Modal Interpretations of Quantum Mechanics
and Relativity: A Reconsideration
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Two of the main interpretative problems in quantum mechanics are the so-
called measurement problem and the question of the compatibility of quan-
tum mechanics with relativity theory. Modal interpretations of quantum me-
chanics were designed to solve both of these problems. They are no-collapse
(typically) indeterministic interpretations of quantum mechanics that supple-
ment the orthodox state description of physical systems by a set of possessed

properties that is supposed to be rich enough to account for the classical-like
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behavior of macroscopic systems, but sufficiently restricted so as to avoid the
no-hidden-variables theorems. But, as recent no-go theorems suggest, cur-
rent modal interpretations are incompatible with relativity. In this paper, we
suggest a strategy for circumventing these theorems. We then show how this
strategy could naturally be integrated in a relational version of the modal in-
terpretation, where quantum-mechanical states assign relational rather than

intrinsic properties.

KEY WORDS: modal interpretations, relativity, Lorentz invariance, rela-

tional modal interpretation, relational properties.

1. INTRODUCTION

The measurement problem arises in orthodox, no-collapse quantum mechan-
ics from two features that account very successfully for the behavior of mi-
croscopic systems: The linear dynamics of quantum states (the Schrodinger
equation in the non-relativistic case) and the so-called ‘eigenstate-eigenvalue

link.” Microscopic systems may be in superposition states of position, mo-



mentum, energy, as well as various other physical observables. According
to the eigenstate-eigenvalue link, an observable of a system has a definite
value (one of its eigenvalues) just in case the system is in the corresponding
eigenstate of that observable. Accordingly, microscopic systems may be in a
state of indefinite position, momentum, energy or other physical quantities.
The measurement problem is that given the linear and unitary Schrodinger
dynamics, these indefinite quantities are also endemic in the macroscopic
realm. For example, during a z-spin measurement on a particle in a super-
position state of z-spin ‘up’ and z-spin ‘down’ the position of the apparatus’
pointer gets entangled with the indefinite z-spin of the particle, thus trans-
forming the pointer into a state of indefinite position, i.e. a superposition

" Since this indefiniteness is generic in

of pointing ‘up’ and pointing ‘down.
orthodox no-collapse quantum mechanics, measurements typically have no

definite outcomes.

The no-collapse ‘hidden-variables’ interpretations of quantum mechan-
ics provide a major strategy for addressing the measurement problem. They
postulate that the quantum-mechanical state description of systems is incom-

plete and supplement it with rules for assigning additional definite properties



over and above the ones picked out by the eigenstate-eigenvalue link. And
while the dynamics of quantum states of isolated systems is assumed to obey
linear and unitary equations of motion (the Schrédinger equation in the non-
relativistic case), and accordingly quantum states never ‘collapse’ systems in
superposition of properties may sometimes possess one of these properties.
Thus, for example, a pointer in a superposition of pointing to ‘up’ and point-
ing to ‘down’ may be in a definite state of pointing to either ‘up’ or ‘down.’
More generally, the idea is that the set of the additional definite properties
will be rich enough to account for the occurrence of definite macroscopic
events, including measurement outcomes, but sufficiently restricted so as to
avoid the no-hidden-variables theorems; and the dynamics of these properties

will reproduce the familiar classical-like behavior of macroscopic systems.

While various no-collapse hidden-variables interpretations of quantum
mechanics seem to provide a more or less satisfactory solution to the mea-
surement problem in the non-relativistic realm, the challenge is to show that
such theories could be compatible with relativity theory. In particular, the
challenge is to show that in such theories the dynamics of properties is funda-

mentally Lorentz invariant, i.e. satisfies the Lorentz transformations without



picking out any reference frame as preferred.

Modal interpretations of quantum mechanics were designed to solve the
measurement problem and to reconcile quantum mechanics with relativity.
They are no-collapse (typically) indeterministic interpretations that supple-
ment the orthodox quantum-mechanical state description of systems by a
set, of properties that is supposed to be rich enough to account for the oc-
currence of definite macroscopic events and their classical-like behavior, but
sufficiently restricted to escape all the known no-hidden-variables theorems.
(For reviews and analysis of modal interpretations, see Dieks and Vermaas("
and Dickson?, and references therein. For a brief review of the main prop-

erty assignments in current modal interpretations, see Sec. 2.)

But, current modal interpretations face two major problems. First, al-
though intended to solve the measurement problem, the mainstream modal
interpretations (which only assign properties in the Schmidt bases) fail to
explain how classical-like behavior of macroscopic systems arises from their
property assignment. In particular, it turns out that in certain situations

of environmentally induced decoherence, the property assignment of these



interpretations does not pick out the familiar classical-like properties.(®) Sec-
ond, no-go theorems by Dickson and Clifton(®), Arntzenius® and Myrvold®
suggest that all current modal interpretations are not genuinely relativistic.
Dickson and Clifton® demonstrate that if modal interpretations are to sat-
isfy a certain stability condition, namely the assumption that the possessed
properties of a ‘freely’ evolving system follow its unitary evolution, and some
other natural assumptions about the evolution of properties and their prob-
abilities, then the transition probabilities of future possessed properties of a
system given its current possessed properties will sometimes fail to be gen-
uinely Lorentz invariant. Arntzenius® argues that the stability assumption
is dispensable and the core of Dickson and Clifton’s no-go theorem concerns
the non-existence of a joint distribution yielding the single-time Born-like
probabilities for possessed properties as marginals." And Myrvold® pro-
vides a generalization of Arntzenius’s version of Dickson and Clifton’s no-go

theorem. Given these theorems, the common view is that modal interpreta-

! Here and henceforth, by “single-time Born-like probabilities” or in short “Born prob-
abilities,” we shall always mean single-time probabilities of properties (i.e. probabilities
that systems have properties at a certain time or state), computed according to a Born-
like rule (for more details, see Sec. 2 and 5.1). This is a generalization of the domain of

application of the Born rule from measured properties to all possessed properties.



tions of quantum mechanics are not genuinely relativistic.

In this paper, we consider the question of the compatibility of modal in-
terpretations with special relativity, focusing on Myrvold’s no-go theorem.
We suggest a strategy for circumventing this theorem, and then show how
it could naturally be integrated in a relational version of the modal inter-
pretation. In contrast to the mainstream modal interpretations, in which
the core-property assignment is of intrinsic properties, in this interpreta-
tion quantum states assign only relational properties. In Sec. 2, we briefly
present the core-property assignment of the current modal interpretations,
and in Sec. 3 we review Myrvold’s no-go theorem. In Sec. 4, we propose
a strategy for circumventing Myrvold’s theorem. In Sec. 5, we show how

this strategy can be integrated in a relational modal interpretation;? an in-

2 For other relational versions of the modal interpretation, see the perspectivalist modal
interpretations by Kochen(”) and Bene and Dieks(®). We believe that these versions of the
modal interpretation are also subjected to Myrvold’s no-go theorem, but for want of space
we are unable to discuss them in this paper. For other non-modal relational interpretations
of quantum mechanics, see Everett(® | Rovelli{*®11) and Saunders(!2:13), Again, for want

of space, we are unable to discuss the prospects of these interpretations with respect to



terpretation that also circumvents Dickson and Clifton’s and Arntzenius’s
theorems. Our strategy postulates that the values of physical quantities that
are commonly thought of as local, such as pointer positions, are not really
local. In Sec. 6 we argue that this type of nonlocality is unobservable and,
moreover, we explain how in spite of the relational nature of properties our

experience could be accounted for.

2. THE PROPERTY ASSIGNMENTS IN CURRENT MODAL

INTERPRETATIONS

Modal interpretations vary in their property assignment. There are three
main types of property assignments. In some modal interpretations, the

property assignment is based on the Schmidt biorthogonal-decomposition

(15—17

theorem. ) Let S; and S5 be systems associated with the Hilbert spaces

H5t and H2 respectively, and let

V) st = D cilai)s: | Bi)ss (1)

i

be the unique biorthogonal decomposition of the (quantum-mechanical) state

Myrvold’s theorem. For a short review of the relational quantum theories mentioned

above, see Laudisa and Rovelli(’®),



of S; + S,. Then, S; has a determinate value for each 4! observable with
eigenbasis {|;)} and S, has a determinate value for each 52 observable
with eigenbasis {|5;)}, and |c;|” give the single-time Born-like probabilities
for the possible values of these observables, which are typically interpreted
as long-run frequencies of these values. If some of the ¢; are degenerate,
the Schmidt biorthogonal decomposition is not unique, and the properties

assigned by the above rule are projections onto multi-dimensional subspaces.

In other modal interpretations, such as Vermaas and Dieks('®)

, the prop-
erty assignment for a system is based on its reduced state (obtained by partial

tracing). Let the reduced state of a system S be p, and let the unique spectral
resolution of p be

p=> NP, (2)

i

where P; are the eigenprojections of p. Then, the single-time Born-like
probability that S possesses a property represented by P; is \/\i|2 - dim(F).
This property assignment is (in a sense) a generalization of the Schmidt-
decomposition based property-assignment, as it could also be applied to

mixed states.



In both the Schmidt-decomposition and the spectral-resolution modal in-
terpretations, the set of definite physical quantities, i.e. observables with
definite values, generally varies over time. By contrast, in Bub’s modal

(19 the definite quantities of a system are always given by

interpretation
the non-zero projections of the system’s (quantum-mechanical) state onto
the eigenvectors of some particular preferred observables® (typically macro-
scopic observables). These preferred observables are distinguished from other

observables in that their behavior is stable under environmentally induced

decoherence.

The above property assignments may apply to any partition of the uni-
verse, or more precisely to any factorization of the Hilbert space of the
universe. But in some modal interpretations, the so-called atomic modal

s(21:22) ' the core-property assignment is confined to a preferred

interpretation
factorization; the factorization of the Hilbert space of the universe into the

Hilbert spaces of its atomic subsystems. And the properties of (compos-

ite) systems are inherited from the properties of their atomic subsystems.

3 In this sense, Bub’s modal interpretation is similar to Bohm’s pilot-wave theory(2%),

which stipulates that the position of systems in configuration space is always determinate.
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Though these versions of the modal interpretations are also subjected to the
existing no-go theorems for relativistic modal interpretations, in what follows

we shall focus on the non-atomic modal interpretations.

3. MYRVOLD’S NO-GO THEOREM FOR RELATIVISTIC

MODAL INTERPRETATIONS

Myrvold argues that all the property assignments above are incompatible
with special relativity, independently of their dynamics for possessed proper-
ties.() The main idea of the argument is the following. Myrvold presupposes
that if a modal interpretation is to be compatible with relativity, it must

satisfy the following condition (Ref. 6, p. 1783):

Relativistic Born Rule. Let q and r be any possible values of the observ-
ables )1 and R, respectively, and suppose that ()1 = ¢ and Ry = r
are local definite properties of the systems S; and Sy respectively. For
any spacelike hypersurface «, if the quantum-mechanical state of the

composite system S; + S on « is ¢(a), then the probability of Q; = ¢

11



and Ry = r on « is equal to Tr[ Py, (q)Pg,(r)¢(a)]; where Py, (¢) and
Pg,(r) are the projections onto the eigenspaces () = ¢ and Ry = 7,

respectively.

INSERT FIGURE 1 ABOUT HERE (attached in a separate file)

But, argues Myrvold, this condition is incompatible with all the above
property assignments. His reasoning is the following. Let « and S be two
hyperplanes of simultaneity in some reference frame (see Fig. 1 above). Let z;
be a small region on « in which S; is located, and let y; be a small region on
in which S; is located. Suppose that z; is spacelike separated from y, and x5
is spacelike separated from y;. Let v be a spacelike hypersurface containing
11 and x5 and let § be a spacelike hypersurface containing x; and y,. Let R;
and Ry, associated with the systems S; and Sy respectively, be observables
that have definite values on «, 3, v and § according to all the above property
assignments. This will be the case if R; and Ry are observables that have
definite values in Bub’s modal interpretation, and S7 and S, are coupled with

measuring devices A; and A,, which record the values of R; and Ry on «, f3,

12



v and 0, so that the states of S; 4+ Sy + A; + Ay on these hypersurfaces are:

lp(@)) = 1/2V3(IpiH) InH)lrat) [pet) = [piH) ) fra=) pa—=) — (3)
—|p1=)ri=)ra ) pet) = 3lpr=)|ri=) |2 =) p2—));

(B8)) = 1/V3(IprH)lr+)lra=)lpa=) + [pr=) [ri=) Ira+) [pa+) —  (4)
—|p1 ) riH) o) pat));

(1) = 1/V6(Ipr=) =) lre) [pat) + [p1=) =) re=) =) = (5)
—2|p1)[ri+)[r2=) p2—));

0(8)) = 1/V6(lpr+)[ri+)|r2=)p2=) + [pr=)|r1=)[r2=)p2=) = (6)

—=2[p1=)|r1—)|re+) [p2+));

where for each i, |r;+) and |r;—) are distinct eigenstates of the observable
R;, and |p;+) and |p;—) are distinct eigenstates of the pointer observable P;,
associated with the measuring device A;. As is easily seen, |o(5)), [¢(7))
and [p(d)) are obtained from |¢(a)) by applying the following Hadamard

transformations to the eigenstates of R; ® P;:
Ulrit)pit) = 1/V2(|pit) rit) + [pi=)|ri=)); (7)

Uilri=)lpi—) = 1/V2(|pit)|ri+) — [pi—)|ri—)).-

13



That is, [p(8)) = U1 ® Uslp(a)), (7)) = U1 ® Llp(a)) and |p(d)) =

I ® Us|p(v)); where I is the identity transformation.

Suppose further that the possession of a definite value of R; is a local
property of the system S;: It is the same on any two space-like hypersurfaces
that intersect the spacetime region in which S; is located. If the probabilities
of the possible values of R, and Ry are to satisfy the Relativistic Born Rule on
the hypersurfaces «, 3, v and 9, there must be a joint probability distribution,
Prob, over the values of Ry at x; and at y; and the values of R, at x5 and
at yo, which yields as marginals the (single-time) Born-like probabilities for
the values of R; and Ry on all the four hypersurfaces. That is, let R;(x;)
(R;(yi)) be the variable that corresponds to the value of the variable R; at
z; (Yi), Ri(z1) = a (Ri(y1) = a) be the proposition that the value of R,
at r1 (y1) is a, and Ro(zs) = b (R2(y2) = b) be the proposition that the
value of Ry at 2 (yo) is b, where a takes either the value 71+ or r;—, and b
takes either the value ro+ or ro—. Let also Pg, (R1(z1) = a), Pr,(Ra(z2) = b),
Pr, (R1(y1) = a) and Pg,(R2(y2) = b) be the projections onto the eigenspaces
Ri(z1) = a, Ro(x2) = b, Ri(y1) = a and Ry(y) = b, respectively. Finally,

let 7 and k£ each be a variable that takes either the value r;+ or r;—, and

14



7 and [ each be a variable that takes either the value ro+ or r9—. Then,
the probability distribution Prob must satisfy the following equalities for the

joint probabilities of the values of R; and Ry on «, 3, v and ¢:

Z Prob (Rl(ﬂfl) =a, RQ(.TQ) = b, Rl(yl) = k‘, Rz(yg) = l) = (8)

= Tr[Pg, (Ri(x1) = a)Pg,(Ry(z2) = b)p()];

Z Prob (R1($1) = i,Rg(l‘Q) = j, Rl(yl) = a, RQ(yg) = b) =

= Tr[Pg, (Ry(y1) = a) Pr,(Ra(y2) = b)0(B)];

Z Prob (Rl(.’El) = i,RQ(.Iz) = b, Rl(yl) = CL,RQ(yQ) = l) =

= Tr[Pg, (Ri(y1) = a) Pr,(Ra(z2) = b)e(7)];

> Prob (Ri(z1) = a, Ba(w2) = j, Ra(y1) = k, Ra(y2) = b) =

= Tr[Pg, (Ri(21) = a)Pg,(R2(y2) = b)¢(d)];

where, as before, |p(a)), |¢©(B)), |¢(7)) and |p(d)) are the states of S; +
So 4+ A1+ As on «, B, v and 9, respectively. If Prob existed, it would satisfy
certain Bell-type inequalities concerning the joint probabilities in (8). But
since some of these inequalities are violated by orthodox quantum mechanics

in the states (3)-(6), the Relativistic Born Rule fails.

15



Here is an example of such violation. Suppose that on @ R; and R, have
the values (714, 72+4). Since, by assumption, R; is a local property of Sy, it
must have the same value on the hypersurface §. Thus, it follows from the
Relativistic Born Rule that the probability that R; and R, have the values
(r1+,79—) on § is one. Since Ry is a local property of Sy, if Sy has the value
r9— on ¢, it will have the value ro— on 3 as well. And so the probability that
R, has the value ro— on 8 given that R; and R, have the values (ri+,r2+)
on « is one. A parallel argument leads to the conclusion that if R; and R,
have the values (r1+,72+) on «, the probability that R; will have the value
r1— on [ is also one. Accordingly, if R; and R, have the values (ri+,r2+)
on «, the probability that these quantities have the values (r1—,7,—) on
is one. But, by the Relativistic Born Rule, |¢(3)) assigns zero probability to
these values. Therefore, it is impossible to satisfy the Relativistic Born Rule

for the values of R; and R, on the hypersurfaces «, 3, v and §.

More generally, Myrvold’s argument is that in the property assignments of
current modal interpretations, the probabilities of local, possessed properties

cannot be given by Born-like probabilities along every foliation of spacetime

16



for any arbitrary initial quantum state. *

4. WAYS OUT

In response to Myrvold’s no-go theorem, one may object to the presupposi-
tion that the Relativistic Born Rule is a necessary condition for relativistic
modal interpretations. This presupposition seems to rely on the natural
assumption that the probabilities of possessed properties should invariably
be equal to the Born probabilities of these properties. But one may reject
this assumption and insist that only the probabilities of observed proper-
ties should be equal to the Born probabilities on all spacelike hypersurfaces.
The challenge is then to develop a relativistic dynamics that will violate
the Relativistic Born Rule yet reproduce (at least approximately) the Born
probabilities for observed properties, so that the empirical predictions for
such properties will (in effect) be indistinguishable from the corresponding

predictions of orthodox quantum mechanics.

4 The scope of Myrvold’s theorem is not limited only to current modal interpretations.
It may also be applicable to other no-collapse theories that admit local properties of the

type discussed above.
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In what follows, we shall focus on a different strategy for circumventing
Myrvold’s theorem, which involves a violation of some of the theorem’s other
premises. Recall that the theorem applies to local properties. It demonstrates
that if the property assignments of current modal interpretations were to be
compatible with relativity, the joint distribution of such properties would be
constrained by Bell-type inequalities, and accordingly would deviate from the
quantum-mechanical statistics. More particularly, the theorem demonstrates
that the joint probabilities of the values of R; and R, on the hypersurfaces a,
B, v and 0 will satisfy certain Bell-type inequalities if the following conditions

obtain:

(i) Locality. The value of an observable R; is the same on any two hyper-

surfaces that intersect z; (y;).

(ii) Joint Probability. The values of R; and R, have definite joint prob-

abilities on the hypersurfaces «a, 3, v and 4.

But, granted the Relativistic Born Rule, these inequalities are violated in the

states (), [¢(B)), ¢(7)) and |p(6)) in (3)-(6).

18



This suggests that Myrvold’s theorem will not be applicable to modal
interpretations that satisfy the Relativistic Born Rule but violate Locality or
Joint Probability in the set up of Myrvold’s theorem. In the next section, we
shall sketch an outline of a modal interpretation that violates both Locality
and Joint Probability. In contrast to current modal interpretations, in this
interpretation quantum-mechanical states assign only relational properties:
Properties of systems are assigned only relative to other systems. Formally,
one may modify the current non-relational modal interpretations, so as to
yield a dynamics that violates Locality. But, in the context of these theories
such modification would be rather ad hoc. By contrast, as we shall see below,
the relational modal interpretation provides a natural ontological framework

for the violation of these conditions.

The relational modal interpretation also solves other problems of current
modal interpretations. First, a number of these interpretations violate the
following conditions about the relation between the properties of composite

systems and the properties of their subsystems:

Let H' and H? be the Hilbert spaces of the systems S; and Ss,

19



respectively. Let ; be an observable that pertains to #! and ¢
be one of its values, let Pg, (¢) be a projection onto the eigenspace

Q1 = ¢, and let I, be the identity operator for H2. Then:

Property Composition. If S; has the property (associated with)
Py, (q), then Sy + Sy has the property (associated with) Pg, (¢) ®

Is.

Property Decomposition. If S; + Sy has the property (associated

with) Pg,(¢) ® I, then S; has the property (associated with)

PQl (Q)

The violation of these conditions is inexplicable in non-relational modal in-
terpretations. Yet, as we shall see in Sec. 5.1, it is naturally explained in

the relational modal interpretation.

5 Two comments: (i) The perspectivalist modal interpretations of Kochen”) and Bene
and Dieks®) are exceptions. (ii) The violation of Property Composition and Property
Decomposition is the main motivation for developing the atomic modal interpretations,

where these conditions are satisfied by construction.

20



Second, the Schmidt-decomposition and the spectral-resolution modal in-
terpretations (see Sec. 2) fail to recover our experience in certain decoherence
situations, and accordingly fall short of providing a satisfactory solution to

23)

the measurement problem. In Berkovitz and Hemmo®®, we argue that this

problem does not arise in the relational modal interpretation.

Third, all current modal interpretations face the challenge of explaining
why properties are assigned only in preferred bases (e.g. the Schmidt bases
in the Schmidt-decomposition and the Spectral-resolution modal interpreta-
tions). As we shall see in the next section, the relational modal interpretation

postulates no preferred basis: Properties are assigned in all bases.

5. AN OUTLINE OF A RELATIONAL MODAL INTERPRETA-

TION

We now turn to present the relational modal interpretation. We start with
the property and probability assignments (Sec. 5.1), then turn to outline

the dynamics of probabilities (Sec. 5.2), and conclude by explaining how the

21



relational modal interpretation circumvents Myrvold’s no-go theorem (Sec.

5.3).

5.1. The property assignment

The general idea of the property assignment in the relational modal inter-
pretation is that one carves up the universe into two systems, S; and Syj,
and assigns properties to Sy relative to Sir according to Sy’s reduced state
(obtained by partial tracing of the state of S;+ Sty over the Hilbert space of
Srr). Each partition of the universe defines a context Sy; relative to which
a subset of S;’s relational properties is defined. There is no fundamental
partition of the universe that is somehow preferred. All partitions are on-
tologically on equal footing: Each partition picks out a subset of relational

properties.

In more detail: For any (normalized) quantum state of the universe, for
any partition of the universe into systems Sy and Sz, and for any orthonormal

basis for the Hilbert space associated with Sy, the range of the possible

22



properties of Sy relative to Sy; is given by S;’s reduced state. In any such
orthonormal basis, the range of S;’s possible properties relative to Syy is given
by the projections corresponding to the non-zero diagonal elements of S;’s
reduced state.® The properties that S; has relative to S;; are decomposable
into the properties that subsystems of S; have relative to S;;. That is, let
S* and S7* be any partition of Sy, let H! and H? be the Hilbert spaces
associated with SF and S}* respectively, let P be an H! observable and @ be
an H? observable, and let p and ¢ be values of P and Q respectively. If S;
has the property P = p and @ = ¢ relative to S, then S} (as a subsystem
of St) has the property P = p relative to S;; and S7* has (as a subsystem of

S) the property @) = ¢ relative to Syy.

Reduced states of systems do not only prescribe the range of the possible
relational properties of a system, they also prescribe the single-time proba-

bilities of these properties. The on-diagonal elements of the reduced state

6 Note that this means that in contrast to current modal interpretations, in the re-
lational modal interpretation the properties of S; are assigned in any resolution of the
reduced state of Sy, and not only in its spectral resolution! For more details about this

issue, see Berkovitz and Hemmo(23)

23



of Sr provide the single-time probabilities of the properties of S; (and its
subsystems) relative to Sry. Properties that are defined relative to the same
context, i.e. the same systems, have definite joint probabilities. For example,
if S7 and S7* is a partition of S, the properties that S} and S}* may have
relative to S;; have definite joint probabilities. On the other hand, properties
that are defined relative to different contexts are unrelated to each other and
accordingly have no definite joint probabilities. This is required in order to
avoid the no-hidden-variables theorems, such as Kochen and Specker’s(?%.
But it is also a direct consequence of the above property assignment. In
the relational modal interpretation, the single-time probabilities are given by
reduced states, and there are no reduced states to provide joint probabilities
for properties that are related to different contexts. Consider, for instance,
the probability that S} has the property P = p relative to S;* + S, the
probability that S7* has the property Q = ¢ relative to S7 4+ S;; and the
joint probability of these properties. The probability that S} has the prop-
erty P = p relative to S7* 4+ S;; is given by the reduced state of S7, the
probability that Sr+* has the property ) = g relative to S} + S is given
by the reduced state of S7*. But, the joint probability of these properties is

not given by the reduced state of Sy (Sj + S;*) or any other reduced state;
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for the reduced state of Sy only gives the joint probability of the properties

that S} and S7* each has relative to Sp;.

Four remarks about the nature and range of relational properties: First,
note that in the relational modal interpretation the properties that Sy has
relative to Syr are related to Sy simpliciter rather than to Sr; having par-
ticular properties. This type of relational properties is in a sense ‘thin-
ner’ than the relational properties postulated by Everett-like relative-state
interpretations(®'%1%) where the properties of S; are related to the properties
of Srr. Second, note that in the relational modal interpretation the range of
the possible properties of Sy relative to S;; and the single-time probabilities
of these properties depend only on S;’s reduced state. This means that if
there is no change in this reduced state, there can be a change in neither the
range of S7’s possible properties relative to Srr, nor their single-time prob-
abilities. Yet, as we shall see in Sec. 5.2, in some of the most distinctively
characteristic quantum situations the actual properties that a subsystem of
St has relative to S;; may change even when the reduced state of this sub-
system remains the same. Third, as is easily seen from the above property

assignment, both the properties that a system actually has and the proper-
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ties that it may have will generally be different relative to different systems
(contexts). Fourth, although Property Composition and Property Decompo-
sition (see Sec. 4) fail, their failure does not raise any explanatory difficulty.
In the relational modal interpretation, this failure reflects the fact that in
certain quantum-mechanical states the range of the possible properties of a

system will be different relative to different systems (contexts).

5.2. THE DYNAMICS

The universal dynamics of relational properties may be described as a sum
average over the dynamics in two extreme cases: (i) the dynamics in cases of

no entanglement, and (ii) the dynamics in cases of maximal entanglement.

Before we turn to outline the dynamics in these extreme cases, we should
first introduce the relevant notion of entanglement in play. The entanglement
we have in mind is bipartite, i.e. entanglement between two systems. Its mea-
sure may be defined in various ways. One measure, proposed by Shimony(®®),

is defined in terms of the minimal distance in Hilbert space norm between the
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quantum state of the entangled systems and the set of all possible product
states of these systems. That is, if the state of the composite system S1+ 52
is |1¢), the degree of entanglement between Sy and Sy is the minimized (nor-
malized) distance between |¢)) and the set of all the product states of S; and
So. A related measure of degree of entanglement, proposed by Abouraddy et
al.%9) is defined in terms of the distance in Hilbert space norm between [+
and both a maximally entangled state |¢.) and a factorizable (product) state
|15) orthogonal to it, such that [¢) is a normalized superposition of [¢,) and

|15). But, other measures of degree of entanglement may also be applicable.

The above notions of entanglement apply to pure states. But, in general
we shall need to quantify the degree of entanglement between systems in
mixed states (obtained from pure states by partial tracing). This raises no
particular problems, as all the characteristic bipartite measures of degree of
entanglement for pure states are also applicable to mixed states. In partic-
ular, the above geometrical measures of entanglement are easily generalized
to mixed states. Consider, for example, the measure of entanglement as the
minimal (normalized) distance from the set of all product states. In pure

states, this distance is measured in Hilbert space norm, whereas in mixed
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states it is measured in the space of the self-adjoint operators. That is, let B
be any mixed state of the composite system S; + S,, and let C be the con-
vex set of all the mixed product states of S; and S;. The minimal distance
between B and C is proportional to the distance between B and any state

A in C such that Tr(B® A) < Tr(B ® A’) for any other state A’ in C.

In the context of the relational modal interpretation, the relevant systems
for measuring the degree of entanglement are determined by the relational
properties under consideration and the relevant transformations. Let S; and
Srr be a partition of the universe, and S} and S7* be a partition of S,
and S}; be a subsystem of S;;.” Let U be any unitary transformation on
the state of S7 + S7; and the identity transformation on the state of all the
other subsystems of S; 4+ S7;. The degree of entanglement relevant for the
dynamics of the properties of S; and its subsystems relative to S;; under the
transformation U is determined by the degree of entanglement between S7*
and S} + S7; in the initial state of S7*+ S} + S}, (namely, the state that this

composite system has before U is applied). And the effect that U has on these

7 Here, by ‘a subsystem of S7;’ we mean any subsystem of it, including Sy itself and

the null system.
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properties depends on this degree of entanglement. The general idea is that
when systems are entangled, local transformations have global effect. The
dynamics of the relational properties of S7* depends (among other things)

on the entanglement between S} + S7; and S7.

Consider, for example, the Hadamard transformation on the state of S, +
A, (i.e. the Hadamard transformation on the eigenstates of Ry ® P») and the
identity transformation on the state of S;+ A;) between the hypersurfaces «
and ¢, and the properties that S; and S5 have relative to A;+ A, in Myrvold’s
set up (see Sec. 3). Applying our general rule to this specific case, S7* is
Sy, ST is Sy, Sy is Ay, and the relevant degree of entanglement is the one
between S; and Sy 4+ As in the (reduced) state of S + S+ Ay on « (obtained
by partial tracing from |p(«))). The degree of entanglement between S; and
Sa + As may for example be measured by the minimal (normalized) distance
in the space of the (self adjoint) operators between this (reduced) state and

the convex set of all the (reduced) product states of S; and Sy + As.

Given the above measure of degree of entanglement, let us now consider

the dynamics in the extreme cases of maximal entanglement and no entan-
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glement. Consider, first, the case of no entanglement. Let U be a unitary
transformation on the state of S; + Syr. If the reduced state of S; does not
change under U, the relational properties of Sy relative to S7; do not change.
If the reduced state of Sy changes, then the probabilities of the properties
that S; may have relative to S;; depend on the properties that S; has rela-
tive to Sy and the transformation U. The properties of S; associated with
projectors that commute with U evolve deterministically, so as to return the
single-time Born-like probabilities; and the properties of S; associated with
projectors that do not commute with U evolve indeterministically, so as to

return the single-time Born-like probabilities.

While the above transition probabilities resemble the probabilities ob-
tained by a sequential application of the Born rule in a collapse theory, the
dynamics in cases of maximal entanglement is very different. The transition
probabilities of S;’s properties relative to S;; induced by a transformation
U on the state of S; + Sy are directly proportional to the distance between
the (reduced) states of S; before and after applying U and the single-time
Born-like probabilities of S;’s properties relative to Sy; after applying U.

That is, let the reduced states of Sy before and after applying U be p; and
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py, respectively. Let ) and R be two observables that pertain to S;, and let
q and r be values of () and R, respectively. Then, the probability that S;
has the property () = g relative to S;r in the state py, given that it has the
property R = r relative to Sy; in the state p; is equal to (the (normalized)
distance between p; and py) times (the single-time Born-rule probability of

(@ = ¢ in the state py).

It is noteworthy that both the dynamics in cases of maximal entanglement
and the dynamics in cases of no entanglement are holistic in nature. The
transition probabilities of the properties that S7 has, as a subsystem of Sy,
relative to Sy (generally) depend on the properties that S; has relative to

Syr and not only on the properties that S} has relative to Sy;.

The universal dynamics is a weighted average of the dynamics in cases of
no entanglement and the dynamics in cases of maximal entanglement. That
is, let |¢) be the state of the universe, S; and S;; be any partition of the
universe, S7 and S;* be any partition of S;, and S}, be a subsystem of Sy;.
Let U be any unitary transformation on the state of S7+ 57, and the identity

transformation on the state of all the other subsystems of Sy + S;;. Let d(e)
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be the degree of entanglement between S} 4+ S7; and S7* in the state [)).
Let P(Q = ¢/R = r) be the probability that S; has the property Q = ¢
relative to Spy in the state U|t)) given that it has the property R = r relative
to Syr in the state |¢), and let Pyr(Q = ¢/R = r), Pvp(Q = ¢/R = 1)
and Py(Q = ¢/R = r) denote respectively the value of P(Q = ¢/R = r)
according to the dynamics in cases of maximal entanglement, the dynamics
in cases of no entanglement and the universal dynamics. Let d(s) be the
(normalized) distance between the reduced states of St in the states [¢)) and

Ul). Then:

Py(Q=gq/R=r) = d(e)-d(s) - Pur(@ =¢/R=r)+ 9)

+(1 —d(e)-d(s)) - Pxe(Q@ =q/R=T).

If the distribution of properties is given by the single-time Born-like probabil-
ities on any spacelike hypersurface, then (by construction) the dynamics (i.e.
the transition probabilities) in cases of no entanglement and in cases of max-
imal entanglement will each reproduce the single-time Born-like probabilities
on any other spacelike hypersurface. Accordingly, the universal dynamics (9)

will also reproduce the single-time Born-like probabilities.
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5.3. Myrvold’s theorem revisited

Having completed the outline of the relational modal interpretation, we now
turn to show how this interpretation circumvents Myrvold’s theorem. Con-
sider again Myrvold’s set up. In the states |p(«)), |©(5)), |¢(7)) and [¢(d))
in (3)-(6) the value of Ry, as a property of Si, relative to So+ A;+ As is either
r1+ or r1—; and the value of R, as a property of Sy, relative to S; + A; + A,
is either ro+ or ro—. Since these values are related to different contexts,
their joint probabilities do not exist. Accordingly, Myrvold’s theorem does

not apply to these properties.

Consider alternatively the range of the possible values that R; and R,
have, as properties of the composite system S;+ 5, relative to A1+ A,. In the
states (3)-(6), these relational values of R; and R, are definite and, moreover,
they relate to the same context and accordingly have joint probabilities. But,
since Sy + A, is entangled with S; and S; + A; is entangled with Sy (see Sec.
5.2), the value of Ry, as a property of S; + Ss, relative to A; + A, may not
be the same on « and ¢ (i.e. in the states |[p(a)) and |p(d))) and on v and

B (i.e. in the states |¢(7)) and |¢(8))); and the value of Ry, as a property
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of S; + S, relative to A; + As may not be the same on a and vy (i.e. in
the states |p(«)) and |¢(7))) and on § and S (i.e. in the states [¢(d)) and
lo(5)))- (Indeed, these degrees of entanglement are substantial. Accordingly,
the chance that the value of R, as a property of S; + Ss relative to A; + A,
will not be the same on « and § (v and ), and the chance that the value of
R, as a property of S; + S5 relative to A; + Ay will not be the same on « and
v (6 and f), are both significant.) Thus, Myrvold’s theorem is inapplicable

to these relational values of R; and R,.

Generalizing the above reasoning, it is not difficult to show that Myrvold’s
theorem is also inapplicable to any other relational values of R; and R,
and, more generally, any other relational properties. Thus, we conclude that

Myrvold’s theorem is inapplicable to the relational modal interpretation.

8 The fact that the value of R; relative to A; + A is not the same on « and § (y and
B) is sufficient for circumventing Myrvold’s theorem. But in order to avoid other possible
no-go theorems for relativistic modal interpretations, it is important that the chance that
this value of Ry will not be the same on « and § (v and ) will be proportional to the
degree of entanglement between Sz + A and Sy on « (v); and similarly, mutatis mutandis,

for the value of Ry relative to A; + As.
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It may be objected that the relational modal interpretation postulates
that local properties may be hypersurface-dependent properties, which are
frame-dependent properties in disguise. Here the idea may be that since the
value of e.g. R; (as a property of S; + S3) relative to A; + A; may not be the
same on the hypersurfaces « and ¢, this property is hypersurface dependent.
Thus, as each of these hypersurfaces could be associated with a different
frame of reference, it may be argued that this relational value of R; is really

a frame-dependent property in disguise.

In reply, it is important to stress that the values of R; and R, (as proper-
ties of S; + Sy) relative to A; + Ay are not hypersurface dependent per se, at
least not if by hypersurface dependent properties it is meant properties that
are defined relative to hypersurfaces. The dynamics of the value of R; (as a
property of S; + Ss) relative to A; + A, depends on the degree of entangle-
ment between Sy + Ay and S; and the transformation of the states of Sy + As;
and similarly, mutatis mutandis, for the value of Ry (as a property of S; +S5)
relative to A; + Ay. Thus, these values are highly nonlocal properties. But,
they are not hypersurface dependent per se: They are not defined relative to

hypersurfaces. Indeed, the relational value of e.g. R; relative to A; + A, will
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be the same on the hypersurfaces o and ¢ if the Hadamard transformation
on the eigenstates of Ry ® P, is substituted by an identity transformation.
It is also noteworthy that there is a conceptual difference between frame-
dependent and hypersurface-dependent properties®?”=32): Properties that are

hypersurface dependent may be frame independent.

In any case, as is not difficult to see the relational values of R; and R,
(as properties of Sy + Ss) relative to A; + Ao are invariant across all inertial
reference frames, and accordingly are frame independent. Moreover, unlike
the Bacciagaluppi and Dickson(?") dynamics for the Vermaas-Dieks modal in-
terpretation, and the dynamics in Bohm’s theory®® and in the GRW /Pearle

53334 the dynamics of properties in the relational modal in-

collapse model
terpretation does not pick out any preferred reference frame. Thus, the

objection above is ungrounded.

6. ON EXPERIENCE IN THE RELATIONAL

MODAL INTERPRETATION
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In accounting for experience, the relational modal interpretation face two
main challenges. First, there is the challenge from e-nonlocality. Recall (Sec.
5.2-5.3) that the relational modal interpretation postulates that in cases of
entanglement the value of apparently local quantities may be different on two
different spacelike hypersurfaces that intersect the spacetime region in which
the system they pertain to is located. Yet, our experience seems to suggest

that this type of nonlocality never occurs.

Secondly, there is the challenge from multiplicity. Similarly to any other
physical object, the brain of a human observer has many different relational
properties, i.e. properties that are related to different contexts (systems).
Given that properties that are related to different contexts are uncorrelated,
it seems plausible to assume that our beliefs about the physical objects that
appear in our experience are associated with brain properties that are related
to a single context. Yet, there are many possible contexts. So the question

arises as to which of them accounts for our beliefs.

We shall address first the challenge from multiplicity, then the challenge

from e-nonlocality. We believe that given current knowledge of the brain
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and mind-brain relationships, the best one could do is to demonstrate that
it is possible to establish systematic correlations between brain properties,
physical properties that appear in our experience and our beliefs about them.
The basic reasoning is as follows. It is possible to show that brain properties
that are related to certain contexts could systematically be correlated with
properties of physical objects that are associated with our experience. Thus,
granted the common assumption of systematic correlations between brain
states and states of mind, it is possible to establish systematic correlations
between brain properties, properties of physical objects and beliefs about

them.

To spell out this reasoning in some more detail, consider a toy universe
that contains only two observers, O; and O,. Let S; comprise a particle P, a
measuring apparatus M, and the observers O; and Oy, and let Sy; be the rest
of the universe. Suppose, for the sake of simplicity, that M performs an ideal
z-spin measurement on P, and O; and Oy both observe the measurement
outcome, and accordingly the state of S; (P + M + O; + O) and S;; is the

following:

Wy = D Cijrimlew) plBi) sl k) 0:101) 05| Am) 511 (10)

,5,k,0,m
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where «; ranges over z+ (z-spin ‘up’) and z— (z-spin ‘down’), §; ranges over
‘up’ (pointer pointing to ‘up’) and ‘down’ (pointer pointing to ‘down’), -y, and
d; each ranges over ‘b—up’ (‘believe up’) and ‘b—down’ (‘believe down’) and
Am ranges over A\; and Ag. There always exists a normalized basis {|r1), 7o)}
in the Hilbert space associated with S, such that [¢)) can be rewritten as

follows:

‘w> = cl|z+>p|1lp>M|b - up)OI |b - up)oZ‘h)SH +

+ca|z—) p|down)y|b — down) o, |b — down)o, |r2)s, (11)

where |r1)s,, and |rs)gs,, are not necessarily orthogonal. Since the properties
of Sy (i.e. of P+ M + O; + O,) relative to Sy are given by S;’s reduced
state, the particle, the pointer and the brains of the two observers have def-
inite relational properties that are appropriately correlated with each other.
Suppose, for example, that relative to Si; the particle has (as a subsystem of
Sr) z-spin ‘up’. Then, relative to S;; the position of the apparatuss pointer
(as a subsystem of Sy) is ‘up’ and the brain properties of both observers (as

subsystems of S;) are those of ‘b-up’.

One could easily generalize this example to show that brain properties

of different observers that are related to the same context would be appro-
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priately correlated with each other and with the physical properties that
appear in our experience. Thus, if any of these subsets of relational brain
properties are correlated with the corresponding states of mind, there will
be systematic correlations between a certain subset of relational properties
of physical systems and observers’ beliefs about these systems.® But, since
subsets of properties that are related to different contexts are uncorrelated,
the question is which subset of relational brain properties is correlated with
our beliefs about the physical properties that appear in our experience. We
think that the question of which brain properties are systematically corre-
lated to such beliefs is not unique to the relational modal interpretation, yet
due to proliferation of definite properties this question appears to be more

acute in the context of this interpretation.

Turning to the challenge from e-nonlocality, we shall argue below that
the dynamics of properties in the relational modal interpretation renders

the e-nonlocality postulated by this interpretation unobservable. Recall that

9 It is not difficult to show that observers’ experience could be accounted for even if
they are related to different contexts. But, for want of space, we shall not discuss this

issue here.
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e-nonlocality occurs when the value of an apparently local quantity is not
the same on two hypersurfaces that intersect the region in which the system
it pertains to is located. In order for e-nonlocality to be detectable, the
properties of some macroscopic systems have to record it. This means that
the recording macroscopic systems have to be entangled with the system the
properties of which are e-nonlocal. But, it follows from the dynamical laws of
the relational modal interpretation that the chance that e-nonlocality occurs
in circumstances in which it could be so recorded is virtually zero for the

following reason.

Macroscopic systems undergo decoherence interactions with their envi-
ronment. In such interactions, the reduced states of these systems (obtained
by tracing over the environment’s degrees of freedom) will be very nearly di-
agonal in the so-called ‘pointer bases,’ i.e. the bases that are selected by the
decoherence interaction.'® This means that in these bases the on-diagonal

elements will correspond to approximately product states. In particular,

10 More exactly, the observables corresponding to the ‘pointer’ bases approximately
commute with the Hamiltonian of the interaction between these macroscopic systems and

the environment.
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the reduced state of the composite macroscopic recording system and the
recorded system will be very nearly diagonal in the ‘recording’ bases and
thus correspond to approximately product states in these bases. In such
product states the relevant degree of entanglement (as proposed in Sec. 5.2)
turns out to be approximately zero. Accordingly, the properties of the record-
ing and recorded systems relative to the environment will effectively evolve
according to the dynamics in cases of no entanglement, where e-nonlocality

does not occur.

But the dynamical laws of the relational modal interpretation are such
that even if macroscopic recording systems were isolated from the environ-
ment, and accordingly e-nonlocality could occur in these systems and in the
systems they record, such e-nonlocality would still be unobservable because
of memory failure. To see why, consider again the set up of Myrvold’s the-
orem, where the systems S, Ss, A; and A, are in the states (3)-(6) on the
hypersurfaces «, 3,7 and § (see Sec. 3). Recall that in this set up, the
pointer observable P; of the apparatus A; measures the value of the observ-
able R; of the system S;. Let O; be an observer that monitors the value of

the pointer observable P;, let B; be a brain observable associated with O;’s
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beliefs about the value of P;, and let M; be a brain observable associated
with O;’s memory of the value of B; on «.!' (To simplify terminology, O,
will refer both to a physical system and to an agent. Context will distinguish
between these different uses.) According to the dynamics of the relational
modal interpretation outlined in Sec. 5.2, if Sy, A1, S2, A and O; were iso-
lated from the environment, some relational values of e.g. P, may not be
the same on « and ¢, i.e. e-nonlocality may occur. Consider, for example,
the value of P;, as a property of S; + A; + Ay + O, relative to the rest of
the universe. In the Hadamard transformation on the eigenstates of Ry, ® P,
between the hypersurfaces o and J, the transition probabilities are such that
this value of P, may not be the same on « and §. In order to observe the
difference between the values of P; on a and 9, O; would have to reliably
monitor and compare these values. To monitor and remember the value of
P, on «, the eigenstates of B; and M; will have to get correlated with the
eigenstates of P;. But, it follows from the above dynamics that in that case
the values of P, B; and M, as properties of S; + A; + Ay + Oy, relative

to the rest of the universe would be invariantly correlated. In particular, if

1 Here, we make the substantial assumption of a strict association between brain ob-
servables and states of mind. But, we believe that the main thrust of our reasoning below

will be valid even if such strict association does not exist.
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the values of P, and B; on « were different from their values on 4, the value
of M; would be similarly different on these hypersurfaces. Accordingly, the
observer O; would not be able to notice that the value of P; on « is different
from its value on §, and so would not be able to observe the e-nonlocality in
this value and in the corresponding relational value of Ry (i.e. the value of

Ry, as a property of S; + A; + Ay + O4, relative to the rest of the universe).

Indeed, some relational values of M, e.g. the value of M; as a property
of O relative to the rest of the universe, would be the same on a and ¢
even if S, A1, 52, Ay and O were isolated from the environment. But, this
relational value of M; would be uncorrelated with the relational value of P;
as a property of S;+ A1+ Ay + Oq relative to the rest of the universe; for note
that here ‘the rest of the universe’ refers to a different set of systems, namely
all the systems except for Si, A;, As and O; (rather than all the systems
except for O1). Thus, the value of M; as a property of Oy, relative to the
rest of the universe on « cannot be considered as a memory of the value of
Py, as a property of S7+ A; + Ay + Oq, relative to the rest of the universe on
0. Accordingly, this value of M; cannot be used as a basis for detecting the

e-nonlocality in the values of P, and R;, as properties of S; + A; + Ay + Oy,
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relative to the rest of the universe.

More generally, any relational value of P; that is not the same on « and
0 will be correlated with a relational value of M; that is similarly not the
same on « and ¢, and be uncorrelated with all the other relational values
of M;. But, if a relational value of M; is correlated with a relational value
of Py, then this value of M; on ¢ will be a totally unreliable memory of the
value of P, on « ; and if a relational value of M; is uncorrelated with a
relational value of P;, then this value of M; on ¢ will not be a memory of
the value of P; on a. Thus, in either case the value of M; is of no use for
detecting e-nonlocality in the values of P, and R;. Generalizing the above
reasoning, it is possible to show that observers will have no way to detect any
e-nonlocality in the value of quantities of microscopic or macroscopic systems.
On the basis of similar considerations, it is also not difficult to show that the
experiences of different observers associated with different reference frames
(say, the reference frame in which « is a hyperplane of simultaneity and the
reference frame in which § is a hyperplane of simultaneity) will be invariably
compatible with each other with respect to the results of any observation

whatsoever. Thus, we conclude that in the relational modal interpretation
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the postulated e-nonlocality would in principle be unobservable even if the
systems in question were completely isolated from their environment (and

thus unaffected by decoherence interactions).

7. CONCLUSIONS

Modal interpretations of quantum mechanics were designed to solve the mea-
surement problem and to reconcile quantum mechanics with the special the-
ory of relativity. Some modal interpretations offer a solution to the mea-
surement problem. But, as the no-go theorems by Dickson and Clifton(®),
Arntzenius®® and Myrvold(®) suggest, none of the current modal interpreta-
tions is compatible with relativity. In this paper, we considered Myrvold’s
theorem and proposed that a way to evade it is to reject its presupposition
(embodied in the Relativistic Born Rule) that properties that are commonly
thought of as local (such as a pointer’s position) are indeed local and always

have definite joint probabilities.'? We argued that the violation of this as-

12 Note that the rejection of this presupposition does not imply the rejection of the
Relativistic Born Rule. Indeed, the relational modal interpretation trivially satisfies this

condition, as all the properties postulated by this interpretation are nonlocal.
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sumption could naturally be obtained in a relational modal interpretation,
which assigns only relational properties to systems. In this interpretation,
properties are only assigned relative to other systems, and accordingly are
nonlocal by their very nature. Further, due to the dynamical laws some
quantum states (for example, the states characterizing the set up of Myr-
vold’s theorem) may also involve a more radical type of nonlocality, namely
e-nonlocality: The value of apparently local quantities may not be the same
on two spacelike hypersurfaces that intersect the spacetime region in which
the system they pertain to is located. Also, due to the probability assignment,
properties that are related to different systems have no joint probabilities,
and accordingly the presupposition that apparently local properties always

have definite joint probabilities fails.

Our suggested relational modal interpretation also circumvents the other
no-go theorems for relativistic modal interpretation. Since Myrvold’s the-
orem is a generalization of Arntzenius’s theorem, this interpretation simi-
larly evades Arntzenius’s theorem. And as we demonstrate in Berkovitz and
Hemmo®® | due to the holistic nature of the dynamics of properties (see Sec.

5.2), it also escapes Dickson and Clifton’s no-go theorem.
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The relational modal interpretation does not only circumvent all the
known no-go theorems for relativistic modal interpretation, it also offers an

(23) and it provides explana-

adequate solution to the measurement problem
tion for why certain properties of composite systems may fail to decompose
into the properties of their subsystems, i.e. why the so-called ‘property com-
position’ and ‘property decomposition’ fail (see Sec. 4 and 5.1). Furthermore,
due to the fact that the relational modal interpretation assigns properties in
all (orthonormal) bases, it does not face the challenge of justifying the com-
mon (yet largely unmotivated) assumption of all the other modal interpre-

tations that properties are only assigned in certain preferred (orthonormal)

bases.

While the relational modal interpretation offers good prospects for solving
the measurement problem and reconciling quantum mechanics with relativ-
ity, it may be objected that it is quite radical. We do not find this objection
compelling. Indeed, the picture of physical reality portrayed by this in-
terpretation is very different from the ones portrayed by the non-relational
interpretations of quantum mechanics. But, in the history of physics the

conception of physical reality has undergone a number of radical changes.
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In fact, orthodox quantum mechanics and its mainstream interpretations

themselves mark a radical shift from classical physics.

We think that the merits of any interpretation of quantum mechanics
have to be judged mainly on the basis of the interpretation’s consistency,
its empirical adequacy and its compatibility with other major theories. The
relational modal interpretation seems to fare well on all these accounts. As
far as we can see, it is consistent, it is empirically adequate and it provides
good reasons to believe that quantum mechanics could be reconciled with
relativity theory. We believe that the main challenge for the relational modal
interpretation is the challenge from multiplicity. As we have seen in Sec. 6,
there are various subsets of relational brain properties that could account for
our beliefs about the physical systems that appear in our experience, and the
question is which of these brain properties actually account for them. We
believe that this question is not unique to the relational modal interpretation,
yet due to the proliferation of (unrelated) definite properties it appears to be

more acute in the context of this interpretation.
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Fig. 1: The spacelike hypersurfaces used in Myrvold’s theorem.



