
Execution Architectures for Program Algebra

Jan A. Bergstraa,b Alban Ponsea

aUniversity of Amsterdam, Programming Research Group, Kruislaan 403,
1098 SJ Amsterdam, The Netherlands

bUtrecht University, Department of Philosophy, Heidelberglaan 8,
3584 CS Utrecht, The Netherlands

Abstract

We investigate the notion of an execution architecture in the setting of the program algebra
PGA, and distinguish two sorts of these:analytic architectures, designed for the purpose
of explanation and provided with a process-algebraic, compositional semantics, andsyn-
thetic architectures, focusing on how a program may be a physical part of an execution
architecture. Then we discuss in detail the Turing machine, a well-known example of an
analytic architecture. The logical core of the halting problem — the inability to forecast
termination behavior of programs — leads us to a few approaches and examples on related
issues:forecastersandrational agents. In particular, we consider architectures suitable to
run a Newcomb paradox system and the Prisoner’s Dilemma.

Key words: Halting problem, Execution of programs, Program algebra, Turing machine.

Contents

1 Introduction 2

2 Basics 4

2.1 PGA, some Basics of Program Algebra 4

2.2 Behavior Extraction: from PGA to Basic Polarized Process Algebra, BPPA 6

2.3 The program notations PGLA, PGLB, PGLC with FMN 7

2.4 Computable Polarized Processes 9

3 Execution Architectures 10

3.1 Analytic versus Synthetic Architectures 10

3.2 Processes and Programs 11

2 June 2004

3.3 Compositional Process Specification 13

3.4 Synthetic Architectures for Binaries 14

4 An Analytic Architecture for Turing Machines 17

4.1 The Turing machine 17

4.2 Enhanced Turing Machine Tape 18

4.3 Programming the Turing Machine 19

4.4 The Halting Problem 20

5 Forecasting Reactors and Rational Agents 25

5.1 Forecasting Reactors 25

5.2 Reactors Formalizing Rational Agents 28

5.3 A Newcomb paradox system 30

5.4 Prisoner’s Dilemma 32

References 33

1 Introduction

The program algebra PGA as introduced in [6] aims at the clarification of the con-
cept of a program at the simplest possible level. Having available a rigid definition
of what a program is, the subject of how programs may be used raises compelling
questions. This paper focuses on the notion of an execution architecture. This no-
tion is more general than that of a machine and admits many different forms of
interaction between a program and its context.

First, an attempt is made to cover the most important phenomena regarding pro-
grams in a context. As programs are modeled semantically, and independently
of any execution environment, by means of polarized processes it is unavoidable
to contemplate computable polarized processes as a general semantic category.
It turns out that computable instruction streams can describe all computable pro-
cesses. Using finite programs only (regular instruction streams), taking an execu-
tion architecture with the well-known Turing Machine Tape (TMT) as a reactor is
sufficiently powerful to denote all computable polarized processes as well.

Next, two kinds of architectures are defined: analytic architectures (AnArch) and
synthetic architectures (SynArch). An AnArch serves to model how a program may

2

be executed in a context, by making explicit its interaction with other system com-
ponents, in particular the so-called reactors. A SynArch focuses on how a program
may be a physical part of a context. The AnArch is useful for explanation, while a
SynArch may play a role during construction. It is shown that all SynArch’s admit
a specification in a (non-polarized) process algebra with abstraction and recursion
operators.

Then some special analytic execution architectures are discussed in detail in order
to cover a range of fundamental phenomena each having to do with programs under
execution in an environment.

An enhanced version of the TMT is developed in the form of a reactor ETMT. More
specifically, ETMT is a state machine, i.e., it has no interaction with other parties
than the control. Finite control is phrased in terms of programs executed in an an-
alytical environment providing only the ETMT. In this setting the halting problem
takes the form of the nonexistence of certain programs, which is demonstrated in
full detail.

Ignoring the (E)TMT, the halting problem reduces to its logical core: the inability
to forecast termination behavior of programs that may use the results of forecasting.
It is shown how an analytic architecture can be used to give a sound definition of a
forecasting reactor, and it is demonstrated that a correct forecaster needs to escape
from the two classical truth values. This brings the halting problem close to some
logical paradoxes, in particular the liar paradox.

A forecasting reactor intends to provide replies that correspond to (future) facts. A
rational agent reactor has the objective to achieve certain goals by giving appropri-
ate replies for specific requests. It is shown that again in some cases a rational agent
needs to use more truth values than true and false.

Combining rational agent reactors and forecasting reactors, one obtains a remark-
able setting. This is a setting that admits the famous Newcomb paradox [13]. This
paradox seems to prove that the very concept of a forecaster reliably forecasting a
rational agent is utterly problematic. Nevertheless this is done all the time in chess
games, stock market transactions, war gaming and so on. Using the analytic ar-
chitectures and some exotic process algebra involving the constant 0 from [2], a
formalization of one reactor forecasting another reactor is given. The Newcomb
paradox now shows up as follows: given a fixed execution architecture (viewed as
a geometric structure with several components), its process semantics determines
what a rational agent reactor should best reply in order to achieve a specific objec-
tive. The normal process semantics predicts one reply as being rational, whereas
the semantics specifically tailored to forecasting predicts a different reply. But the
normal semantics is so robust that it seems to take into account the possibility that
one reactor predicts the behavior of another reactor just as well. The novelty of this
section may lead in the very presence of a precise formalization of the conditions

3

required to run both executions of the ‘Newcomb paradox system.’ As a last and
related example, we model the well-known Prisoner’s Dilemma.

A related subject in the context of this paper is the undecidability of virus detection
as described by Cohen [12]. In the setting of program algebra one can consider
execution architectures that take security matters into account, and establish an
analysis in similar style; we plan this as future research.

The further content of this paper is divided into four parts: in Section 2 we recall
some program algebra. In the next section we introduce execution architectures.
Then, in Section 4, we study the Turing machine as an example of an analytic
architecture. Finally, in Section 5, we focus on forecasting reactors and rational
agents in the setting of (analytic) execution architectures.

2 Basics

In this section we recall some program algebra (PGA) and its relation with basic
polarized process algebra. Then we introduce some program notations based on
PGA. Finally, we show that computable, polarized processes can be expressed.

2.1 PGA, some Basics of Program Algebra

Program Algebra (PGA, [6]) provides a systematic setting for the study of sequen-
tial, imperative programming. In this paper we will use PGA as a vehicle to study
fundamentals of program execution in the context of self-referencing programs.
In this section we discuss the syntax and semantics of PGA, and some program
notations based on PGA.

Given a set ofΣ of basic instructions, the syntax of PGA (PGAΣ) is based on the
following primitive instructions:

Basic instructiona ∈ Σ. It is assumed that upon the execution of a basic instruc-
tion, the (executing) environment provides an answertrue or false. However, in
the case of a basic instruction, this answer is not used for program control. After
execution of a basic instruction, the next instruction (if any) will be executed; if
there is no next instruction, inaction will occur.

Positive/negative test instruction±a for a ∈ Σ. A positive test instruction+a ex-
ecutes like the basic instructiona. Upon false, the program skips its next in-
struction and continues with the instruction thereafter; upontrue the program
executes its next instruction. For a negative test instruction−a, this is reversed:
upontrue, the program skips its next instruction and continues with the instruc-

4

tion thereafter; uponfalse the program executes its next instruction. If there is no
subsequent instruction to be executed, inaction occurs.

Termination instruction!. This instruction prescribes successful termination.
Jump instruction#k (k ∈ N). This instruction prescribes execution of the program

to jumpk instructions forward; if there is no such instruction, inaction occurs.
In the special case thatk = 0, this prescribes a jump to the instruction itself
and inaction occurs, in the case thatk = 1 this jump acts as askipand the next
instruction is executed. In the case that the prescribed instruction is not available,
inaction occurs.

PGA-expressions are composed by means ofconcatenation, notation ; andrepeti-
tion, notation()ω. Instruction sequence congruence for PGA-expressions is axiom-
atized by the axioms PGA1-4 in Table 1. Here PGA2 actually is an axiom-scheme:
for eachn > 0, (Xn)ω = Xω, whereX1 = X andXk+1 = X; Xk.

(X;Y);Z = X; (Y ;Z) (PGA1)

(Xn)ω = Xω for n > 0 (PGA2)

Xω;Y = Xω (PGA3)

(X;Y)ω = X; (Y ;X)ω (PGA4)

Table 1.
Axioms for PGA’s instruction sequence congruence

From the axioms PGA1-4 one easily derivesunfolding, i.e.,

Xω = X; Xω.

So-calledstructural equivalenceis obtained by abstracting from chained jumps.
For PGA-expressions it is axiomatized by the axioms PGA1-8 (n, m, k ∈ N) in
Tables 1 and 2.

#n + 1; u1; . . . ;un;#0 = #0;u1; . . . ;un;#0 (PGA5)

#n + 1;u1; . . . ;un;#m = #n + m + 1;u1; . . . ;un;#m (PGA6)

(#n + k + 1;u1; . . . ;un)ω = (#k;u1; . . . ;un)ω (PGA7)

X = u1; . . . ;un; (v1; . . . ; vm+1)ω → #n + m + k + 2;X = #n + k + 1;X (PGA8)

Table 2.
Additional axioms for PGA’s structural congruence

Each PGA-program can be rewritten into an instruction equivalentcanonical form,
i.e., a closed term of the formX or X; Y ω with X andY not containing repeti-
tion. Moreover, using PGA1-8, each canonical form can be uniquely minimized in
terms of the occurring jump counters and number of instructions. For example, the
minimal canonical form for+a; #2; (−b; #2;−c; #2)ω is +a; (#0;−b; #0;−c)ω.

We shall use the abbreviation SPI for Sequence of Primitive Instructions. A SPI is
also called aprogram object, or sometimes shortly, aprogram.

5

2.2 Behavior Extraction: from PGA to Basic Polarized Process Algebra, BPPA

Given Σ, now considered as a set ofactions, behavior is specified in BPPAΣ by
means of the following constants and operations:

Termination.The constantS represents (successful) termination.
Inaction, Deadlockor Divergence.The constantD represents the situation in which

no subsequent behavior is possible.
Post conditional composition.For each actiona ∈ Σ and behavioral expressions

P andQ in BPPAΣ,

P � a � Q

describes the behavior that first executes actiona, and continues withP if true
was generated, andQ otherwise.

Action prefix.Fora ∈ Σ and behavioral expressionP ∈ BPPAΣ,

a ◦ P

describes the behavior that first executesa and then continues withP . Action
prefix is a special case of post conditional composition:a ◦ P = P � a � P .

The behavior extractionoperator|X| assigns a behavior to program objectX.
Structural equivalent objects have the same behavior.

Behavior extraction is defined by the thirteen equations in Table 3, wherea ∈ Σ
andu is a primitive instruction:

|!| = S

|a| = a ◦D

|+a| = a ◦D

|−a| = a ◦D

|!;X| = S

|a;X| = a ◦ |X|

|+a;X| = |X|� a � |#2; X|

|−a;X| = |#2; X|� a � |X|

|#k| = D

|#0; X| = D

|#1; X| = |X|

|#k + 2;u| = D

|#k + 2;u;X| = |#k + 1; X|

Table 3.
Equations for behavior extraction on PGA

Some examples:|(#0)ω| = |#0; (#0)ω| = D and

|−a; b; c| = |#2; b; c|� a � |b; c|

= |#1; c|� a � b ◦ |c|

= |c|� a � b ◦ c ◦D

= c ◦D � a � b ◦ c ◦D.

6

In some cases, these equations can be applied (from left to right) without ever
generating any behavior, e.g.,

|(#1)ω| = |#1; (#1)ω| = |(#1)ω| = . . .

|(#2; a)ω| = |#2; a; (#2; a)ω| = |#1; (#2; a)ω| = |(#2; a)ω| = . . .

In such cases, the extracted behavior is defined asD.

It is also possible that behavioral extraction yields an infinite recursion, e.g.,

|aω| = |a; aω| = a ◦ |aω|

and therefore,|aω| = a ◦ |aω|

= a ◦ a ◦ |aω|

= a ◦ a ◦ a ◦ |aω|
...

In such cases the behavior ofX is infinite, and can be represented by a finite number
of behavioral equations, e.g.,|(a; +b; #3;−b; #4)ω| = P and

P = a ◦ (P � b � Q),

Q = P � b � Q.

More precisely, a polarized behaviorP is calledregular (overΣ) if it can be char-
acterized by a finite number of equations in the following way:P = E1 and for
i = 1, ..., n, Ei = ti with ti is eitherD, S or Ej � a � Ek for somej, k in 1, ..., n.
Now any PGA-program defines a polarized regular behavior, and conversely, each
regular polarized behavior can be described in PGA.

Note 1 Observe that the following identity holds:|X| = |X; (#0)ω|. This identity char-
acterizes that for a finite program object, a missing termination instruction yields inac-
tion. Conversely, this identity makes six out of the thirteen equations in Table 3 derivable
(namely, those for programs of length 1 and the equation|#k + 2;u| = D).

2.3 The program notations PGLA, PGLB, PGLC with FMN

PGLA is a programming language based on PGA: the only construct (operation)
is concatenation, and instead of the repeat operator()ω PGLA contains therepeat
instruction \\k for any k > 0, which upon execution repeats thek instructions

7

that are to the left of it. If there are not that many instructions, the leftmost se-
quence is padded with#0-instructions, e.g.,+a; \\2 behaves as+a; #0; \\2 or as
+a; #0; \\2; b, and thus as|(+a; #0)ω|. We write

|X|pgla

for the behavior of PGLA-programX. This is defined by a projection function
pgla2pga from PGLA-programs to PGA-expressions:|X|pgla = |pgla2pga (X)|
(see [6]).

The language PGLB is obtained from PGLA by adding backwards jumps\#k
and leaving out the repeat instructions\\k. For example,+a; #0; \#2 behaves as
+a; #0; \\2. However,+a; #2; \#2; b behaves not like+a; #2; \\2; b, in the case
that actiona generatestrue, it jumpsover the backward jump\#2 and performsb,
in symbols:|+a; #2; \#2; b|pglb = P with P = b ◦D � a�P . This is defined with
help of a projection functionpglb2pgla by |X|pglb = |pglb2pgla (X)|pgla.

PGLC is the variant of PGLB in which termination is modeled implicitly: a pro-
gram terminates after the last instruction has been executed and that instruction
was no jump into the program, or after a jump outside the program. The termina-
tion instruction! is not present in PGLC. For example,|+a; #2; \#2; b|pglc = P
with P = b ◦ S � a � P .

FMN basic instructions may either have a focus or not. If no focus is present an
execution architecture will use a default focus instead. A focus represents a part
of a system able to process a basic instruction and to respond subsequently with a
boolean value. Such a part may e.g. be called a reactor, a coprogram or an instruc-
tion execution agent. The second part of an instruction with focus (and the only
part of an instruction without focus) consists of a method. Focus and method are
combined by means of a ‘. ’. Focus and method may both consist of alphanumeric
ASCII (see [1]) sequences, starting with a letter from the alphabet and allowing a
colon (:) as a separator of parts. Here are some possible typewritten instructions:

registers:3.assign:x:to:y
stack:3.push:5
stack:17.pop
table:2.insert:5:at:2

A formal CF grammar of FMN is omitted. If basic instructions are taken from FMN
and programs are given in PGLA, the resulting notation is termed PGLA:FMN (or
pgla:fmn). Here is a PGLB:FMN program:

ba2;Bb.de:true;\#1;-a:2.b:3;#5;A:true.false:5 .

8

2.4 Computable Polarized Processes

A polarized process iscomputableif it can be represented by an identifierE1 and
two computable functionsg, f in the following way (k ∈ N):

Ek =


D if g(k) = 0,

S if g(k) = 1,

E〈k+f(k),0〉 � ag(k) � E〈k+f(k),1〉 if g(k) > 1.

Here we use the bijective pairing function〈 , 〉 defined by〈n, m〉 = 1
2
((n + m)2 +

3m + n). So〈n, 0〉 > n < 〈n, 1〉 if n > 0.

Theorem 1 PGA instruction sequences are universal: for each computable polar-
ized processα there is an instruction sequence withα as its behavior.

Proof. Let E1 be a computable polarized behavior as defined above. Then we de-
fine

Ẽk =



#0; #0; #0 if g(k) = 0,

!; !; ! if g(k) = 1,

+ag(k); #3 · 〈k + f(k), 0〉 − 3;

#3 · 〈k + f(k), 1〉 − 4 if g(k) > 1.

It is easily seen thatE1 = |Ẽ1; Ẽ2; ...| (or Ek = |Ẽk; Ẽk+1; ...|). 2

Furthermore, PGA’s repeating sequences of instructions are universal with the aid
of a state machine TMT if we restrict to a finite number of actions:

Theorem 2 For each computable polarized processα there is a closed PGA-term
X such that|X|/tmtTMT = α.

Here the notationP/fS stems from [10] and defines the interaction between a be-
havior P and a so-called state machine or reactorS via focus (channel)f . State
machines are used to support program control, and will be further dealt with in
Section 3.3. The theorem above is a standard result in the setting of Turing ma-
chines (see, e.g., [15,14]), given the fact that finite control can be modeled in PGA.

9

3 Execution Architectures

In this section we focus on programs in an execution architecture. We will use ACP-
based process algebra to model so-called ‘analytical architectures’. Finally, we try
to clarify the role of programs (binaries) in machines.

3.1 Analytic versus Synthetic Architectures

We consider the following types of architectures:

Analytic Architecture (AnArch): provides a hypothetical decomposition of a sys-
tem into parts. An AnArch can serve as an explanation of a setting in a black box
context (the system is seen as a blackbox, with the AnArch describing its in-
ternals for the sake of explanation). An AnArch will not be on the pathway to
construction.

Synthetic Architecture (SynArch): an architecture (description of how a whole
is composed from parts) providing information on the true (or proposed, in-
tended) internal structure of a system.

Often a compositional semantic technique is absent. Parts are organs, the role
of which may be investigated later on.

The proposed execution architecture for PGA is an AnArch. For instance a compo-
nent is provided containing an instruction sequence, able to deliver one instruction
at a time. No attention is paid to the way in which a SPI may in fact be stored or
generated. We call such a component a SPI container, and visualize an AnArch in
the following way:

· · ·
? ?

f1 f2 fn
? ?

default

reactors

SPI containerP

HereP represents a SPI using FMN-notation.

Each of the reactors may engage in external communications. The channelsdefault ,
f1, ...,fn play a reserved role and are supposed not to be composed with other parts
of the AnArch or any extension of it.

A reactorR is unaware of its name. It uses actionsrserv(a), andsserv(true) and
sserv(false) for communication with the SPI container. Reactors are assumed to

10

satisfy the following requirement: ifα is a trace ofR then

α ∩ Aservice = ({rserv(a) | a ∈ Σ} · {sserv(true), sserv(false)})∗.

When plugged into the AnArch at focusfi, serv 7→ fi will be renamed in the
actions.

3.2 Processes and Programs

A process is a mathematical entity in a space of processes (like a number being
an element of a field). The design of the process space depends on the underlying
theory of processes used. We will use ACP ([5], for a recent explanation see [8,11]),
but many other process theories can be used instead. In this section, we shall shortly
recall some ACP.

The purpose of the use of processes isspecification. Here, ‘specification’ is used in
a fairly limited way: it must be compared with ‘quantification’ (stating numerical
sizes) and ‘qualification’ (expressing objectives, goals, methods and reasons). Fur-
thermore, specification stands for thespecification of behavior. Specification need
not be perfect (i.e., it may provide an approximation of a system rather than a per-
fect view, be it at some level of abstraction). Specification has no a priori place in
some artifact construction life cycle, just as quantification or qualification.

A process expression, e.g.

ra(b)(sa(true)ra(c) + sa(false)δ)

provides a text that represents a process (that is, a specification of behavior), namely
the process that first performs actionra(b) (receive along channela the valueb) and
then chooses to perform eithersa(true)ra(c) (send valuetrue along channela and
then perform actionra(c)) or sa(false)δ. In a picture (whereP a−→Q denotes thatP
evolves intoQ by performing actiona):

ra(b)(sa(true)ra(c) + sa(false)δ)

↓ ra(b)

sa(true)ra(c) + sa(false)δ

sa(true) ↙ ↘ sa(false)

ra(c) δ

ra(c) ↓
√

11

Hereδ is the symbol that stands forinaction or deadlock, and can be compared
with the constantD in polarized process algebra, and

√
denotes (successful) ter-

mination.

In a similar way, a program expression

a.b:7; (+c; #4,−e.f)ω

represents a SPI. However, there is a crucial difference: suppose process expression
X denotes a specification of systemS, sayX = [[S]], or at least,X is a reasonable
approximation ofS. Now it is not plausible to expect thatX or any form ofX
constitutes a part ofS in any SynArch forS. On the other hand, ifS is a system
executing programp denoted with program expressionp, then it is plausible that a
SynArch ofS contains, perhaps in a transformed (compiled) form,p as a part.

Process expressions occur as parts of systems that analyze or simulate other sys-
tems. The following AnArch is perfectly acceptable:

S P

S contains process expressionP and behaves asP , thusS is aP -simulator. As a
SynArch this makes little sense. Moreover, simulation is only one of many objec-
tives supported by processes. Calculation and verification is another and probably
more important one.

We end this section by recalling some ACP. The signature of ACP has a constant
δ and constants for actions. Furthermore, ACP has binary operators+ (alternative
composition),· (sequential composition),‖ (parallel composition, merge),‖ (left
merge), and| (communication merge). Finally, there is a unary renaming operator
∂H (encapsulation) for every setH of actions, which renames the actions inH into
δ. We use infix notation for all binary operators, and adopt the binding convention
that+ binds weakest and· binds strongest. We suppress·, writing xy for x · y.

Parallel composition in ACP satisfies the law

x ‖ y = (x ‖ y + y ‖ x) + x | y,

where‖ is as‖ with the restriction that the first action must be one from the left
argument, while| has the restriction that the first action must be a communication.

Communication in ACP is predefined on the set of actions. For example,a|b = c
impliesa ‖ b = (ab+ba)+c. Encapsulation can be used to enforce communication
between different parallel components, e.g.,∂{a,b}(a ‖ b) = (δδ + δδ) + c = c (by
various laws for‖ andδ, such asx + δ = x andδx = δ).

12

3.3 Compositional Process Specification

We use the notation[[P]] for process semantics of a polarized behaviorP in a
symmetric, concrete (i.e., without the silent stepτ) process algebra:

[[S]] = t,

[[D]] = t∗δ,

[[P � a � Q]] = sdefault(a)(rdefault(true)[[P]] + rdefault(false)[[Q]]),

[[P � f.a � Q]] = sf (a)(rf (true)[[P]] + rf (false)[[Q]]).

Herex∗y is defined by the lawx∗y = x(x∗y) + y (see [3]). Takingδ for y and
using the ACP-axiomx + δ = x, it follows thatt∗δ behaves astω, i.e., an infinite
sequence oft-actions.

For each of the channelsdefault , f1, ..., fn, the following communications are de-
fined:

rf (a)|sf (a) = cf (a) for a ∈ Σ ∪ {true, false}.

(Recall thatΣ is the set of basic PGA-instructions).

Given a polarized behaviorP and reactorsR0, ..., Rn, we define a concrete analyt-
ical architecture, notation cpgaEA, and an abstract one, pgaEA:

cpgaEA(P, default :R0, f1:R1, ..., fn:Rn) =

∂H([[P]] ‖ ρserv 7→default([[R0]]) ‖ ρserv 7→f1([[R1]]) ‖ ... ‖ ρserv 7→fn([[Rn]]))

with encapsulation setH = {ri, si | i = default , f1, ..., fn}. Here, the encapsula-
tion enforces communication between the different parallel components. Further-
more, the renaming operatorρserv 7→f renames the channel nameserv to f .

Furthermore,

pgaEA(P, default :R0, f1:R1, ..., fn:Rn) =

τI(cpgaEA(P, default :R0, f1:R1, ..., fn:Rn))

with abstraction setI = {t, cdefault , cf1 , ..., cfn}: all actions in setI are renamed to
τ , the silent step that satisfies the axiomxτ = x. In common process semantics,
τ ∗δ = τδ (cf. [9]).

13

Now cpgaEA(P, default :R0, f1:R1, ..., fn:Rn) and its pgaEA-variant are computable
if P and allRj are.

A reactorR is called astate machineif R has only actionsrserv(a), sserv(true) and
sserv(false), i.e., no external events, only update of its memory state and computa-
tion of boolean output. Based on [10] (describing the interaction between a program
or behavior and a state machine), we can prove the following result:

Theorem 3 LetR = R0, R1, ..., Rk, Rk+1, ..., Rn withRk+1, ..., Rn state machines.
Then pgaEA(P, fi:Ri) = pgaEA(P/fk+1

Rk+1.../fnRn, R0, ...Rk).

3.4 Synthetic Architectures for Binaries

In this section we try to clarify the role of programs in machines. A binary is just a
finite {0, 1}-sequence (i.e., a binary file). Consider the following SynArch:

Machine p loader

This SynArch displays a machineMachine containing binaryp as a part. It has a
special port namedloaderused to enterp in Machine bitwise.

Assuming thatMachine is a classical piece of computing machinery, a specification
[[M(p)]] for the behavior ofp will be a computable process (see [8]).Machine can
be specified as follows:

[[Machine]] = Mloading(ε),

Mloading(σ) = rloader(0) ·Mloading(σ0) +

rloader(1) ·Mloading(σ1) +

rloader(eof) · [[M(p)]]

with eofan end-of-file marker.

It is reasonable to expect that[[M(p)]] depends uniformly (in the sense of com-
putability theory, see e.g., [15]) onp. Then, also[[Machine]] itself is a computable
process:

Theorem 4 The process[[Machine]] can be denoted modulo branching bisimula-
tion equivalence in ACP extended withτ , ∗, $, and finitely many auxiliary actions.

This result is proven in detail in [8]. The operation$ (called push-down) is defined
by x$y = x(x$y)(x$y) + y, the onlyτ -law used isxτ = x.

14

For appropriate encapsulation setH and abstraction setI, we find:

τ · [[M(p)]] = τI ◦ ∂H(S(p) ‖ [[Machine]])

whereS(p) = sloader(p0) · ... · sloader(pn) · sloader(eof).

Let pgla:fmn2bin4m (wherebin4m abbreviates “binaries forMachine”) be a
mapping from PGLA:FMN to bit sequences. Thenpgla:fmn2bin4m is a code
generator mapping if the following holds for allX ∈ PGLA:FMN:

pgaEA(|X|pgla:fmn, fi:Ri) = [[M(pgla:fmn2bin4m (X))]].

That is: the analytic architecture pgaEA (with its set of reactors)explains(i.e.,
corresponds to) the synthetic architecture SynArchM . In practice one is happy if
this works for allX with a size of less thank Mb (for somek).

The following jargon is useful:

(1) PGLA:FMN - middle code or intermediate code.
(2) A machine (program) producingpgla:fmn2bin4m (X) from X is a code

generator (or compiler back end) forMachine.
(3) The concept of a ‘machine code’ can not be defined here: clearly, somep are

more useful than otherp’s. But there is no obvious criterion regarding[[M(p)]]
to select the binaries forMachine from arbitrary bit sequences.

(4) A higher program notation, say PGLX, can be understood if a projection

pglx2pgla:fmn

to PGLA is known and a pgaEA such that

[[X]]
def
= pgaEA(|pglx2pgla:fmn (X)|pgla:fmn, fi:Ri)

corresponds to the intended meaning of programX. A compiler is a system
(or a program for a system) that allows to computepglx2pgla:fmn (or an
optimized version of it that produces semantically equivalent behavior).

For a PGLX-expressionX, we then find

[[X]] = [[M(pgla:fmn2bin4m (pglx2pgla:fmn (X)))]]

and it is common practice to callpgla:fmn2bin4m (pglx2pgla:fmn (X)) a
program.

15

This is one of the possible justifications for the qualification of a binary that is
part of a SynArch as a program. To fix the nature of this qualification, its kind is
qualified as follows:

Code generator mapping range criterion: a binaryp is a program if it is in the
range of a code generator mapping (in a setting that explains the behavior of
M(p) via an AnArch).

The qualification ofp as a program via the code generator projection mapping
criterion seems to be at odds with the basis of PGA because PGA starts from
the assumption thata program is a sequence of instructions(see [6]). However,
if pgla:fmn2bin4m is computable, it has a semi-computable inverse, say

bin4m2pgla:fmn

andp qualifies as a program because of the projection semantics:

|p|bin:m = |bin4m2pgla:fmn (p)|pgla:fmn.

Of course, it is immaterial thatpgla:fmn2bin4m is takento be an inverse of
pgla:fmn2bin4m . What matters is: for all (or as many as one cares)p,

[[M(p)]]
def
= pgaEA(|bin4m2pgla:fmn (p)|pgla:fmn, fi:Ri)

(= [[M(pgla:fmn2bin4m (bin4m2pgla:fmn (p)))]]).

Thus, the code generator mapping criterion is consistent with the PGA-criterion for
being a program.

Note 2
1. Having a far more detailed SynArch at hand withp as a part, one may find other justifi-
cations for qualifyingp as a program. However, we failed to develop such a story with any
form of acceptable generality.

2. The projectionbin4m2pgla:fmn may be called a disassembler-projection (ignoring
the complexity of loading). Then, if the qualification ofp as a program inM(p) is justified
by means of the code generator mapping criterion, a disassembler-projection semantics of
p is (implicitly) known/given.

3. The justification of the qualification ofp in M(p) (p as a part of the SynArchM(p)) is
itself an argument of a certain form:qualification on the basis of a most plausible history.
(If we see an object when it is a dead body, of course we see it if it was a living individual of
some species that subsequently died. How else could the object have come into existence?
If we seep in Machine wherep = pgla:fmn2bin4m (X), that must be related top’s
history. How else would it have originated? I.e.,p is just another form or phase ofX, like
a dead body being another phase of a living body.)

16

4. The middle code exists at the instruction sequence level (in PGA:FMN or its machine
readable version PGLA:FMN). It is at the same timetarget code for projection semantics.
Given a SynArchM(...), its binaries are also calledobject code.

4 An Analytic Architecture for Turing Machines

In this section we consider an enhanced version of the Turing machine Tape, and a
PGA-based language for programming it. We prove the unsolvability of the halting
problem, and show that this problem becomes decidable if we restrict our language
sufficiently.

4.1 The Turing machine

The original reference to the Turing machine is [16]. A Turing machineM consists
of a finite control, a tape, often visualized in the following style:

b̂ b b ...

where b stands for “blank” (i.e., a blank square), and a head that can be used for
reading and writing on that tape. Usually, the tape has a left end, and extends indef-
initely to the right. The head can never fall off the tape (at the left side). The control
is such that it distinguishes a halting state, after which control is terminated and the
tape can be inspected for possible output. In a non-halting state, control prescribes
some action to be undertaken and the next control state. Actions are either: ”write
a symbol in the square” (where write a blank means “erase”), replacing the one
that was already there, or: move the head one tape square to the left (if possible) or
right.

Now theChurch-Turing thesisis the following principle (formulation taken from
[14, page 246]):

The Turing machine that halts on all inputs is a precise formal notion that cor-
responds to the naive notion of an “algorithm”.

Finally, thehalting problemHP is the question whether or not a Turing machineM
halts on input stringw.

17

4.2 Enhanced Turing Machine Tape

We consider an enhanced type of Turing Machine Tape (ETMT) over alphabet
{0, 1, ; }. TMT is seen as a reactor, and it is enhanced to ETMT to allow for more
powerful programming. A typical state of such a tape is

b ; ; 0 1̂ 0 1 1 0 ; 1 0 1 ; b

where the b stands forblank, the semi-colon serves as a separator, and theˆ is the
head position pointer. The leftmost b represents an indefinite number of blanks
to the left1 , and the rightmost b signifies that the tape indefinitely extends to the
right. As a consequence, the empty tape (containing only blanks) is represented by

b̂ b

A bit sequenceon a tape is a sequence of 0 or 1 occurrences of maximal length (so
at both ends neighboring either a semicolon or a blank).

We consider the following (service-)instructions:

test:0 write:0 mv:left mv:begin

test:1 write:1 mv:right dup

test:semicolonwrite:semicolon

test: b write: b

with

test:0 (or 1, semicolon, b) checks whether the head position points to a0 (or the
other symbol indicated) and returns the appropriate reply (true or false).

write:0 (or 1,semicolon) writes the appropriate symbol at head position and returns
true.

write: b only works if to the left or the right there is a b already (and returnstrue),
otherwise nothing changes andfalse is returned.

mv:left fails if head is at b and to the left there is a b as well, in this case it returns
false and nothing happens; otherwise the head position pointer moves to the left.

mv:right works similar.
mv:begin places the head at the left blank and returnstrue.
dup duplicates the leftmost bit sequence if any exists, and puts the result next to it

separated by a semicolon. Furthermore, the head position pointer moves to the

1 This does not increase the computational power of a Turing Machine (see e.g., [14]).

18

left blank. Returnstrue if actual duplication has taken place, andfalse otherwise.
Examples:

b̂ b
dup−−−→ b̂ b (returnsfalse),

b ; ; 0 b̂
dup−−−→ b̂ ; ; 0 ; 0 b (returnstrue),

b 0 1 ; 1 0̂ 1 ; b
dup−−−→ b̂ 0 1 ; 0 1 ; 1 0 1 ; b (returnstrue).

The initial configuration of ETMT is

b̂ b

written as ETMT(b̂ b), and the configuration that contains sequenceσ = w0...wk

with the head at the leftmost blank, i.e.,

b̂ w0 ... wk b

is denoted by ETMT(b̂σ b).

4.3 Programming the Turing Machine

PGLC is the language based on PGA that contains only basic instructions, test
instructions and forward and backward jumps. Termination is modeled implicitly
in PGLC: a program terminates after the last instruction has been executed and that
instruction was no jump into the program, or after a jump outside the program. The
sublanguage PGLCi restricts to programs that can safely be concatenated: a forward
jump may not exceed the number of subsequent instructions with more than 1 and a
backward jump may not exceed the number of preceding instructions, and programs
may not end with a test instruction. So+a; #1 ∈ PGLCi, but+a; #5; b 6∈ PGLCi.
Note that behavior extraction on PGLCi is defined by that on PGLC, and that each
PGLC-program can be transformed into a behaviorally equivalent PGLCi-program
(e.g.,|+a; #5; b|pglc = |+a; #2; b|pglc). So the point of PGLCi is that concatenation
of programs yields the expected behavior, e.g.,|+a; #2; b; c|pglc = c◦S�a�b◦c◦S,
while |+a; #5; b; c|pglc = S � a � b ◦ c ◦ S.

We consider the language PGLCi:FMN, where the only focus used will beetmt
and the basic instructions are those mentioned above for the ETMT. A program
in PGLCi:FMN is an ASCII character sequence (see, e.g., [1]), and therefore a
sequence of bits. As an example, the charactera has 97 as its decimal code, which

19

is as a byte (sequence of 8 bits) 01100001. The character “;” has 59 as its decimal
code, which is as a byte 00111011.

We consider execution of Turing machine programs in an AnArch. For example,

pgaEA(|etmt.dup; etmt.mv:right|pglc:fmn, etmt:ETMT(b01; 1̂01; b))

↓ τ

pgaEA(|etmt.mv:right|pglc:fmn, etmt:ETMT(b̂01; 01; 101; b))

↓ τ

√
with ETMT’s configuration: ETMT(b 0̂1; 01; 101; b)

where each of theτ -steps (τ−→) comes from two (abstracted) communications be-
tween the current program-fragment[[|...|pglc:fmn]] and the ETMT.

4.4 The Halting Problem

TheHalting Problem(HP) can in this setting be modeled as follows: a PGLCi:FMN
programp halts on the ETMT with initial configuration̂bw b (w a bit sequence),
notation(p, w) ∈ HP, if

pgaEA(|p|pglc:fmn, etmt:ETMT(b̂w b)) = τ,

as opposed toτ ∗δ (= τδ). After halting (possibly by external means), the tape can
be inspected to obtain an output.

Solving the halting problem: we stipulate that programq ∈ PGLCi:FMN solves the
question whether(p, w) ∈ HP in the following way:

pgaEA(|q|pglc:fmn, etmt:ETMT(b̂p; w b))

wherep is stored as a bit sequence always halts, and after halting, the tape config-
uration is of the form

ETMT(b̂0σ b) if pgaEA(|p|pglc:fmn, etmt:ETMT(b̂w b)) halts, thus(p, w) ∈ HP,

ETMT(b̂1ρ b) if pgaEA(|p|pglc:fmn, etmt:ETMT(b̂w b)) halts not, i.e.(p, w) 6∈ HP,

for some stringσ or ρ.

20

Theorem 5 The halting problem is unsolvable by means of any program in
PGLCi:FMN.

Proof. Suppose the contrary, i.e., a programq ∈ PGLCi:FMN exists that solves
HP. Consider the following program:

s = etmt.dup; q; r

with r = etmt.mv:right;−etmt.test:1; #0; etmt.mv:begin, and the question(s, s)
?
∈

HP. We show below that both assumptions(s, s) ∈ HP and(s, s) 6∈ HP lead to a
contradiction. Hence,s cannot exist, and thusq cannot exist.

First, assume that(s, s) ∈ HP. Then

pgaEA(|s|pglc:fmn, etmt:ETMT(b̂s b))

↓ τ (etmt.dup)

pgaEA(|q; r|pglc:fmn, etmt:ETMT(b̂s; s b)).

Becauseq ∈ PGLCi:FMN, the programq; r first executesq (which terminates
successfully by assumption) and then starts with the first instruction ofr. Thus,

pgaEA(|q; r|pglc:fmn, etmt:ETMT(b̂s; s b))

↓ τ (by programq)

pgaEA(|r|pglc:fmn, etmt:ETMT(b̂0σ b))

for some stringσ. The remaining behavior is displayed in Fig. 1, and results in
pgaEA(|#0; etmt.mv:begin|pglc:fmn, etmt:ETMT(b 0̂σ b)). This last AnArch clearly
represents divergence because of the first instruction#0, and therefore(s, s) 6∈ HP.
Contradiction.

Now assume that(s, s) 6∈ HP. The resulting behavior is displayed in Fig. 2 (for
some stringρ). Here the last configuration represents halting, and therefore(s, s) ∈
HP and again a contradiction occurs.

So our supposition was definitely wrong, i.e., there is no programq ∈ PGLCi:FMN
that solves the halting problem. 2

21

pgaEA(|r|pglc:fmn, etmt:ETMT(b̂0σ b))

=

pgaEA(|etmt.mv:right;−etmt.test:1;#0; etmt.mv:begin|pglc:fmn, etmt:ETMT(b̂0σ b))

↓ τ (etmt.mv:right)

pgaEA(|−etmt.test:1;#0; etmt.mv:begin|pglc:fmn, etmt:ETMT(b 0̂σ b))

↓ τ (−etmt.test:1)

pgaEA(|#0; etmt.mv:begin|pglc:fmn, etmt:ETMT(b 0̂σ b)).

Fig. 1. Last part of the behavior in the case that(s, s) ∈ HP in the proof of Thm. 5

pgaEA(|s|pglc:fmn, etmt:ETMT(b̂s b))

↓ τ (etmt.dup)

pgaEA(|q; r|pglc:fmn, etmt:ETMT(b̂s; s b))

↓ τ (by programq)

pgaEA(|r|pglc:fmn, etmt:ETMT(b̂1ρ b))

=

pgaEA(|etmt.mv:right;−etmt.test:1;#0; etmt.mv:begin|pglc:fmn, etmt:ETMT(b̂1ρ b))

↓ τ (etmt.mv:right)

pgaEA(|−etmt.test:1;#0; etmt.mv:begin|pglc:fmn, etmt:ETMT(b 1̂ρ b))

↓ τ (−etmt.test:1)

pgaEA(|etmt.mv:begin|pglc:fmn, etmt:ETMT(b 1̂ρ b))

↓ τ (etmt.mv:begin)

√
with ETMT’s configuration:etmt:ETMT(b̂1ρ b).

Fig. 2. The case that(s, s) 6∈ HP in the proof of Thm. 5

It is an easy but boring task to programmv:beginanddup in terms of the other
instructions, thus obtaining a stronger proof.

Note 3 Namely:mv:beginis simply programmed by+mv:left; \#1. Programming the in-
structiondup is slightly more complex, it can for instance be programmed in the following

22

style:
1. Initialization: a program fragmentInit that adds two extra semicolons and sets the head
pointer to the leftmost bit, followed by
2. Loop: repeatedly copy all bits of the sequence, followed by
3. Exit: remove redundant semicolon and set head pointer (mv:begin).
We sketch these three program fragments, all of which can be easily programmed with the
primitives.

1. Initialize the tape configuration if it contains a bit sequence by adding two semicolons:
one following the end of the bit sequence, and one following the leftmost bit, after which
the head points at the leftmost bit, e.g.,

b ; ; 1001σ
Init−−−→b ; ; 1̂; 001; σ

whereσ is either a blank, or starts with a semicolon. In case there is no bit sequence, the
procedure ends here.

2. Copying can for instance be done with the following two program fragments:
2.1. One, saywrite:(2, x), that writes bit-valuex after all bits following the second semi-
colon from head position, and puts the head just left of the first semicolon following the
leftmost bit, e.g.,

b ; ; 1̂; 001; σ
write:(2,1)−−−−−−−−→b ; ; 1̂; 001; 1σ

b ; ; 10̂; 01; 1σ
write:(2,0)−−−−−−−−→b ; ; 10̂; 01; 10σ

It is not hard to programwrite:(2, 0) andwrite:(2, 1) in terms of the other primitive instruc-
tions.
2.2. Another program fragment, sayexchange, that changes the pattern̂x; y into xŷ; and
terminates ify is a semicolon, e.g.,

b ; ; 1̂; 001; 1σ
exchange−−−−−−−→b ; ; 10̂; 01; 1σ

Also this program fragment is easy to program with the primitive instructions.
Now repeatedly performwrite:(2, x); exchangefor the appropriate value ofx. The loop
ends if the leftmost bit sequence is copied, separating the copy with a semicolon, e.g.,

b ; ; 1001̂; ; 1001σ
exchange−−−−−−−→b ; ; 1001̂;; 1001σ

3. Exit: remove the semicolon at head position and then executemv:begin. This completes
the duplication.

As a theorem, the above one (Theorem 5) suffices. From that point of view there is
nothing special about the (E)TMT or any of its versions. What we see is that:

(1) For a close relative of the TMT an impossibility result is obtained.
(2) Increasing the instruction set of the ETMT to a ‘super’ ETMT does not help.

The proof goes exactly the same. Computability of these instructions is im-
material. What matters is that the halting problem (HP) is posed about all
programs over the instruction set that may be used to program its solution.

23

(3) The Church-Turing thesis is not used because the result is phrased about
PGLCi:FMN programs, and not about ‘algorithms’ or ‘computable methods’.
Nevertheless, if it is considered convincing that an effective method can be
performed by a certain Turing machine, then it is also obvious that it can be
programmed in PGLCi:FMN:
• finite control can be modeled in the program;
• additional instructions only strengthen the expressive power.

This situation changes if we restrict PGLCi:FMN. Note that in our proof we only
use the instructionsdup, test:1, mv:right andmv:begin. Now if we consider these
as theonlyprimitive instructions, it is quite clear that the halting problem becomes
decidable: call the resulting language PGLCi:FMN−.

Theorem 6 With the languagePGLCi:FMN−, the halting problem is decidable.

Proof. If the tape contains no sequence of bits, each occurrence ofdup can be
replaced bymv:beginand the tape remains a fixed and finite structure. Execution
now either yields a cyclic pattern or stops at#0 or a terminating jump. As there
are finitely many combinations of current instruction and head position, halting is
decidable.

In the other case, consider some tape configuration that contains a bit sequence
andX ∈ PGLCi:FMN−. TransformX to a canonical form. If this contains no
repetition, we are done, otherwise we obtain a programU ; (V)ω with U and V
containing no repetition. Halting onU is decidable: either one of the decisive in-
structions! or #0 is to be executed, or execution enters the repeating partV ω. So,
we further consider pgaEA(|W ω|, ETMT(bσx̂ρ b)) for some cyclic permutation
W of V and some tape configuration. Now, eitherdupoccurs at a reachable posi-
tion in W ω, or not (can be decided from|W ω|). In the last case, the tape remains
a fixed and finite structure, and iteratingW yields a regular behavior, so halting
is again decidable. In the other case, the number ofmv:right-instructions inW ,
sayN , limits the number of positions that the head can shift to the right. Consider
pgaEA(|WN ; W ω|, ETMT(bσx̂ρ b)). Either halting can be decided onWN , or
the repeating part is entered, sayXω (X again some cyclic permutation ofW). We
may replace alldup-instructions inXω by mv:beginbecause any further duplication
yields an unreachable part at the right end of the tape. So, this case is reduced to
the previous one, and halting is again decidable. 2

Our objective is to position Turing’s impossibility result regarding the assessment
of halting properties of program execution as a result about programs rather than
machines. The mere requirement that programs of a certain form can decide the
halting behavior of all programs of that form leads to a contradiction.

24

This contradiction can be found in the case of programs for a Turing machine tape
(TMT). The argument is significantly simplified if an extended command set for
a Turing machine tape is used (ETMT). But then the program notation may be
reduced to those features (commands) actually playing a role in the argument and
the impossibility result remains but now in a setting where the underlying halting
problem is in fact decidable.

We conclude that as a methodological fact about computer programming, the unde-
cidability of the halting problem is an impossibility result which is quite indepen-
dent of the computational power of the machine models to which it can be applied.

5 Forecasting Reactors and Rational Agents

The halting problem can be investigated without the use of TMT’s as a problem
regarding the potential capabilities of a reactor serving as a computation forecasting
device. In this section we show that restricting totrue andfalse is problematic and
introduce a third truth-value. Furthermore, we combine forecasters with ‘rational
agents’, and provide a modeling of the Newcomb paradox. Finally, we model the
Prisoner’s Dilemma as an analytic architecture.

5.1 Forecasting Reactors

Forecasting is not an obvious concept, the idea that it is to be done by means of a
machine even less. We will provide a ‘clean’ intended interpretation of forecasting
and investigate its fate in the context of pgaEA. The use of an AnArch is justified
because this story is meant at a conceptual level and is not part of any technical
design.

In the previous section it was shown that restricting totrue andfalse is problematic.
Therefore we now consider the case that the evaluation of test instructions may
yield not onlytrue or false, but also the valueM (meaningless):

|+a; X| =


a ◦ |#1; X| if a’s execution returnstrue,

a ◦ |#2; X| if a’s execution returnsfalse,

a ◦ |#3; X| if a’s execution returnsM ,

25

and

|−a; X| =


a ◦ |#2; X| if a’s execution returnstrue,

a ◦ |#1; X| if a’s execution returnsfalse,

a ◦ |#3; X| if a’s execution returnsM .

More information on many-valued logics usingtrue, false andM can be found in
[4,7].

We will use fcu as the focus pointing to a forecasting unit FCU in the following
way: fcu.Q will ask the forecaster to reply about its opinion regarding the question
Q. At this point the precise phrasing of the requirement on the FCU is essential. In
pgaEA(|fcu.Q; X|, fcu:FCU, fi:Ri) one expects FCU to replytrue if Q is valid as
an assertion on pgaEA(|X|, fcu:FCU, fi:Ri), notation

pgaEA(|X|, fcu:FCU, fi:Ri) satQ.

More precisely, in

pgaEA(|+fcu.Q; u; X|, fcu:FCU, fi:Ri)

we expect that

• true is returned if pgaEA(|u; X|, fcu:FCU, fi:Ri) satQ,
• false is returned if pgaEA(|X|, fcu:FCU, fi:Ri) 6satQ,
• M is returned otherwise.

Moreover, in case that bothtrue andfalse could be returned, preference is given to
returningtrue.

ConsiderQ = halting: when pgaEA(|X|, fcu:FCU, fi:Ri) sathalting it will hold
along all execution traces (irrespective of any context) thatX halts. Then, if a re-
actor can engage in external communications, the possibility that it will must be
taken into account. Moreover, we cannot exclude the possibility that a reactor falls
into inaction as a result of such an external communication. Therefore we assume
the absence of reactors apart from FCU, and investigate to what extent FCU can be
made to provide a useful forecast regarding thehalting-question.

Theorem 7 A forecasting reactorFCU needs the third truth valueM .

Proof. Consider

pgaEA(|+fcu.halting; #0; !; !|, fcu:FCU).

26

If true is replied then pgaEA(|#0; !; !|, fcu:FCU) sathalting which is not true; if
false is replied then pgaEA(|!; !|, fcu:FCU) 6sathaltingwhich is also not true. Thus
M should be replied, and

pgaEA(|+fcu.halting; #0; !; !|, fcu:FCU)
τ−→ pgaEA(|!|, fcu:FCU)

(which will halt by the way). 2

We notice that the FCU may use whatever inspection of other parts of pgaEA(...).
However, it cannot correctly forecast the question with eithertrue or false. Never-
theless, a lot is possible, e.g.:

pgaEA(|+fcu.halting; !; #0|, fcu:FCU)

generates replytrue,

pgaEA(|+fcu.halting; #0; #0|, fcu:FCU)

generates replyfalse.

Theorem 8 A best possibleFCU for halting can be given forPGA:FMN with
fcu.halting as its only basic instruction.

Proof. Let X true be obtained fromX by replacing each occurrence offcu.halting
by fcu.true, the test that always yieldstrue, and letX false be defined similarly (re-
placement byfcu.false). We assume that FCU is deterministic. Consider

pgaEA(|+fcu.halting; u; X|, fcu:FCU).

(1) In the case that pgaEA(|utrue; X true|, fcu:FCU) sathalting, we may define that
+fcu.halting returnstrue, and as a consequence

pgaEA(|+fcu.halting; u; X|, fcu:FCU) sathalting.

(2) In the case that pgaEA(|X false|, fcu:FCU) 6sathalting, we may define that
+fcu.halting returnsfalse, and as a consequence

pgaEA(|+fcu.halting; u; X|, fcu:FCU) 6sathalting.

(3) If none of the cases above applies,+fcu.haltinggenerates replyM .

27

E.g., pgaEA(|+fcu.halting; #0; !; !|, fcu:FCU) will return M though it is going to
be halting: by returningM it moves to an instruction from where halting is guaran-
teed indeed, while replyingfalse would not produce a consistent answer.

It is easy to see that if this definition of replies given by FCU returnsM , it cannot
be replaced by eithertrue or false. So, FCU is optimal. 2

So, a halting forecaster can be built, but it cannot always provide a useful reply.
On PGA one can decide whether a useful reply can be given. Given the fact that
all practical computing takes place on finite state machines for which PGA is of
course sufficient, we conclude this:

(1) All practical instances ofhaltingare decidable, given a pgaEA(P, fi:Ri) with
all Ri finite state.

(2) Nevertheless, a halting forecaster cannot work in a flawless fashion, though it
can be ‘optimal’ (i.e., minimizing outputM).

If all Ri’s are finite state in pgaEA(P, fi:Ri) sathalting (which is always the case
‘in practice’), we find that for a particular AnArch fixing theRi’s the halting prob-
lem will be decidable, especially if the AnArch is tailored to fit the constraints of
some realistic SynArch.

Of course, one can investigate forecastingreactors. Then the question is: what im-
possibility will one encounter when working in a finite setting? The obvious unde-
cidability result critically depends on one of the reactors being infinite state.

5.2 Reactors Formalizing Rational Agents

We consider a ‘rational agent’RA with focus ra. The rational agent intends to
achieve an objective and acts accordingly. Here is a simple example:

X
ra ↙ ↘ out

RA Out

whereOut has five states0, 1, 2, 3, 4 and initially is in state0. There are four in-
structionss1, ..., s4 which all succeed in each state ofOut, with si leavingOut in
statei for i ∈ {1, 2, 3, 4}.

The PGLA:FMN-programX is as follows:

+ra.get ; #3; out .s2; !; out .s1; !

28

In terms of behavior,|X| can be visualized as follows:

〈ra.get〉
true ↙ ↘ false

[out .s1] [out .s2]
↓ ↓
S S

Now the task ofRAis to make the system terminate with a maximal content ofOut.
RAis aware of the contents of programX. In this case, it is clear that the replyfalse
is optimal.

For a second example we add a decision agentDecsuch thatRAcannot know which
decisionDec takes. The focus forDec is dec. The instructiondec.setasksDec to
take a decision, which it will keep forever, and allows inspection viadec.get. An
inspection not preceded by adec.setreturnsM .

X
dec ↙ ↓ ra ↘ out

Dec RA Out

The model forDec in concrete process algebra is:

[[Dec]] = r(set)(t · [[Dectrue]] + t · [[Decfalse]]),

[[Dectrue]] = (s(true)r(get))∗δ,

[[Decfalse]] = (s(false)r(get))∗δ.

We consider the following PGLA:FMN-programX ′ (for readability, some com-
ments are added in the margin):

X ′ = dec.set; +dec.get; #2; #7;

+ra.get ; #3; out .s2; !; out .s1; !;

+ra.get ; #3; out .s3; !; out .s4; !

(executed ifdec.getreturnstrue)

(otherwise),

29

or in terms of behavior: [dec.set]
↓

〈dec.get〉
true ↙ ↘ false

〈ra.get〉 〈ra.get〉
true ↙ ↘ false

[out .s1] [out .s2]
true ↙ ↘ false

[out .s4] [out .s3]
↓ ↓ ↓ ↓
S S S S

Now both repliestrue, false are not optimal. IfRArepliestrue, this leads to 1 after
a positive decision ofDec(andfalse would have given 2), whilefalse is not optimal
after a negative decision ofDec(giving 3 rather than 4). Therefore it is plausible to
returnM , but that yields no maximum either (it leavesOut in state 0).

5.3 A Newcomb paradox system

In this section we consider the following program, a small modification of the last
program in the previous section:

X = dec.set;

+dec.get; #2; #7;

+ra.get ; #3; out .s4; !; out .s3; !;

+ra.get ; #3; out .s2; !; out .s1; !

with behavior [dec.set]
↓

〈dec.get〉
true ↙ ↘ false

〈ra.get〉 〈ra.get〉
true ↙ ↘ false

[out .s3] [out .s4]
true ↙ ↘ false

[out .s1] [out .s2]
↓ ↓ ↓ ↓
S S S S

Now, quite independently ofDec’s action, it is plausible thatRArepliesfalse as its
best reply. This answer is very robust and covers all possible/conceivable ways for
whichRAmight work.

For the next example we introduce the property of pgaEA’s that a reactor may be a
forecaster of another one:

pgaEAforecast :f>g(...)

30

is as pgaEA(...) but with the additional constraint that reactorf forecastsg. I.e., if
f.get returnstrue (false) then the nextg.get will reply true (false) as well.

Consider

pgaEAforecast :dec>ra(|X|, dec:Dec, ra:RA, out :Out).

Now if RAchooses to replytrue, Decmust have repliedtrue, yieldingOut in state
3, and ifRArepliesfalse, Decmust have repliedfalse and the yield is 2.

This is a version of Newcomb’s paradox, the original form of which has been made
famous by Gardner [13, Chapters 13, 14].2

The additional assumption of forecasting reverses the rational answer becoming
true (i.e., pick only box B2) instead offalse. But the argument forfalse was com-
pletely compelling, making use of case-based reasoning regarding uncertainty about
past events.

The Newcomb paradox then arises from the apparently illegal identification of the
two following execution environments:

pgaEA(|X|, dec:Dec, ra:RA, out :Out) and

pgaEAforecast :dec>ra(|X| , dec:Dec, ra:RA, out :Out).

In particular, the mistaken view that the second architecture somehow refines the
first one by merely providing additional information leads to a contradiction. Thus:
adding more information about the componentDec, the plausibility ofRA giving
the replyfalse in order to maximize the contents ofOut at program termination is
lost.

To formalize forecasting between reactors, we use a constant0 in process algebra
(see [2]):

x + 0 = x,

x · 0 = 0 providedx 6= δ,

0 · x = 0.

2 A short description based on this source: Given two boxes, B1 which contains $1000
and B2 which contains either nothing or a million dollars, you may pick either B2 or both.
However, at some time before the choice is made, an omniscient Being has predicted what
your decision will be and filled B2 with a million dollars if he expects you to take it, or
with nothing if he expects you to take both.

31

We writeFa>b>c(X) for the following modification of processX: from the firsta
onwards, replace allb’s by 0 until the first occurrence ofc. The operationFa>b>c is
axiomatized in Table 4.

Fa>b>c(e) = e,

F ′
a>b>c(e) = 0 if e = b,

F ′
a>b>c(e) = e otherwise,

Fa>b>c(δ) = δ,

F ′
a>b>c(δ) = δ,

Fa>b>c(x + y) = Fa>b>c(x) + Fa>b>c(y),

F ′
a>b>c(x + y) = F ′

a>b>c(x) + F ′
a>b>c(y),

Fa>b>c(e · x) = e · F ′
a>b>c(x) if e = a,

Fa>b>c(e · x) = e · Fa>b>c(x) otherwise,

F ′
a>b>c(e · x) = 0 if e = b,

F ′
a>b>c(e · x) = e · x if e = c,

F ′
a>b>c(e · x) = e · F ′

a>b>c(x) otherwise.
Table 4.
Axioms forFa>b>c, wherea, b, c, e are actions

Now forecasting can be formalized as follows:

cpgaEAforecast :dec>ra(|X|, dec:Dec, ra:RA, out :Out) =

Fcdec(true)>cra (false)>cdec(true)(

Fcdec(false)>cra (true)>cdec(false)(cpgaEA(|X|, dec:Dec, ra:RA, out :Out)))

pgaEAforecast :dec>ra(|X|, dec:Dec, ra:RA, out :Out) =

τI(cpgaEAforecast :dec>ra(|X|, dec:Dec, ra:RA, out :Out)) for appropriateI.

5.4 Prisoner’s Dilemma

A close relative of the above examples is the so-called prisoner’s dilemma, which
has become very well-known in game theory and economics.

Consider the following situation:

X
↓ ra1 ↓ ra2 ↓ out1 ↓ out2

RA1 RA2 Out1 Out2

Each rational agent has its own “out” and intends to maximize its own yield, irre-

32

spective of the other yield. We define the programX by

X = +ra1.get ; #2; #9;

+ra2.get ; #4; out1 .s1; out2 .s2; !; out1 .s3; out2 .s3; !;

+ra2.get ; #4; out1 .s2; out2 .s2; !; out1 .s2; out2 .s1; !

or, in a picture, by 〈ra1.get〉
true ↙ ↘ false

〈ra2.get〉 〈ra2.get〉
true ↙ ↘ false

[out1 .s3] [out1 .s1]
true ↙ ↘ false

[out1 .s2] [out1 .s2]
↓ ↓ ↓ ↓

[out2 .s3] [out2 .s2] [out2 .s1] [out2 .s2]
↓ ↓ ↓ ↓
S S S S

Now:

• if RA1 andRA2 both replytrue, both yield the value 3,
• if RA1 andRA2 both replyfalse, each gets the value 2,
• if one repliestrue and the otherfalse, the replyfalse gets 2 and the replytrue

yields 1.

As a consequence, in order to exclude the risk of yielding only 1 a sure strategy is
to choosefalse. But in order ot get 3, bothRA’s must trust one another and choose
true, at the same time taking the risk to get only 1. Unable to communicate theRA’s
may both go for certainty and replyfalse.

A common application of this is to assume that the replytrue complies with the law
andfalse opposes the law. If both comply with the law, both have significant advan-
tage. Complying with the law while others don’t is counterproductive, however.

References

[1] ASCII Table and Description.www.asciitable.com

[2] J.C.M. Baeten and J.A. Bergstra. Process algebra with a zero object. In: Proceedings
CONCUR’90, Amsterdam (J.C.M. Baeten and J.W. Klop, eds.),Lecture Notes in
Computer Science458:83–98, Springer-Verlag 1990.

[3] J.A. Bergstra, I. Bethke, and A. Ponse. Process algebra with iteration and nesting.
The Computer Journal, 37(4):243-258, 1994.

33

[4] J.A. Bergstra, I. Bethke, and P.H. Rodenburg. A propositional logic with 4 values: true,
false, divergent and meaningless.Journal of Applied Non-Classical Logics, 5:199-217,
1995.

[5] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication.
Information and Control, 60(1–3):109–137, 1984.

[6] J.A. Bergstra and M.E. Loots. Program algebra for sequential code.Journal of Logic
and Algebraic Programming, 51(2):125–156, 2002.

[7] J.A. Bergstra and A. Ponse. Bochvar-McCarthy logic and process algebra.Notre
Dame Journal of Formal Logic, 39(4):464-484, 1998.

[8] J.A. Bergstra and A. Ponse. Register-machine based processes.Journal of the ACM,
48(6):1207-1241, 2001.

[9] J.A. Bergstra and A. Ponse. Non-regular iterators in process algebra.Theoretical
Computer Science, 269 (1-2):203-229, 2001.

[10] J.A. Bergstra and A. Ponse. Combining programs and state machines.Journal of
Logic and Algebraic Programming, 51(2):175–192, 2002.

[11] J.A. Bergstra, A. Ponse, and S.A. Smolka, editors.Handbook of Process Algebra,
Elsevier Science, 2001.

[12] F. Cohen. Computer viruses - theory and experiments, 1984.http://vx.netlux.
org/lib/afc01.html .

[13] M. Gardner.Knotted Doughnuts and Other Mathematical Entertainments.New York:
W. H. Freeman, 1986.

[14] H.R. Lewis and C.H. Papadimitriou.Elements of the Theory of Computation. Prentice-
Hall, 1981.

[15] H. Rogers.Theory of Recursive Functions and Effective Computability. McGraw-Hill
Book Co., 1967.

[16] A. Turing. On computable numbers, with an application to the Entscheidungsproblem.
Proc. Lond. Math. Soc. Ser. 2, 42:230–265, 1937. Corrections:ibid 43:544–546, 1937.

34

