of explanation and provided with a process-algebraic, compositional semanticsyrand
thetic architectures, focusing on how a program may be a physical part of an execution
architecture. Then we discuss in detail the Turing machine, a well-known example of an
analytic architecture. The logical core of the halting problem — the inability to forecast
termination behavior of programs — leads us to a few approaches and examples on related
issuesforecastersaandrational agentsIn particular, we consider architectures suitable to

run a Newcomb paradox system and the Prisoner’s Dilemma.

Key words: Halting problem, Execution of programs, Program algebra, Turing machine.

Contents
1 Introduction 2
2 Basics 4
2.1 PGA, some Basics of Program Algebra 4

2.2 Behavior Extraction: from PGA to Basic Polarized Process Algebra, BPPA 6

2.3 The program notations PGLA, PGLB, PGLC with FMN 7
2.4 Computable Polarized Processes 9
3 Execution Architectures 10
3.1 Analytic versus Synthetic Architectures 10
3.2 Processes and Programs 11

2 June 2004

3.3 Compositional Process Specification 13

3.4 Synthetic Architectures for Binaries 14
4 An Analytic Architecture for Turing Machines 17
4.1 The Turing machine 17
4.2 Enhanced Turing Machine Tape 18
4.3 Programming the Turing Machine 19
4.4 The Halting Problem 20
5 Forecasting Reactors and Rational Agents 25
5.1 Forecasting Reactors 25
5.2 Reactors Formalizing Rational Agents 28
5.3 A Newcomb paradox system 30
5.4 Prisoner’s Dilemma 32
References 33

1 Introduction

The program algebra PGA as introduced in [6] aims at the clarification of the con-
cept of a program at the simplest possible level. Having available a rigid definition
of what a program is, the subject of how programs may be used raises compelling
guestions. This paper focuses on the notion of an execution architecture. This no-
tion is more general than that of a machine and admits many different forms of
interaction between a program and its context.

First, an attempt is made to cover the most important phenomena regarding pro-
grams in a context. As programs are modeled semantically, and independently
of any execution environment, by means of polarized processes it is unavoidable
to contemplate computable polarized processes as a general semantic category.
It turns out that computable instruction streams can describe all computable pro-
cesses. Using finite programs only (regular instruction streams), taking an execu-
tion architecture with the well-known Turing Machine Tape (TMT) as a reactor is
sufficiently powerful to denote all computable polarized processes as well.

Next, two kinds of architectures are defined: analytic architectures (AnArch) and
synthetic architectures (SynArch). An AnArch serves to model how a program may

be executed in a context, by making explicit its interaction with other system com-
ponents, in particular the so-called reactors. A SynArch focuses on how a program
may be a physical part of a context. The AnArch is useful for explanation, while a
SynArch may play a role during construction. It is shown that all SynArch’s admit

a specification in a (non-polarized) process algebra with abstraction and recursion
operators.

Then some special analytic execution architectures are discussed in detail in order
to cover a range of fundamental phenomena each having to do with programs under
execution in an environment.

An enhanced version of the TMT is developed in the form of a reactor ETMT. More
specifically, ETMT is a state machine, i.e., it has no interaction with other parties
than the control. Finite control is phrased in terms of programs executed in an an-
alytical environment providing only the ETMT. In this setting the halting problem
takes the form of the nonexistence of certain programs, which is demonstrated in
full detail.

Ignoring the (E)TMT, the halting problem reduces to its logical core: the inability

to forecast termination behavior of programs that may use the results of forecasting.

It is shown how an analytic architecture can be used to give a sound definition of a
forecasting reactor, and it is demonstrated that a correct forecaster needs to escape
from the two classical truth values. This brings the halting problem close to some
logical paradoxes, in particular the liar paradox.

A forecasting reactor intends to provide replies that correspond to (future) facts. A
rational agent reactor has the objective to achieve certain goals by giving appropri-
ate replies for specific requests. It is shown that again in some cases a rational agent
needs to use more truth values than true and false.

Combining rational agent reactors and forecasting reactors, one obtains a remark-
able setting. This is a setting that admits the famous Newcomb paradox [13]. This
paradox seems to prove that the very concept of a forecaster reliably forecasting a
rational agent is utterly problematic. Nevertheless this is done all the time in chess
games, stock market transactions, war gaming and so on. Using the analytic ar-
chitectures and some exotic process algebra involving the constant 0 from [2], a
formalization of one reactor forecasting another reactor is given. The Newcomb
paradox now shows up as follows: given a fixed execution architecture (viewed as
a geometric structure with several components), its process semantics determines
what a rational agent reactor should best reply in order to achieve a specific objec-
tive. The normal process semantics predicts one reply as being rational, whereas
the semantics specifically tailored to forecasting predicts a different reply. But the
normal semantics is so robust that it seems to take into account the possibility that
one reactor predicts the behavior of another reactor just as well. The novelty of this
section may lead in the very presence of a precise formalization of the conditions

required to run both executions of the ‘Newcomb paradox system. As a last and
related example, we model the well-known Prisoner’s Dilemma.

A related subject in the context of this paper is the undecidability of virus detection
as described by Cohen [12]. In the setting of program algebra one can consider
execution architectures that take security matters into account, and establish an
analysis in similar style; we plan this as future research.

The further content of this paper is divided into four parts: in Section 2 we recall
some program algebra. In the next section we introduce execution architectures.
Then, in Section 4, we study the Turing machine as an example of an analytic
architecture. Finally, in Section 5, we focus on forecasting reactors and rational
agents in the setting of (analytic) execution architectures.

2 Basics

In this section we recall some program algebra (PGA) and its relation with basic
polarized process algebra. Then we introduce some program notations based on
PGA. Finally, we show that computable, polarized processes can be expressed.

2.1 PGA, some Basics of Program Algebra

Program Algebra (PGA, [6]) provides a systematic setting for the study of sequen-
tial, imperative programming. In this paper we will use PGA as a vehicle to study
fundamentals of program execution in the context of self-referencing programs.
In this section we discuss the syntax and semantics of PGA, and some program
notations based on PGA.

Given a set o of basic instructions, the syntax of PGA (PGAs based on the
following primitive instructions:

Basic instructiona € Y. It is assumed that upon the execution of a basic instruc-
tion, the (executing) environment provides an answet or false. However, in
the case of a basic instruction, this answer is not used for program control. After
execution of a basic instruction, the next instruction (if any) will be executed; if
there is no next instruction, inaction will occur.

Positive/negative test instructiofta for a € Y. A positive test instructior-a ex-
ecutes like the basic instruction Upon false, the program skips its next in-
struction and continues with the instruction thereafter; upaa the program
executes its next instruction. For a negative test instructionthis is reversed:
upontrue, the program skips its next instruction and continues with the instruc-

tion thereafter; upofualse the program executes its next instruction. If there is no
subsequent instruction to be executed, inaction occurs.

Termination instruction!. This instruction prescribes successful termination.

Jump instruction#k (k € N). This instruction prescribes execution of the program
to jump k instructions forward; if there is no such instruction, inaction occurs.
In the special case that = 0, this prescribes a jump to the instruction itself
and inaction occurs, in the case that 1 this jump acts as akipand the next
instruction is executed. In the case that the prescribed instruction is not available,
inaction occurs.

PGA-expressions are composed by meart®atatenatiopnotation_; - andrepeti-

tion, notation(_)“. Instruction sequence congruence for PGA-expressions is axiom-
atized by the axioms PGA1-4 in Table 1. Here PGA2 actually is an ascmeme

for eachn > 0, (X")* = X*, whereX! = X and X**! = X; X*.

(X;Y);Z = X;(YV; 2) (PGA1) XY = X¥ (PGA3)
(X" = X¥ forn>0 (PGA2) (X;Y)Y = X;(V;X)Y (PGA4)
Table 1.

Axioms for PGA'’s instruction sequence congruence

From the axioms PGA1-4 one easily derivegolding i.e.,
XY =X; X~
So-calledstructural equivalencés obtained by abstracting from chained jumps.

For PGA-expressions it is axiomatized by the axioms PGAL;8n(£ € N) in
Tables 1 and 2.

#n 4+ Lug; ..o un; #0 = #0;u1;. .. 5wy #0 (PGAS5)
H#n+ Liur; .. un; #Fm = #n+m+ Lug; .. uy #m (PGAG)
(#n+k+ Lup; .. 5un)? = (#kyug; .. up)? (PGAT)
X =up;..jtup; (V1.0 30m1) = #n+m+k+2; X =#n+k+1; X (PGAS)

Table 2.
Additional axioms for PGA's structural congruence

Each PGA-program can be rewritten into an instruction equival@monical form

i.e., a closed term of the fornY or X; Y with X andY not containing repeti-

tion. Moreover, using PGA1-8, each canonical form can be uniquely minimized in
terms of the occurring jump counters and number of instructions. For example, the
minimal canonical form for-a; #2; (—b; #2; —c; #2)* is +a; (#0; —b; #0; —c)“.

We shall use the abbreviation SPI for Sequence of Primitive Instructions. A SPI is
also called grogram objector sometimes shortly, rogram

2.2 Behavior Extraction: from PGA to Basic Polarized Process Algebra, BPPA

Given X, now considered as a set aftions behavior is specified in BPRAby
means of the following constants and operations:

Termination. The constant represents (successful) termination.

Inaction, Deadloclor Divergence.The constanD represents the situation in which
no subsequent behavior is possible.

Post conditional compositionfFor each actiom € Y and behavioral expressions
P and(@ in BPPAy,

Pdal>Q

describes the behavior that first executes actiand continues witt® if true
was generated, an@ otherwise.
Action prefix. Fora € ¥ and behavioral expressidn € BPPAy.,

ao P

describes the behavior that first execuieand then continues witl. Action
prefix is a special case of post conditional composition:? = P <a > P.

The behavior extractionoperator| X | assigns a behavior to program objext
Structural equivalent objects have the same behavior.

Behavior extraction is defined by the thirteen equations in Table 3, where:
andu is a primitive instruction:

I =S X[=5 |#k| = D
la| = aoD |a; X| = ao|X| [#0; X| =D
[+a| = aoD [+a; X| = |X]| Da |42 X]| #1; X| = |X|
|—al| = aoD |—a; X| = |#2; X|<al | X]| |#k +2;ul = D

[#k + 2w X| = |#k + 1; X]|

Table 3.
Equations for behavior extraction on PGA

Some exampled(#0)¥| = |#0; (#0)*| = D and

|—a;byc] = [#2;bic] a > |bid]
= |#1l;c] Jal>bo]c|
=|c|<da>bocoD

=coD<albocoD.

In some cases, these equations can be applied (from left to right) without ever
generating any behavior, e.g.,

((#1)°] = [#L; (#1)°] = [(#D)*] = ...
|(#2;0)°| = [#2; a; (25 a)*| = |F£L; (#2;0)°] = |(#2;0)°| = . ..

In such cases, the extracted behavior is defineld.as

It is also possible that behavioral extraction yields an infinite recursion, e.g.,

|| = la; a*| = a o a”]

and therefore|a”| = a o |a*|
=aoao|a|

=aoaoao|a*|

In such cases the behavior¥fis infinite, and can be represented by a finite number
of behavioral equations, e.d(q; +b; #3; —b; #4)“| = P and

P=ao(PLbl>Q),
Q=Prdb>Q.

More precisely, a polarized behavibris calledregular (overY) if it can be char-
acterized by a finite number of equations in the following wBy= FE; and for
i=1,..,n, E; =t; with t; is eitherD, S or E; < a > Ej, for somej, kin1,.. n.

Now any PGA-program defines a polarized regular behavior, and conversely, each
regular polarized behavior can be described in PGA.

Note 1 Observe that the following identity holdsX | = | X; (#0)“|. This identity char-
acterizes that for a finite program object, a missing termination instruction yields inac-
tion. Conversely, this identity makes six out of the thirteen equations in Table 3 derivable
(namely, those for programs of length 1 and the equatlen+ 2; u| = D).

2.3 The program notations PGLA, PGLB, PGLC with FMN

PGLA is a programming language based on PGA: the only construct (operation)
is concatenation, and instead of the repeat ope(atoiPGLA contains theepeat
instruction \\ k for any £ > 0, which upon execution repeats theinstructions

that are to the left of it. If there are not that many instructions, the leftmost se-
quence is padded witf0-instructions, e.g.+a; \2 behaves as-a; #0; \2 or as
+a; #0; \2; b, and thus a§+a; #0)“|. We write

|X|pgla

for the behavior of PGLA-progranX. This is defined by a projection function
pgla2pga from PGLA-programs to PGA-expressions:|,,, = |pglazpga (X)|
(see [6]).

The language PGLB is obtained from PGLA by adding backwards juxygs
and leaving out the repeat instructiofys. For exampleja; #0; \#2 behaves as
+a; #0; \ 2. However,+a; #2; \#2; b behaves not liket-a; #2; \2; b, in the case
that actiona generatesrue, it jumpsoverthe backward jump#2 and performs,
in symbols:|+a; #2; \#2; b, = P With P = bo D Ja> P. This is defined with
help of a projection functiopglb2pgla by | X|,,» = |pglb2pgla (X)|,gia-

PGLC is the variant of PGLB in which termination is modeled implicitly: a pro-
gram terminates after the last instruction has been executed and that instruction
was no jump into the program, or after a jump outside the program. The termina-
tion instruction! is not present in PGLC. For examplesa; #2; \#2; b|pgic = P

with P =bo S <al P.

FMN basic instructions may either have a focus or not. If no focus is present an
execution architecture will use a default focus instead. A focus represents a part
of a system able to process a basic instruction and to respond subsequently with a
boolean value. Such a part may e.g. be called a reactor, a coprogram or an instruc-
tion execution agent. The second part of an instruction with focus (and the only
part of an instruction without focus) consists of a method. Focus and method are
combined by means of a*. Focus and method may both consist of alphanumeric
ASCII (see [1]) sequences, starting with a letter from the alphabet and allowing a
colon () as a separator of parts. Here are some possible typewritten instructions:

registers:3.assign:x:to:y
stack:3.push:5
stack:17.pop
table:2.insert:5:at:2

A formal CF grammar of FMN is omitted. If basic instructions are taken from FMN
and programs are given in PGLA, the resulting notation is termed PGLA:FMN (or
pgla:fmn). Here is a PGLB:FMN program:

ba2;Bb.de:true;\#1;-a:2.b:3;#5;A:true.false:5

2.4 Computable Polarized Processes

A polarized process isomputabléf it can be represented by an identifiey and
two computable functiong, f in the following way & € N):

D if g(k) =0,
E,=¢8 if g(k) =1,
Bt k)0 L agy) & Eger gy 1f g(k) > 1.

Here we use the bijective pairing functién _) defined by(n, m) = 3((n+m)* +
3m +mn). So(n,0) >n < (n,1)if n > 0.

Theorem 1 PGA instruction sequences are universal: for each computable polar-
ized process there is an instruction sequence withas its behavior.

Proof. Let F; be a computable polarized behavior as defined above. Then we de-
fine

#0; #0; #0 if g(k) =0,
- L if g(k) =1,
B - g(k)
U3 (k4 f(R), 1) —4 if g(k) > 1.
Itis easily seen thak, = |Ey; Ey; ...| (OF By = |Ey; Epiq; ...|). O

Furthermore, PGA's repeating sequences of instructions are universal with the aid
of a state machine TMT if we restrict to a finite number of actions:

Theorem 2 For each computable polarized processhere is a closed PGA-term
X such that X| /i TMT = a.

Here the notatior/ ;S stems from [10] and defines the interaction between a be-
havior P and a so-called state machine or reacforia focus (channely. State
machines are used to support program control, and will be further dealt with in
Section 3.3. The theorem above is a standard result in the setting of Turing ma-
chines (see, e.g., [15,14]), given the fact that finite control can be modeled in PGA.

3 Execution Architectures

In this section we focus on programs in an execution architecture. We will use ACP-
based process algebra to model so-called ‘analytical architectures’. Finally, we try
to clarify the role of programs (binaries) in machines.

3.1 Analytic versus Synthetic Architectures

We consider the following types of architectures:

Analytic Architecture (AnArch): provides a hypothetical decomposition of a sys-
tem into parts. An AnArch can serve as an explanation of a setting in a black box
context (the system is seen as a blackbox, with the AnArch describing its in-
ternals for the sake of explanation). An AnArch will not be on the pathway to
construction.

Synthetic Architecture (SynArch): an architecture (description of how a whole
is composed from parts) providing information on the true (or proposed, in-
tended) internal structure of a system.

Often a compositional semantic technique is absent. Parts are organs, the role
of which may be investigated later on.

The proposed execution architecture for PGA is an AnArch. For instance a compo-
nent is provided containing an instruction sequence, able to deliver one instruction
at a time. No attention is paid to the way in which a SPI may in fact be stored or
generated. We call such a component a SPI container, and visualize an AnArch in
the following way:

SPI container

P
default fi | fe In
s reactors

Here P represents a SPI using FMN-notation.

Each of the reactors may engage in external communications. The chdgyfaels,
f1, ..., fn play a reserved role and are supposed not to be composed with other parts
of the AnArch or any extension of it.

A reactor R is unaware of its name. It uses actions.,(a), and s, (true) and
sserv (false) for communication with the SPI container. Reactors are assumed to

10

satisfy the following requirement: i is a trace ofR then

a N Agervice = ({Tser(a) | @ € B} - {Sgerm(true), sgem(false)})™.

When plugged into the AnArch at focug, serv — f; will be renamed in the
actions.

3.2 Processes and Programs

A process is a mathematical entity in a space of processes (like a number being
an element of a field). The design of the process space depends on the underlying
theory of processes used. We will use ACP ([5], for a recent explanation see [8,11]),
but many other process theories can be used instead. In this section, we shall shortly
recall some ACP.

The purpose of the use of processespscificationHere, ‘specification’ is used in

a fairly limited way: it must be compared with ‘quantification’ (stating numerical
sizes) and ‘qualification’ (expressing objectives, goals, methods and reasons). Fur-
thermore, specification stands for thgecification of behavioiSpecification need

not be perfect (i.e., it may provide an approximation of a system rather than a per-
fect view, be it at some level of abstraction). Specification has no a priori place in
some artifact construction life cycle, just as quantification or qualification.

A process expression, e.g.

74(b)(sq(true)ry(c) + sq(false)d)

provides a text that represents a process (that is, a specification of behavior), namely
the process that first performs actigb) (receive along channelthe valueb) and
then chooses to perform eithey(true)r,(c) (send valuerue along channet and
then perform actiom,(c)) or s,(false)d. In a picture (wheré®—+(Q denotes thaP
evolves intoQ) by performing actiom):
74(0)(sa(true)ry(c) + sq(false)d)
L ra(b)
Sq(true)ry(c) + sq(false)d
Sq(true) . Sq(false)
rq(C))
ra(c) |
Vv

11

Hered is the symbol that stands famaction or deadlock and can be compared
with the constanD in polarized process algebra, agtidenotes (successful) ter-
mination.

In a similar way, a program expression

a.b:T; (+c; #4, —e. f)*

represents a SPI. However, there is a crucial difference: suppose process expression
X denotes a specification of systeinsay X = [[S]], or at least,X is a reasonable
approximation ofS. Now it is not plausible to expect thak or any form of X
constitutes a part of in any SynArch forS. On the other hand, if is a system
executing progranp denoted with program expressipnthen it is plausible that a
SynArch of S contains, perhaps in a transformed (compiled) fgsras a part.

Process expressions occur as parts of systems that analyze or simulate other sys-
tems. The following AnArch is perfectly acceptable:

S| P

S contains process expressidhand behaves aB, thussS is a P-simulator. As a
SynArch this makes little sense. Moreover, simulation is only one of many objec-
tives supported by processes. Calculation and verification is another and probably
more important one.

We end this section by recalling some ACP. The signature of ACP has a constant
0 and constants for actions. Furthermore, ACP has binary operat(akernative
composition), (sequential composition),, (parallel composition, merge)), (left
merge), and (communication merge). Finally, there is a unary renaming operator
Oy (encapsulation) for every sét of actions, which renames the actionsidnnto

0. We use infix notation for all binary operators, and adopt the binding convention
that+ binds weakest andbinds strongest. We suppressvriting zy for x - y.

Parallel composition in ACP satisfies the law

vlly=@| y+yl z)+z|y,

where| is as|| with the restriction that the first action must be one from the left
argument, whild has the restriction that the first action must be a communication.

Communication in ACP is predefined on the set of actions. For example; ¢
impliesa || b = (ab+ba)+ c. Encapsulation can be used to enforce communication
between different parallel components, €@, (a || b) = (66 + §0) + ¢ = ¢ (by
various laws fol| andd, such as + § = z anddz = 9).

12

3.3 Compositional Process Specification

We use the notatioff P]] for process semantics of a polarized behavibin a
symmetric, concrete (i.e., without the silent stgprocess algebra:

[S]] =t,

[[D]] = t7,

[P <a® Q] = Sacaur (@) (7 defautt (true) [P]] + 7 gefaure (false) [Q]]),
[P < f.a> Q] = s¢(a)(rs(true)[[P]] + ry(false) [[Q]]).

Herexz*y is defined by the law*y = z(z*y) + y (see [3]). Taking) for y and
using the ACP-axiomx + § = z, it follows thatt*) behaves as’, i.e., an infinite
sequence of-actions.

For each of the channet&fault, f1, ..., f,, the following communications are de-
fined:

re(a)lsg(a) = cs(a) for a € ¥ U {true, false}.

(Recall that is the set of basic PGA-instructions).

Given a polarized behavid? and reactorsi, ..., R,,, we define a concrete analyt-
ical architecture, notation cpgaEA, and an abstract one, pgaEA:

cpgaEAP, default:Ry, f1:R1, ..., fn:Ry) =
O ([P || pserve defante ([Ro]]) | pservs g (LRAI]) (] - (I Pserve g ([Rn]]))

with encapsulation sel = {r;,s; | i = default, fi, ..., f,}. Here, the encapsula-
tion enforces communication between the different parallel components. Further-
more, the renaming operatpy..,.; renames the channel namew to f.

Furthermore,
PgaEA P, default:Ry, fiiR1, ..., [niRn) =
Tr(CPgaEA P, default:Ry, f1: R, ..., fn:Ry))
with abstraction sef = {t, caefau, cf » ---, ¢, }- @ll actions in sef are renamed to

7, the silent step that satisfies the axiam = z. In common process semantics,
7*0 = 76 (cf. [9]).

13

Now cpgaEAP, default:Ry, f1:Ry, ..., f»:R,) and its pgaEA-variant are computable
if Pand allR; are.

A reactorR is called astate machiné R has only actions,.,(a), S (true) and

sserv (false), i.e., no external events, only update of its memory state and computa-
tion of boolean output. Based on [10] (describing the interaction between a program
or behavior and a state machine), we can prove the following result:

Theorem 3 LetR = Ry, Ry, ..., Ry, Ri11, ..., R, With R, 1, ..., R,, state machines.
Then pgaEAP, f;:R;) = pgaEAP/y, . Rit1.../, Rn, Ro, ... Ry).

3.4 Synthetic Architectures for Binaries

In this section we try to clarify the role of programs in machines. A binary is just a
finite {0, 1}-sequence (i.e., a binary file). Consider the following SynArch:

Machine | p loader

This SynArch displays a machinachine containing binary as a part. It has a
special port namehbaderused to entep in Machine bitwise.

Assuming thaMachine is a classical piece of computing machinery, a specification
[M (p)]] for the behavior op will be a computable process (see [$fpchine can
be specified as follows:

[[Machine|] = Mipading(€),

Mloading<a) = rloader(o) : Mloading(ao) +
Tloader(l) * Mloading(al) +
Tloader(eo.r) ’ [[M(p)“

with eofan end-of-file marker.

It is reasonable to expect thafl/(p)]] depends uniformly (in the sense of com-
putability theory, see e.g., [15]) gn Then, alsd|Machine]| itself is a computable
process:

Theorem 4 The proces$§Machine]| can be denoted modulo branching bisimula-
tion equivalence in ACP extended withx, $, and finitely many auxiliary actions.

This result is proven in detail in [8]. The operatibifcalled push-dowhis defined
by 28y = z(2$y)(z$y) + y, the onlyr-law used ist7 = z.

14

For appropriate encapsulation gétand abstraction st we find:

7 [[M(p)]] = 710 0u(S(p) || [Machine]])

Wheres(p) - Sloader<p0) EEEE Slaader<pn) : Sloader<eoﬁ-

Let pgla:fmn2bindm (wherebindm abbreviates “binaries fafachine”) be a
mapping from PGLA:FMN to bit sequences. Thegla:fmn2bindm is a code
generator mapping if the following holds for &l € PGLA:FMN:

POAEA| X | pgia: fmns firRi) = [[M(pgla:fmn2bindm (X))]].

That is: the analytic architecture pgaEA (with its set of reacterglains(i.e.,
corresponds to) the synthetic architecture SynAr€hin practice one is happy if
this works for allX with a size of less thah Mb (for somek).

The following jargon is useful:

(1) PGLA:FMN - middle code or intermediate code.

(2) A machine (program) producinggla:fmn2bindm (X)) from X is a code
generator (or compiler back end) fidichine.

(3) The concept of a ‘machine code’ can not be defined here: clearly, saimee
more useful than others. But there is no obvious criterion regardifd/ (p)]]
to select the binaries fotachine from arbitrary bit sequences.

(4) A higher program notation, say PGLX, can be understood if a projection

pglx2pgla:fmn

to PGLA is known and a pgaEA such that

[1X]] €' pgaEA |pgix2pgla:fmn (X)|pgia:fmns fiRe)

corresponds to the intended meaning of programA compileris a system

(or a program for a system) that allows to comppdéx2pgla:fmn (oran

optimized version of it that produces semantically equivalent behavior).
For a PGLX-expressioX, we then find

[[X]] = [[M (pgla:fmn2bindm (pgIx2pgla:fmn (X)))]]

and it is common practice to cglgla:fmn2bindm (pglx2pgla:fmn (X)) a
program

15

This is one of the possible justifications for the qualification of a binary that is
part of a SynArch as a program. To fix the nature of this qualification, its kind is
gualified as follows:

Code generator mapping range criterion: a binaryp is a program if it is in the
range of a code generator mapping (in a setting that explains the behavior of
M (p) via an AnArch).

The qualification ofp as a program via the code generator projection mapping
criterion seems to be at odds with the basis of PGA because PGA starts from
the assumption tha program is a sequence of instructio(see [6]). However,

if pgla:fmn2bindm is computable, it has a semi-computable inverse, say

bindm2pgla:fmn
andp qualifies as a program because of the projection semantics:

Dlbin:m = |DINAM2pgla:tmn (p)|pgia: fmn-

Of course, it is immaterial thaggla:fmn2bindm s takento be an inverse of
pgla:;fmn2bindm . What matters is: for all (or as many as one cages)

[M(p)] € pgaEA|bindm2pgla:fimn (p)|pgia: fons fiiFi)
(= [[M(pgla:fmn2bindm (bindm2pgla:fmn (p)))]]).

Thus, the code generator mapping criterion is consistent with the PGA-criterion for
being a program.

Note 2

1. Having a far more detailed SynArch at hand withs a part, one may find other justifi-
cations for qualifyingy as a program. However, we failed to develop such a story with any
form of acceptable generality.

2. The projectiorbin4m2pgla:fmn may be called a disassembler-projection (ignoring

the complexity of loading). Then, if the qualification@fs a program i/ (p) is justified

by means of the code generator mapping criterion, a disassembler-projection semantics of
p is (implicitly) known/given.

3. The justification of the qualification @fin M (p) (p as a part of the SynArch/ (p)) is

itself an argument of a certain formualification on the basis of a most plausible history

(If we see an object when it is a dead body, of course we see it if it was a living individual of
some species that subsequently died. How else could the object have come into existence?
If we seep in Machine wherep = pgla:fmn2bindm (X)), that must be related to's

history. How else would it have originated? l.gis just another form or phase &f, like

a dead body being another phase of a living body.)

16

4. The middle code exists at the instruction sequence level (in PGA:FMN or its machine
readable version PGLA:FMN). It is at the same titagget code for projection semantics
Given a SynArch\/(...), its binaries are also callexbject code

4 An Analytic Architecture for Turing Machines

In this section we consider an enhanced version of the Turing machine Tape, and a
PGA-based language for programming it. We prove the unsolvability of the halting
problem, and show that this problem becomes decidable if we restrict our language
sufficiently.

4.1 The Turing machine

The original reference to the Turing machine is [16]. A Turing machiheonsists
of a finite control, a tape, often visualized in the following style:

o
(@x
(@x

where b stands for “blank” (i.e., a blank square), and a head that can be used for
reading and writing on that tape. Usually, the tape has a left end, and extends indef-
initely to the right. The head can never fall off the tape (at the left side). The control
is such that it distinguishes a halting state, after which control is terminated and the
tape can be inspected for possible output. In a non-halting state, control prescribes
some action to be undertaken and the next control state. Actions are either: "write
a symbol in the square” (where write a blank means “erase”), replacing the one
that was already there, or: move the head one tape square to the left (if possible) or
right.

Now the Church-Turing thesiss the following principle (formulation taken from
[14, page 246]):

The Turing machine that halts on all inputs is a precise formal notion that cor-
responds to the naive notion of an “algorithm”.

Finally, thehalting problemHP is the question whether or not a Turing machie
halts on input stringu.

17

4.2 Enhanced Turing Machine Tape

We consider an enhanced type of Turing Machine Tape (ETMT) over alphabet
{0,1,;}. TMT is seen as a reactor, and it is enhanced to ETMT to allow for more
powerful programming. A typical state of such a tape is

bl;|;l0[1|0[1|1]0[;|1|0|1];|b

where the b stands fdolank the semi-colon serves as a separator, andigthe

head position pointer. The leftmost b represents an indefinite number of blanks
to the left! , and the rightmost b signifies that the tape indefinitely extends to the
right. As a consequence, the empty tape (containing only blanks) is represented by

blb

A bit sequencen a tape is a sequence of 0 or 1 occurrences of maximal length (so
at both ends neighboring either a semicolon or a blank).

We consider the following (service-)instructions:

test0 write:0 mvleft |mvbegin
testl write:1 mvright [dup
testsemicolonwrite:semicolon

testb write: b

with

test0 (or 1, semicolon b) checks whether the head position points tb(ar the
other symbol indicated) and returns the appropriate replg Or false).

write:0 (or 1,semicologwrites the appropriate symbol at head position and returns
true.

write: b only works if to the left or the right there is a b already (and rettinms),
otherwise nothing changes afuke is returned.

mvleft fails if head is at b and to the left there is a b as well, in this case it returns
false and nothing happens; otherwise the head position pointer moves to the left.

mvright works similar.

mv.begin places the head at the left blank and returns.

dup duplicates the leftmost bit sequence if any exists, and puts the result next to it
separated by a semicolon. Furthermore, the head position pointer moves to the

I This does not increase the computational power of a Turing Machine (see e.g., [14]).

18

left blank. Returnsrue if actual duplication has taken place, aafie otherwise.
Examples:

blb _dup, blb (returnsfalse),
bl::0| b LUP bl:|:l0];|0|b (returnstrue),

N dup
b|0|1[:[1]|0|1];]b ——— b|0[1|;|0|1];|1]|0|1];|b (returnstrue).

The initial configuration of ETMT is

blb

written as ETMT b b), and the configuration that contains sequence wy...w
with the head at the leftmost blank, i.e.,

b lwol...|ws| b

is denoted by ETMTbo b).

4.3 Programming the Turing Machine

PGLC is the language based on PGA that contains only basic instructions, test
instructions and forward and backward jumps. Termination is modeled implicitly
in PGLC: a program terminates after the last instruction has been executed and that
instruction was no jump into the program, or after a jump outside the program. The
sublanguage PGLCi restricts to programs that can safely be concatenated: a forward
jump may not exceed the number of subsequent instructions with more than 1 and a
backward jump may not exceed the number of preceding instructions, and programs
may not end with a test instruction. Sai; #1 € PGLCI, but+a; #5; b ¢ PGLCI.

Note that behavior extraction on PGLCi is defined by that on PGLC, and that each
PGLC-program can be transformed into a behaviorally equivalent PGLCi-program
(€.9.,|+a; #5; b|pgic = |+a; #2;b|,q)- SO the point of PGLCi is that concatenation

of programs yields the expected behavior, 8-ga; #2; b; ¢|pg. = coS<al>bocoSS,

while |+a; #5; b; ¢|pgic = S <a>bocoS.

We consider the language PGLCi:FMN, where the only focus used widtive

and the basic instructions are those mentioned above for the ETMT. A program
in PGLCIi:FMN is an ASCII character sequence (see, e.g., [1]), and therefore a
sequence of bits. As an example, the characteas 97 as its decimal code, which

19

is as a byte (sequence of 8 bits) 01100001. The character “;” has 59 as its decimal
code, which is as a byte 00111011.

We consider execution of Turing machine programs in an AnArch. For example,
pgaEA letmtdup etmtmvright|,gic. finn, tMIETMT(bO01;101; b))
7
pgaEA |etmtmvright|,gic. fmn, €IMETMT(b01;01;101; b))
7
v/ with ETMT’s configuration: ETMTb01;01;101; b)

where each of the-steps (&) comes from two (abstracted) communications be-
tween the current program-fragmefit...| 4. fm»|] @nd the ETMT.

4.4 The Halting Problem

TheHalting Problem(HP) can in this setting be modeled as follows: a PGLCi:FMN
programp halts on the ETMT with initial configuratiotbw b (w a bit sequence),
notation(p, w) € HP, if

PYAEA || pgic: frmn, EMIETMT(bwb)) = 7,
as opposed to* (= 76). After halting (possibly by external means), the tape can

be inspected to obtain an output.

Solving the halting problem: we stipulate that progr@am PGLCi:FMN solves the
question whethefp, w) € HP in the following way:

PIAEA|¢|pgic:fmn, EMEETMT(bp;wb))

wherep is stored as a bit sequence always halts, and after halting, the tape config-
uration is of the form

ETMT(b0o b) if pgaEA(|p|pgic: frn, EIMETMT(bwb)) halts, thugp, w) € HP,
ETMT(b1pb) if pgaBEA(|p|pgic: frmn, EMETMT(bw b)) halts not, i.e(p, w) & HP,

for some stringr or p.

20

Theorem 5 The halting problem is unsolvable by means of any program in
PGLCi:FMN.

Proof. Suppose the contrary, i.e., a progrgne PGLCi:FMN exists that solves
HP. Consider the following program:

s = etmtdup ¢; r

,
with r = etmtmvright; —etmttest1; #0; etmtmvbegin and the questiofs, s) €
HP. We show below that both assumptidrss) € HP and(s, s) ¢ HP lead to a
contradiction. Hence; cannot exist, and thuscannot exist.

First, assume thds, s) € HP. Then
PYAEA|S|pgic: frn, EIMIETMT(bsb))
| 7 (etmtdup)
PYAEA|¢; 7| pgic: frn, EIMEETMT(bs:sh)).

Because; € PGLCIi:FMN, the programy; r first executes; (which terminates
successfully by assumption) and then starts with the first instructionTdfus,

PYAEA|¢; 7 |pgic: frn, EIMIETMT(bs;sb))

| 7 (by programy)

PYAEA |7 | gic: frmn, EMIETMT(b00 b))

for some strings. The remaining behavior is displayed in Fig. 1, and results in
PgaEA(|#0; etmtmv.begin,yic: fmn, EtMETMT(b0o b)). This last AnArch clearly
represents divergence because of the first instrugtiorand thereforés, s) ¢ HP.
Contradiction.

Now assume thats, s) ¢ HP. The resulting behavior is displayed in Fig. 2 (for
some string). Here the last configuration represents halting, and theréfose ¢
HP and again a contradiction occurs.

So our supposition was definitely wrong, i.e., there is no progra#® GLCi:FMN
that solves the halting problem. O

21

PYAEA(|7 | pgic: fmn, EIMETMT(b00 b))

pogaEA(letmtmvright; —etmttest1; #0; etmtmv.begin e fmn, EIMETMT(boob))
| 7 (etmtmvright)

pgaEA | —etmttest1; #0; etmtmvbegin ygic. fmn, EtMETMT(b0ob))
| 7 (—etmttestl)

pgaEA(|#0; etmtmvbegirgic: frmn, EIMETMT(b0ob)).

Fig. 1. Last part of the behavior in the case thats) € HP in the proof of Thm. 5

PYAEA(|5|pgic: frmn, EIMIETMT(bsb))
| 7 (etmtdup)

PYAEA(|¢; 7| pgic: frmn, EMETMT(bs;sb))
| 7 (by progranmy)

pgaEA(|T|pglc:fmna etmtETMT(B 1,0 b))

pgaEA|etmtmvright; —etmttest1; #0; etmtmv.begin pgic. frrn, EIMETMT(bipb))
| 7 (etmtmvright)

pgaEA(|—etmttest1; #0; etmtmv.begin e fmn, EMETMT(bipb))
| 7 (—etmttestl)

pgaEA(|etmtmv.begin,gic: fmn, EtMETMT(b1pb))
| 7 (etmtmvbegin)

v with ETMT’s configurationetmtETMT(b1pb).

Fig. 2. The case thdk, s) ¢ HP in the proof of Thm. 5

It is an easy but boring task to programvbeginanddup in terms of the other
instructions, thus obtaining a stronger proof.

Note 3 Namely:mvbeginis simply programmed by-mvleft; \ #1. Programming the in-
structiondupis slightly more complex, it can for instance be programmed in the following

22

style:

1. Initialization: a program fragmeit that adds two extra semicolons and sets the head
pointer to the leftmost bit, followed by

2. Loop: repeatedly copy all bits of the sequence, followed by

3. Exit: remove redundant semicolon and set head pointebégin).

We sketch these three program fragments, all of which can be easily programmed with the
primitives.

1. Initialize the tape configuration if it contains a bit sequence by adding two semicolons:
one following the end of the bit sequence, and one following the leftmost bit, after which
the head points at the leftmost bit, e.g.,

b;; 10010‘ﬂ> b;;1;001;0
whereo is either a blank, or starts with a semicolon. In case there is no bit sequence, the
procedure ends here.

2. Copying can for instance be done with the following two program fragments:
2.1. One, sayvrite:(2, z), that writes bit-valuer after all bits following the second semi-
colon from head position, and puts the head just left of the first semicolon following the

leftmost bit, e.qg.,

write:(2,1)
—_—

b;;i;001;0' b;;i;OOl;lU

b;:10;01; lam b;:10;01; 100

Itis not hard to programwrite:(2, 0) andwrite:(2, 1) in terms of the other primitive instruc-
tions.

2.2. Another program fragment, sayxchangethat changes the pattefny into xg; and
terminates ify is a semicolon, e.g.,

exchange
_

b;;i;OOl;lJ b;;16;01;10'

Also this program fragment is easy to program with the primitive instructions.
Now repeatedly performvrite:(2, x); exchangefor the appropriate value of. The loop
ends if the leftmost bit sequence is copied, separating the copy with a semicolon, e.g.,

b::100i::10010-=XM3N9 10012 10010

3. Exit: remove the semicolon at head position and then exeeubegin This completes
the duplication.

As a theorem, the above one (Theorem 5) suffices. From that point of view there is
nothing special about the (E)TMT or any of its versions. What we see is that:

(1) For a close relative of the TMT an impossibility result is obtained.

(2) Increasing the instruction set of the ETMT to a ‘super’ ETMT does not help.
The proof goes exactly the same. Computability of these instructions is im-
material. What matters is that the halting problem (HP) is posed about all
programs over the instruction set that may be used to program its solution.

23

(3) The Church-Turing thesis is not used because the result is phrased about
PGLCIi:FMN programs, and not about ‘algorithms’ or ‘computable methods'’.
Nevertheless, if it is considered convincing that an effective method can be
performed by a certain Turing machine, then it is also obvious that it can be
programmed in PGLCi:FMN:

e finite control can be modeled in the program;
e additional instructions only strengthen the expressive power.

This situation changes if we restrict PGLCi:FMN. Note that in our proof we only
use the instructiondup, test1, mvright andmv.begin Now if we consider these
as theonly primitive instructions, it is quite clear that the halting problem becomes
decidable: call the resulting language PGLCi:FMN

Theorem 6 With the languag®GLCi:FMN™, the halting problem is decidable.

Proof. If the tape contains no sequence of bits, each occurrenceiptan be
replaced bymv.beginand the tape remains a fixed and finite structure. Execution
now either yields a cyclic pattern or stops#ab or a terminating jump. As there
are finitely many combinations of current instruction and head position, halting is
decidable.

In the other case, consider some tape configuration that contains a bit sequence
and X € PGLCi:FMN™. TransformX to a canonical form. If this contains no
repetition, we are done, otherwise we obtain a progtaml’)~ with U and V'
containing no repetition. Halting ofi is decidable: either one of the decisive in-
structions! or #0 is to be executed, or execution enters the repeatinglparso,

we further consider pgaBNV“|, ETMT(boizpb)) for some cyclic permutation

W of V and some tape configuration. Now, eitlaierp occurs at a reachable posi-

tion in W*, or not (can be decided frofi’“|). In the last case, the tape remains

a fixed and finite structure, and iteratiig yields a regular behavior, so halting

is again decidable. In the other case, the numbanwfight-instructions inlV,

say NV, limits the number of positions that the head can shift to the right. Consider
pgaEA|WN: W«|, ETMT(boipb)). Either halting can be decided da#”, or

the repeating part is entered, sgy (X again some cyclic permutation o). We

may replace alllup-instructions inX“ by mv.beginbecause any further duplication
yields an unreachable part at the right end of the tape. So, this case is reduced to
the previous one, and halting is again decidable. O

Our objective is to position Turing’s impossibility result regarding the assessment
of halting properties of program execution as a result about programs rather than
machines. The mere requirement that programs of a certain form can decide the
halting behavior of all programs of that form leads to a contradiction.

24

This contradiction can be found in the case of programs for a Turing machine tape
(TMT). The argument is significantly simplified if an extended command set for

a Turing machine tape is used (ETMT). But then the program notation may be
reduced to those features (commands) actually playing a role in the argument and
the impossibility result remains but now in a setting where the underlying halting
problem is in fact decidable.

We conclude that as a methodological fact about computer programming, the unde-
cidability of the halting problem is an impossibility result which is quite indepen-
dent of the computational power of the machine models to which it can be applied.

5 Forecasting Reactors and Rational Agents

The halting problem can be investigated without the use of TMT’s as a problem
regarding the potential capabilities of a reactor serving as a computation forecasting
device. In this section we show that restrictingtee andfalse is problematic and
introduce a third truth-value. Furthermore, we combine forecasters with ‘rational
agents’, and provide a modeling of the Newcomb paradox. Finally, we model the
Prisoner’s Dilemma as an analytic architecture.

5.1 Forecasting Reactors

Forecasting is not an obvious concept, the idea that it is to be done by means of a
machine even less. We will provide a ‘clean’ intended interpretation of forecasting
and investigate its fate in the context of pgaEA. The use of an AnArch is justified
because this story is meant at a conceptual level and is not part of any technical
design.

In the previous section it was shown that restrictingrte andfalse is problematic.
Therefore we now consider the case that the evaluation of test instructions may
yield not onlytrue or false, but also the valu@/ (meaningless

a o |#1; X| if a’s execution returnsrue,
|+a; X| = ¢ ao|#2; X| if a’s execution returnalse,

a o |#3; X| if a’s execution returngd/,

25

and

a o |#2; X| if a’s execution returnsrue,
|—a; X| =< ao|#1; X| if a’s execution returnfalse,

a o |#3; X| if a’s execution returnd/.

More information on many-valued logics usinge, false and M can be found in
[4,7].

We will usefcu as the focus pointing to a forecasting unit FCU in the following
way: fcu.() will ask the forecaster to reply about its opinion regarding the question
Q. At this point the precise phrasing of the requirement on the FCU is essential. In
pgaEA(|fcu.QQ; X|, fcuFCU, f;:R;) one expects FCU to replyue if @) is valid as

an assertion on pgaBpX|, fcuFCU, f;: R;), notation

pgaEA | X |, fcuFCU, f;:R;) satQ.

More precisely, in

pgaEA(|+fcu.Q; u; X|, fcuFCU, f;:R;)

we expect that

e trueis returned if pgaEAu; X|, fcuFCU, f;:R;) sat@,
e false is returned if pgaEA X |, fcu.FCU, f;:R;) satQ),
e M is returned otherwise.

Moreover, in case that bottue andfalse could be returned, preference is given to
returningtrue.

ConsiderQ = halting: when pgaEA| X |, fcuFCU, f;:R;) sathalting it will hold

along all execution traces (irrespective of any context) fhdtalts. Then, if a re-

actor can engage in external communications, the possibility that it will must be
taken into account. Moreover, we cannot exclude the possibility that a reactor falls
into inaction as a result of such an external communication. Therefore we assume
the absence of reactors apart from FCU, and investigate to what extent FCU can be
made to provide a useful forecast regardinghb#ing-question.

Theorem 7 A forecasting reactoFCU needs the third truth valug/.

Proof. Consider

pgaEA(|+fcu.halting; #0; !;!|, fcuFCU).

26

If true is replied then pgaEA#0;!;!|, fcu:FCU) sathalting which is not true; if
false is replied then pgaE@A!; !|, fcu:FCU) sat halting which is also not true. Thus
M should be replied, and

pgaEA|+fcu.halting; #0; !;!|, fcuFCU) — pgaEA(|!|, fcuFCU)

(which will halt by the way). O

We notice that the FCU may use whatever inspection of other parts of ggaEA
However, it cannot correctly forecast the question with either or false. Never-
theless, a lot is possible, e.g.:

pgaEA|+fcu.halting; !; #0|, fcu:FCU)

generates replyrue,

pgaEA |+fcu.halting; #0; #0|, fcu:FCU)

generates replfalse.

Theorem 8 A best possibld=CU for halting can be given foPGA:FMN with
fcu.halting as its only basic instruction.

Proof. Let X' be obtained fromX by replacing each occurrence fofi.halting
by fcu.true, the test that always yieldsue, and letX !¢ be defined similarly (re-
placement bycu.false). We assume that FCU is deterministic. Consider

pgaEA|+fcu.halting; u; X|, fcu:FCU).

(1) Inthe case that pgaBAf™e; Xt e| fcu:FCU) sat halting, we may define that
+fcu.halting returnstrue, and as a consequence

pgaEA(|+fcu.halting, u; X |, fcu:FCU) sathalting.

(2) Inthe case that pgaBRX ™|, fcuFCU) sathalting, we may define that
+fcu.halting returnsfalse, and as a consequence

pgaEA |+fcu.halting; u; X |, fcuFCU) gathalting.

(3) If none of the cases above appliedcu.halting generates reply/.

27

E.g., pgaEA|+fcu.halting; #0; !;!|, fcuFCU) will return A/ though it is going to
be halting: by returning/ it moves to an instruction from where halting is guaran-
teed indeed, while replyinfalse would not produce a consistent answer.

It is easy to see that if this definition of replies given by FCU returhgt cannot
be replaced by eitharue or false. So, FCU is optimal. O

So, a halting forecaster can be built, but it cannot always provide a useful reply.
On PGA one can decide whether a useful reply can be given. Given the fact that
all practical computing takes place on finite state machines for which PGA is of

course sufficient, we conclude this:

(1) All practical instances dialtingare decidable, given a pgaER f;:R;) with
all R; finite state.
(2) Nevertheless, a halting forecaster cannot work in a flawless fashion, though it
can be ‘optimal’ (i.e., minimizing output/).
If all R;’s are finite state in pgaB&°, f;:R;) sathalting (which is always the case
‘in practice’), we find that for a particular AnArch fixing the,’s the halting prob-
lem will be decidable, especially if the AnArch is tailored to fit the constraints of
some realistic SynArch.

Of course, one can investigate forecastiegctors Then the question is: what im-
possibility will one encounter when working in a finite setting? The obvious unde-
cidability result critically depends on one of the reactors being infinite state.

5.2 Reactors Formalizing Rational Agents

We consider a ‘rational agenRA with focus ra. The rational agent intends to
achieve an objective and acts accordingly. Here is a simple example:

X
ra /. "\, out
RA Out

whereOut has five state§, 1,2, 3,4 and initially is in state). There are four in-
structionssy, ..., s4 Which all succeed in each state ©fit, with s; leavingOutin
statei fori € {1,2,3,4}.

The PGLA:FMN-programX is as follows:

+ra.get; #3; out.s9; s out.sq;!

28

In terms of behavion, X| can be visualized as follows:

(ra.get)
true \, false
lout.s] [out.ss]
| 1
S S

Now the task oRAis to make the system terminate with a maximal conte @utf
RAIis aware of the contents of prograkh In this case, itis clear that the refhjse
is optimal.

For a second example we add a decision aBexsuch thaRAcannot know which
decisionDectakes. The focus foDecis dec. The instructiordec.setasksDecto
take a decision, which it will keep forever, and allows inspectiondga.get An
inspection not preceded bydac.seteturns) .

X
dec /| ra \, out
Dec RA Out

The model forDecin concrete process algebra is:

[[Ded] = r(set)(t - [[Dec™]] +¢ - [[Dec?™])),
[[Dec™e]] = (s(true)r(get))*s,

[Ded?=¢]] = (s(false)r(get))*d.

We consider the following PGLA:FMN-prograty’ (for readability, some com-
ments are added in the margin):

X' = dec.set+dec.get#2; #7;
“+ra.get; #3; out.sy; s out.sy; ! | (executed ildec.getreturnstrue)

+ra.get; #3; out.s3; !5 out.sy; ! | (otherwise),

29

or in terms of behavior: [dec.set

1
(dec.gex
true \\ false
(ra.get) (ra.get)

true /| false true /| false
[out.sq] [out.ss] [out.sy]| [out.ss]

1 1 | 1
S S S S

Now both repliesrue, false are not optimal. IIRArepliestrue, this leads to 1 after
a positive decision dDec (andfalse would have given 2), whilé&lse is not optimal
after a negative decision @fec(giving 3 rather than 4). Therefore it is plausible to
returnM, but that yields no maximum either (it leav@sitin state 0).

5.3 A Newcomb paradox system

In this section we consider the following program, a small modification of the last
program in the previous section:

X = dec.set
+dec.get#2; #7,;
+ra.get; #3; out.sy;!; out.s3; !

+ra.get; #3; out.sq;!; out.sq; !

with behavior [dec.set

1
(dec.get
true \, false
(ra.get) (ra.get)
true ,/ \ false true ,/ \ false
[out.s3] [out.sy] [out.s1] [out.ss]

! 1 | 1
S S S S

Now, quite independently ddecs action, it is plausible thaRArepliesfalse as its
best reply. This answer is very robust and covers all possible/conceivable ways for
which RAmight work.

For the next example we introduce the property of pgaEA’s that a reactor may be a
forecaster of another one:

pgaEA‘orecast:f>g("')

30

is as pgaEA ..) but with the additional constraint that reacfoforecastg;. I.e., if
f.get returnstrue (false) then the nexy.get will reply true (false) as well.

Consider

PYAEA,,ccst-decsra (| X |, dec:DeC ra:RA out:0Out).

Now if RAchooses to replyrue, Decmust have repliedrue, yielding Outin state
3, and ifRArepliesfalse, Decmust have repliethlse and the yield is 2.

This is a version of Newcomb'’s paradox, the original form of which has been made
famous by Gardner [13, Chapters 13, #4].

The additional assumption of forecasting reverses the rational answer becoming
true (i.e., pick only box B2) instead dlse. But the argument fofalse was com-
pletely compelling, making use of case-based reasoning regarding uncertainty about
past events.

The Newcomb paradox then arises from the apparently illegal identification of the
two following execution environments:

pgaEA(| X |, dec:Dec ra:RA out:Out) and

PIAEA,, ccust:decsra (| X |, dec:DeC 1a:RA out:Out).

In particular, the mistaken view that the second architecture somehow refines the
first one by merely providing additional information leads to a contradiction. Thus:
adding more information about the compon®gc, the plausibility ofRA giving

the replyfalse in order to maximize the contents Gt at program termination is

lost.

To formalize forecasting between reactors, we use a congianprocess algebra
(see [2]):

4+ 0=z,
x-0=0 providedz # 9,
0-z=0.

2 A short description based on this source: Given two boxes, B1 which contains $1000
and B2 which contains either nothing or a million dollars, you may pick either B2 or both.
However, at some time before the choice is made, an omniscient Being has predicted what
your decision will be and filled B2 with a million dollars if he expects you to take it, or
with nothing if he expects you to take both.

31

We write F,~,~.(X) for the following modification of proces&™: from the firsta
onwards, replace abls by 0 until the first occurrence of The operatiornf, - is
axiomatized in Table 4.

Faspscle) = e, Fostse(@ +Y) = Faszc(@) + Faspsc(y),
Flaspse(e) = 0 ife=b, Flaspse(r +y) = Flaspse(®) + Fasp>c(y),
Flospsc(e) = e otherwise Fospscle-x) = e Flospse(z) if e = a,

Fosp>c(6) = 0, Fospsc(e-x) = e Fyspsc(x) otherwise,
Floyspse(0) = 6, F'ospscle-z) = 0if e = b,

Flospscle-z) =e-zife=c,
Flospsele-x) = e+ Fyspse(x) otherwise
Table 4.

Axioms for F,~y~., Wherea, b, ¢, e are actions

Now forecasting can be formalized as follows:

CPYAEA,, ot decsra (| X |, dec:Dec ra:RA out:Out) =

Bl oo (true)>cpa (false) > oo (true) (

F.,..(false)>cra (true) >cqee (false) (CPGAEA| X |, dec:Dec, ra:RA out:Out)))
PIAEA,, ccast-dec>ra (| X |, dec:DeC ra:RA out:0ut) =

T1(CPYAEA, astdecra (| X |5 dec:DeC ra:RA out:Out)) for appropriatel.

5.4 Prisoner’s Dilemma

A close relative of the above examples is the so-called prisoner’s dilemma, which
has become very well-known in game theory and economics.

Consider the following situation:

X

| ray | ras | outy | outo

RAL RA2 Outl Out2

Each rational agent has its own “out” and intends to maximize its own yield, irre-

32

spective of the other yield. We define the progranby

X = +ray.get; #2; #9;
+rag.get; #4; out;.sq; outs.Sy; ! outs.s3; outs.ss3;!;

+ras.get; #4; out;.Sy; outs.Sy; ! out;.Sy; outs. Sy !

or, in a picture, by (ray.get)
true / \| false
(ras.get) (ras.get)
true /| false true /| false
lout;.s3] [out;.s1] [out;.so] [out;.ss]
! ’ 1 1
louty.s3] [outs.sy] [outs.sq] [outs.ss)
|) 1 1
S S S S
Now:

e if RAl andRA2 both replytrue, both yield the value 3,

¢ if RAl andRA2 both replyfalse, each gets the value 2,

e if one repliestrue and the othefalse, the replyfalse gets 2 and the replyrue
yields 1.

As a consequence, in order to exclude the risk of yielding only 1 a sure strategy is
to choosefalse. But in order ot get 3, botRAs must trust one another and choose
true, at the same time taking the risk to get only 1. Unable to communicatRAlke

may both go for certainty and repfylse.

A common application of this is to assume that the replg complies with the law
andfalse opposes the law. If both comply with the law, both have significant advan-
tage. Complying with the law while others don't is counterproductive, however.

References

[1] ASCII Table and Descriptionwww.asciitable.com

[2] J.C.M. Baeten and J.A. Bergstra. Process algebra with a zero object. In: Proceedings
CONCUR’90, Amsterdam (J.C.M. Baeten and J.W. Klop, edseiture Notes in
Computer Sciencé58:83-98, Springer-Verlag 1990.

[3] J.A. Bergstra, |. Bethke, and A. Ponse. Process algebra with iteration and nesting.
The Computer JournaB7(4):243-258, 1994.

33

[4] J.A.Bergstra, |I. Bethke, and P.H. Rodenburg. A propositional logic with 4 values: true,
false, divergent and meaningledsurnal of Applied Non-Classical Logics:199-217,
1995.

[5] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication.
Information and Contrgl60(1-3):109-137, 1984.

[6] J.A.Bergstra and M.E. Loots. Program algebra for sequential ctimlenal of Logic
and Algebraic Programming1(2):125-156, 2002.

[7] J.A. Bergstra and A. Ponse. Bochvar-McCarthy logic and process algéhvae
Dame Journal of Formal Logic39(4):464-484, 1998.

[8] J.A. Bergstra and A. Ponse. Register-machine based proceksesal of the ACM
48(6):1207-1241, 2001.

[9] J.A. Bergstra and A. Ponse. Non-regular iterators in process algebnaoretical
Computer Scien¢69 (1-2):203-229, 2001.

[10] J.A. Bergstra and A. Ponse. Combining programs and state machioesnal of
Logic and Algebraic Programminé1(2):175-192, 2002.

[11] J.A. Bergstra, A. Ponse, and S.A. Smolka, editorlandbook of Process Algehra
Elsevier Science, 2001.

[12] F. Cohen. Computer viruses - theory and experiments, 188%/vx.netlux.
org/lib/afcOl1.html

[13] M. Gardner.Knotted Doughnuts and Other Mathematical Entertainme¥ésy York:
W. H. Freeman, 1986.

[14] H.R. Lewis and C.H. Papadimitrio&lements of the Theory of Computati®mentice-
Hall, 1981.

[15] H. Rogers.Theory of Recursive Functions and Effective ComputablityGraw-Hill
Book Co., 1967.

[16] A. Turing. On computable numbers, with an application to the Entscheidungsproblem.
Proc. Lond. Math. Soc. Ser, 22:230-265, 1937. Correctioribid 43:544-546, 1937.

34

