
MALAMENT-HOGARTH MACHINES AND TAIT’S

AXIOMATIC CONCEPTION OF MATHEMATICS

Abstract. In this paper I will argue that Tait’s axiomatic conception

of mathematics implies that it is in principle impossible to be justified in

believing a mathematical statement without being justified in believing

that statement is provable. I will then show that there are possible

courses of experience which would justify acceptance of a mathematical

statement without justifying belief that this statement is provable.

1. Introduction

In his 2001 paper, Beyond the axioms: The question of objectivity in

mathematics[11], William Tait advances an axiomatic conception of mathe-

matics on which provability constitutes the sole ‘criterion’ for mathematical

truth. According to this view, proof is ultimately the only source of epis-

temic justification for mathematical beliefs. As Tait puts it, “the assertion

of a mathematical proposition is warranted only by a proof of it”1.

In this paper, I will argue that the account of mathematics in Beyond the

Axioms implies that it is impossible to be epistemically justified in believing

a mathematical statement without being justified in believing that statement

is provable. Against this claim, I will argue that certain physically possible

courses of experience (as of dealing with hypercomputers) would epistemi-

cally justify belief in a mathematical statement without justifying belief that

this statement is provable2.

1[11]pg.11
2I’d like to thank Warren Goldfarb, Peter Koellner, Ned Hall and Peter Gerdes for help
fine-tuning my Tait exegesis and much lively debate about the larger philosophical ques-
tions at issue in this paper.
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2. Tait’s Axiomatic Approach to Mathematics

2.1. The Axiomatic Approach. At the beginning of Beyond the Ax-

ioms[11] Tait criticizes forms of realism which make mathematics ‘specu-

lative’ in the sense that, “even the most elementary computations, deduc-

tions and propositions must answer to a reality which we, at best, can only

partially comprehend and about which we could be wrong.”3 Instead, he

proposes an axiomatic approach to mathematics, on which any consistent

mathematical practice we adopt would give meaning to our mathematical

expressions in such a way as to ensure the truth of whatever statements this

practice instructed us to accept.

This account claims to be a form of realism, in the sense that it takes

mathematical statements to be literally true and to stand in no need of

paraphrase. However, it denies that our choice of mathematical axioms is

answerable to an independent reality which these axioms partly and fallibly

describe. As a result, foundational worries about whether our most fun-

damental axioms might be false are necessarily unfounded. We can acquire

particular false mathematical beliefs if, for example, a slip of the pencil leads

us to falsely believe that a statement is derivable from our axioms, but it

would be impossible for statements which we accept as axioms to themselves

be false. The only way our axioms can fail to express truths is if they are

inconsistent – which Tait thinks would make our relevant mathematical talk

meaningless rather than false4. Accordingly, the traditional realist’s problem

of accounting for human knowledge of mathematics reduces to a problem of

explaining our ability to choose consistent axioms.

3[11] pg.4
4He writes, “if we should discover a contradiction in Peano Arithmetic, say, that would
... undermine the sense of existence assertions concerning numbers (and so the sense of
their negations, as well)”[11] pg.3
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2.2. Contrast With More Conventional Approaches. To appreciate

how radical Tait’s proposal that all consistent mathematical practices would

express truths is, it will be important to distinguish the (essentially syntac-

tic) notion of consistency which Tait appears to have in mind in Beyond

the Axioms from a more demanding notion, coherence, which is relevant

to contemporary discussions of structuralism, plenitudinous platonism and

other similar philosophical interpretations of mathematics. To do this, we

must first clarify what Tait means by proof and mathematical practice.

In Tait’s sense, a mathematical practice is a practice of accepting certain

premises (the axioms) and certain kinds of inferences within the context

of a mathematical argument. Note that, in this sense, our mathematical

practice reflects our full judgment of what proofs suffice to establish their

conclusions, as opposed to merely establishing that these conclusions can

be proved from certain arbitrary axioms. Thus, for example, our mathe-

matical practice (in the sense which Tait has in mind) will plausibly include

something like the combination of first order logic and the standard Zermelo-

Fraenkel (ZF) axioms of set theory5. Also, note that while some might be

inclined to call various infinitary objects proofs, Tait’s usage in Beyond the

Axioms makes it clear that he takes proofs be not only finitary but also

algorithmically verifiable. For, Tait assumes that Gödel’s incompleteness

theorem applies to our mathematical practice6. Thus it appears that (for

the purposes of this paper) Tait takes our mathematical practice to be al-

gorithmically describable, and means to avoid any non-computable notion

5It will plausibly also include more than this. For although all propositions which can be
derived by applying first order logic to the Zermelo-Fraenkel axioms would be accepted
by mainstream mathematicians, there are further statements, such as the arithmetical
sentence Con(ZF), which cannot be proved from these axioms yet are taken as genuine
items of mathematical knowledge and perfectly acceptable starting points for proofs.
6“But, of course, completeness fails and must fail. Nor is the essential incompleteness due
simply to Gödels incompleteness theorem.”[11] pg. 3.
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of consequence or specification of axioms that might evade the assumptions

of Gödel’s theorem.

With this in mind, I will say that a mathematical practice is syntactically

consistent if it does not permit one to derive both a statement and its

negation7. I will also say that a mathematical practice is coherent if it

is (mathematically) possible to simultaneously satisfy its axioms, and all

theorems which its inference rules allow one to prove from these axioms8.

When the allowed inferences are clear from context, I will speak of theories

being syntactically consistent or coherent. Note that the statements we

make in our mathematical practice seem to require things that go beyond

there first order consequences9. We will see that in such circumstances the

notions of consistancy and coherence can come apart.

Many philosophers with structuralist, plenitudinous platonist or fiction-

alist leanings are attracted to the idea that all10 and only coherent theories

are legitimate topics for mathematical investigation. Accordingly, they ac-

cept that all coherent mathematical practices would lead mathematicians

to express only truths if they were adopted. However, they do not accept

Tait’s stronger claim that all syntactically consistent practices would lead

mathematicians to express only truths, because they think that syntactically

consistent theories need not be coherent.

7i.e. if one cannot derive both a statement and its negation using the premises and
inference rules permitted by that practice
8For instance, the existence of a model demonstrates the coherence of a theory but, when
working in strong logics, it may not be the case that all coherent collections of axioms have
a set model e.g. if one can uniquely describe the structure of the sets then this description
will not apply to any structure inside the universe of sets
9e.g., the statement that every set has a powerset intuitively requires something that isn’t
true in a countable model of ZFC
10In the case of the plenitudinous platonist I am speaking loosely with regard to the claim
that all coherent theories are acceptable topics for investigation. For appeal to quantifier
restriction, broad limits on abstraction or something more is needed to deal with the fact
that not all internally coherent descriptions of mathematical objects are compatible with
one another.
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These considerations are more than hypothetical, as most most math-

ematicians and philosophers of mathematics accept non-first-order claims

about mathematical subjects (number theory, analysis, set theory etc.) which

they take to uniquely describe the intended structure of the numbers 11 – and

thus constrain the meaning of their terms in such a way as to give definite

truth values to all statements in the language of number theory. Insofar as

no algorithmic proof procedure can (correctly) decide all questions of num-

ber theory, any proof practice whose axioms included such descriptions of

the numbers would have to fix truth values for certain number theoretic

statements which it did not allow one to prove or refute.

Accordingly it appears that syntactically consistent extensions of our

mathematical practice can nonetheless fail to be coherent. Tait rejects

this line of reasoning by denying that we can have any such proof-practice-

transcendent grip on the intended structure of the numbers. He denies that

there can be any “ upon which a proposition, undecided by our present

axioms, is nonetheless really true or really false.”12 Thus, he denies that

claims like, ‘The numbers are as small as possible while satisfying Peano

Arithmetic’ can take on a meaning which requires the truth (or falsehood)

of statements that our mathematical practice doesn’t let us prove or refute.

Motivated by roughly Wittgensteinian concerns about manifestability,

Tait criticizes various proposals about what such a proof-transcendent un-

derstanding of the intended structure of the natural numbers could con-

sist in. He points out that, for example, any definition we give of the in-

tended structure of the natural numbers will itself use terms that need to be

11For instance, they believe the numbers are as small as possible while satisfying certain
basic principles of arithmetic. However, no consistent collection of first-order axioms can
fully express this idea. Any first-order theory that describes the natural numbers will
also be satisfied by some non-standard model including infinite ‘numbers.’ Thus, it would
seem that our real axioms for the numbers go beyond what is first-order expressible, in
ruling out these spurious infinitary ‘numbers.
12[11] pg. 13
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antecedently understood, that any mental picture we associate with these

words will need interpretation and that facts about the neural mechanisms

which underly our actual use of mathematical terms cannot ground a dis-

tinction between correct use and psychologically natural and ingrained but

incorrect use.

This skepticism about claims to a proof transcendent grip on logical and

mathematical notions puts Tait in a position to accept the shocking claim

that any syntactically consistent theory, including any syntactically consis-

tent extension of the axioms which we allow to figure in our reasoning about

the numbers, could express a truth if we chose to extend our mathematical

practice in the appropriate way. In cases where a claim about the structure

of the numbers is not provable or refutable from axioms, he holds that we

are free to stipulate either answer. So, for example, Tait must accept that we

are free to stipulate the truth or falsity of any number theoretic statements

which are genuinely independent of our mathematical practice. Indeed, in

the case of the Continuum Hypothesis (a set theoretic statement which can

be shown to be independent of the generally accepted ZFC axioms of set

theory) he explicitly says that, “Until we determine it, CH [the contiuum

hypothesis] is ... indeterminate”13 and there may be equally good directions

in which our conception of set could develop which would require us to adopt

axioms which imply either the continuum hypothesis or its negation.

2.3. Independence and the Axiomatic Conception of Mathematics.

One might think that any theory which takes mathematical practices to play

as direct a role in determining mathematical truth as Tait’s does would face

problems with Gödelian incompleteness. However, Tait, while accepting

that the premises of the Incompleteness theorem apply to the system of

13[11] pg.13
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axioms and inference rules which constitute human proof practices, evades

the obvious problems.

For example, allowing that some mathematical statements will be nei-

ther provable nor refutable from axioms we are inclined to accept does not

prevent Tait from making sense of mathematicians’ use of the law of the ex-

cluded middle. Insofar as all statements of the form φ ∨ ¬φ are provable in

classical logic, and classical logic forms part of accepted mathematical proof

procedures, these statements will come out to be true on Tait’s account -

even in cases where neither φ nor ¬φ is provable. Furthermore, Tait suggests

that in taking our mathematical practice to ensure the truth of φ ∨ ¬φ we

should take it to ensure the truth of statements of the form ‘φ is true or

φ is false’ as well. Thus, Tait accepts all the same claims as the standard

Platonist about principles derived from the law of the excluded middle.

The difference between Tait’s view and more conventional views only

emerges when we consider the possibility of introducing new mathematical

axioms. As we saw above, platonists, structuralists and some fictionalists

will rely on the categoricity of our non-first-order description of the num-

bers14 to conclude that our current understanding of the intended structure

of the numbers already suffices to determine a definite answer to the question

of whether any number theoretic claim is true, whether we know it or not.

As a result, they maintain that we are not free to sharpen our mathematical

notions by stipulating an arbitrary answer to this question.

In contrast, Tait holds that there are no grounds on which a statement

which is independent of our axioms could be right rather than wrong. He

denies that we have any proof-transcendent grasp of the intended structure

of the numbers which determines a right answer to statements independent

14That is, on the fact that these descriptions uniquely determine a mathematical structure.
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of our axioms. As a result we are free to stipulate the truth value of in-

dependent mathematical statements at will. Thus, although Tait and the

more mainstream philosophers above will both assert that exactly one of φ

and ¬φ is correct, Tait will go further and say that we are free to stipulate

which of these statements is correct.

2.4. Warrant. Finally, Tait’s axiomatic understanding of mathematics leads

him to advance a constraint on mathematical justification which will be the

main focus of this paper. He claims that provability is the sole ‘criterion’

for mathematical truth15 in the sense that, “the assertion of a mathematical

proposition is warranted only by a proof of it”16. This claim requires a little

unpacking.

One might object that we routinely assert mathematical claims without

having access to a proof, for example, in response to looking at a calculator

or listening to an expert. However, both of these examples can be accom-

modated by charitably interpreting Tait to say that proof is the sole source

of mathematical knowledge and epistemic justification for believing mathe-

matical claims, in the following sense: one can only by epistemically justified

in believing a mathematical claim φ by considering a proof φ or having ev-

idence which justifies the belief that φ is provable. Plausibly, looking at a

calculator only justifies us in believing a mathematical claim when it also

justifies us in believing that this mathematical claim is provable via what-

ever process of accepted mathematical derivation the calculator is designed

to replicate. Similarly, one might think that testimony from someone who

claims to have inspected a proof of some mathematical claim φ only justifies

acceptance of φ if it justifies belief that this person has gone through a proof

of φ or otherwise justifies belief that this claim is provable.

15see [11] pg. 4, 8-9
16[11] pg. 11
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Tait motivates the claim that proof is the sole criterion for mathematical

truth by appeal to the ideas about axiom choice noted above. Suppose there

were (contra the hypothesis above) some independent source of justified

mathematical beliefs, which went beyond proofs and reason to think that a

given proposition was provable. Plausibly, any such justification would have

to involve (apparent) awareness of some ‘grounds’ besides provability from

the axioms, upon which a mathematical proposition could be true rather

than false. But such grounds would also have to be “grounds upon which

a proposition, undecided by our present axioms, is nonetheless really true

or really false.”17 And this in turn, would seem to provide a sense in which

the addition of consistent axioms could be wrong. In particular, if some

proof-independent method of mathematical learning could teach us that an

independent sentence φ was true, this would seem to provide a sense in which

adding the negation of φ to our axioms could be consistent but wrong.

Now, the above argument that proof is the only source of justification

for mathematical claims is a purely a priori one, and makes no appeal to

contingent facts. Thus if it succeeds, it establishes not only the absence but

the in principle impossibility of alternative sources of mathematical justifi-

cation. I will now attack this claim by arguing that certain physically pos-

sible courses of experience (experiences as of performing experiments with

hypercomputers) would justify belief in a mathematical statement without

justifying belief that this statement was provable.

3. Malament-Hogarth Machines and Independent Sentences

My argument begins with the consideration of Π0
1 sentences, that is, sim-

ple statements in the language of arithmetic which are writable in the form

17[11] pg. 13
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(∀n)F (n) where F (n) contains only bounded quantifiers18. The fact that (as

noted above) the premises of Gödel’s theorem apply to our mathematical

proof practice, ensures that there will be some Π0
1 sentence which this proof

practice does not allow us to prove or refute[9]19.

I will argue that experience with certain physical hyper-computers could

justify belief in the truth of such independent sentences. David Malament

and Mark Hogarth have pointed out that certain solutions to the equations of

general relativity would allow a person (the operator) and a computer to take

different paths through space-time in such a way that the following strange

thing happens: no matter how long it takes for the computer to signal its

result, the operator will receive that signal within a bounded amount of time,

e.g., the operator would receive the result within a single day no matter how

many steps occur in the computation[7].

A person exploiting this set up would be able to ‘compute’ things that

a Turing machine cannot. Assuming limitations on memory, power and

reliability can be overcome, such a person could seek evidence for the truth

of an arbitrary Π0
1 sentence φ by programming the computer to check all

of φ’s instances. For example, if they were interested in in the Goldbach

conjecture, they would first program a computer to check that 4 is the sum

of two primes, 6 is the some of two primes and so on, signaling back if it

ever finds an even number that isn’t the sum of two primes. Then they

would then launch this computer on a path such that any signal sent by

the computer would reach them within a day. If they do not receive a

18Thus, for example, the Goldbach conjecture states that every even number greater than
2 is writeable as the sum of two primes. This qualifies as a Π0

1 sentence because it requires
that ∀n n = 2 or n is odd or ∃x ≤ n∃y ≤ n and x is prime and y is prime and x + y = n,
where the property of being prime is itself expressible using only bound quantifiers.
19The incompleteness theorem applies to any collection of mathematical statements, such
as those which could be derived using a particular mathematical practice, which is syntac-
tically consistent, algorithmically enumerable, and sufficiently powerful to capture certain
basic facts of number theory. It tells us that, any such collection will fail to include both
some Π0

1 sentence and its negation.
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signal within this day (and if there is no stage at which the computer fails

to transition as required by its program) then we can infer the Goldbach

conjecture is true. Call the whole system consisting of the computer, means

to launch the computer through a suitable region of space-time and the

signaling mechanism a Malament-Hogarth (or MH) machine. MH machines

can be made to test every Π0
1 sentence using the strategy just described20.

Discussion of Malament-Hogarth machines in the literature has centered

on questions about the physical possibility of the space-time structure needed

for an MH machine as well as whether MH machines would count as com-

puters. For my purposes, however, all that will matter is that some course

of experience could justify the belief that one was dealing with such a ma-

chine. I will argue that, contra Tait’s claim, experiences as of dealing with an

MH machine can epistemically justify belief in an independent Π0
1 sentence

without justifying belief that this sentence is provable21.

20The standard definition of an MH machine in the literature requires that the machine
only go through stages corresponding to natural numbers, i.e. it computer accepts the
Π0

1 sentence iff no actual integer provides a counterexample. However, one thing that’s at
issue here is whether we can think thoughts which distinguish a unique structure ω from
various ‘nonstandard models’. Therefore, I adopt a less restrictive notion which merely
requires an MH machine to include a computer which checks 0 and then (provided no
counterexample has been found) checks the successor of any stage it checks.
21The reader may wonder why I don’t take the much simpler route of simply arguing that
our continued failure to find a contradiction while working with certain proof systems
(e.g., ZFC set theory) gives us reason to accept the sentence expressing the arithmetical
consistency sentences for these practices.
However, there is a significant line of worry in the literature about whether merely using
a system without encountering a contradiction can give us reason to believe that that
system is consistent, or whether the reason it gives us can be sufficient to let us qualify
as having knowledge. Following Frege, some philosophers have argued the numbers differ
from one another so radically that “in the absence of proof, we should not expect numbers

(in general) to share any interesting properties.”22 and hence that dealings with any
number of finite cases where some number has failed to code a proof of 0=1 in a given
proof system S can never provide us with any justification at all for the belief that some
(untried) number fails to code a proof of contradiction in S. Less radically, it is sometimes
argued that dealings with particular cases always provide us with a biased sample - with
knowledge of what holds for small numbers and short proofs, and that such knowledge
provides no basis for justified generalization to the claim that all numbers have a certain
property or that no larger proof is possible.[10]
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4. Believing in MH machines

It seems fairly clear that experiences which justified the belief that one was

dealing with a genuine MH machine could thereby suffice to justify believing

the mathematical result indicated by the that machine. After all dealings

with a calculator can justify mathematical beliefs, and a MH machine merely

performs infinitely many such computations. All that remains to show is

that some experience could justify the belief that one was dealing with an

MH machine. To this end, let us consider, in detail, what is required to

justify such a belief.

First, one must believe that one’s universe has the right kind of space-time

structure. Could any experience justify this belief? I take the existence of

actual evidence-heavy debates about whether the laws of physics are com-

patible with the needed space-time features to suggest that it can [4, 3].

Moreover, the history of physics gives a straightforward picture of the kind

of evidence which would suffice to justify such a belief.

Second, one must believe that a computer (or machine if you prefer) can be

constructed with access to sufficient memory and power. Turing machines,

as mathematical abstracta, are allowed to use an unbounded amount of

memory and operate for indefinitely many stages. However, the ordinary

computers that we build only have access to a finite amount of memory

and power. These facts present a problem since an unbounded amount of

memory and indefinitely many operations are needed to check arbitrary Π0
1

sentences.

A traditional answer to worries about energy in discussions of the phys-

ical possibility of (memory-limited versions of) MH machines draws on the

fact that the computer doing the computations travels infinitely far: one

I avoid this obstacle by providing an apparent counterexample to Tait’s thesis which does
not depend on the claim that a history of safe use of a mathematical theory can provide
justification sufficient for knowledge of the claim that that theory is consistent.
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could build the computer to harvest energy as it travels[1]. In a universe

like that theorized by some early twentieth century astronomers, matter ap-

pears spontaneously in empty space at a certain rate. This would provide a

guaranteed source of energy which the machine could harvest on its journey.

Similarly, the computer could draw on this energy (converting to matter as

needed) to construct further memory cells as necessary.

Alternately, in a ‘gunky’ universe which allows for complexity at an arbi-

trarily small scale there is a more elegant solution to concerns about power

and memory. With the same strategy used by the electronics industry

(shrink components to pack more functionality into a smaller, and hence

more energy efficient, package) the computer could continually replace itself

by a more efficient copy using less energy but with more memory. Provided

one increases efficiency at a sufficient rate the total energy needed would be

finite.

Third, one needs to believe that the traveling computer one has con-

structed is sufficiently accurate to perform as designed throughout its jour-

ney. Suppose that the computer being launched has some constant (inde-

pendent) probability ε > 0 of making an error at every given stage in the

computation. Then probability that the computer makes it through n stages

without failure is (1−ε)n. Thus, the probability of completely correct perfor-

mance goes to 0 as n goes to infinity. So it would seem that the probability

that a Malament-Hogarth machine has worked as intended when verifying

a Π0
1 sentence should be 0. For a related discussion see [2].

However, we can apply the same strategy we used above to make our MH

machine as reliable as desired. As well as increasing in capability over time

we engineer our computer to improve its reliability as well. Well known

techniques in circuit design redundancy and error correction can be used

to arbitrarily reduce the probability of an error. By increasing reliability
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sufficiently quickly we can make the overall chance of machine malfunction

arbitrarily small. In this way, dealings with an MH machine can produce

degrees of justification which come arbitrarily close to one’s justification for

believing one’s overall physical theory is correct.

Alternately, if you don’t like the idea of engineering an indefinitely self-

improving computer as above, one can also circumvent worries about energy

and error-rates by appeal to possible physical laws which directly constrain

the behavior of physical objects that can be used to build a computer. One

can imagine an MH machine computer whose basic components were funda-

mental particles whose behavior was completely determined by fundamental

physical laws. In this way there seem to be conceivable and elegant systems

of fundamental physical laws which would imply the perfect functioning of

various simple building blocks for an MH machine, and hence the perfect

functioning of the MH machine as a whole. As no truly bizarre physical

laws are required for this scenario, we have every reason to believe that

some course of experience would justify concluding that one had built an

MH machine in such a manner.

Of course, neither of the accounts above eliminate the possibility of sys-

temic error, e.g, the epistemic possibility that the general physical theory

which you used to calculate error rates when designing the MH machine

could be incorrect. I have provided some reason for thinking that one’s

justification for believing one had launched a genuine MH machine could

approach one’s justification for accepting our most certain physical theories.

But, if mathematical knowledge required a substantially different and higher

standard of justification than physical knowledge, it might seem that this

degree of justification could never suffice to underwrite mathematical knowl-

edge. As a result one might worry that dealings with an MH machine could

never provide sufficient justification to ground mathematical knowledge.



MALAMENT-HOGARTH MACHINES AND TAIT’S AXIOMATIC CONCEPTION OF MATHEMATICS15

Note, however, that we cannot say that mathematical knowledge requires

certainty on pain of ruling out mathematical knowledge by testimony. And

it would seem that beliefs about the physical structure of space and the

components in an MH machine can acquire justification on par with one’s

justification for believing a credible mathematical witness. Thus, it would

seem that experiences can provide us with at least the degree of justification

which suffices to grant us mathematical knowledge in cases where we learn

we new mathematical truths by accepting credible mathematical testimony.

In light of these considerations, I conclude that a suitable course of ex-

perience could justify someone in believing that they had built a working

MH machine and thereby in believing any Π0
1 sentence which this machine

appeared to verify.

5. Responses

Now let us return to Tait. I have argued above that dealings with a

Malament-Hogarth machine could justify asserting Π0
1 sentences, even when

those sentences are unprovable. This is in direct conflict with the central

tenets of Tait’s account of mathematics which, as we saw, require that (ev-

idence for) proof be the only possible source of justification for asserting a

mathematical claim.

I will conclude by considering some responses to the line of argument

above.

5.1. Epistemic vs. Pragmatic Justification. First, defenders of Tait

might resist my claim that experiences as of dealing with MH machines

can provide epistemic reason for accepting Π0
1 sentences. Perhaps such ex-

periences don’t show that the relevant Π0
1 statement currently expresses

a truth, but only provide pragmatic reasons to study ‘systems of number

theory’ where this sentence is accepted as an axiom.
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Although immediately unintuitive, this way of understanding the relation-

ship between observations as of MH machines and number theoretic facts

can be motivated somewhat by considering an analogy to geometry. The

great success of Euclidean geometry in describing space23 made it practically

useful and convenient for the Greeks to study mathematical systems which

included the parallel postulate. It is plausible that adopting (or rejecting)

the parallel postulate for reasons like these does not involve learning that

any antecedently understood mathematical statement expresses a truth. In-

stead, it involves pragmatically choosing to study a given mathematical

system, because facts about this system appear to have a certain desirable

relationship to facts about the external world. At first glance the role which

I have argued that MH machines can play in justifying number-theoretic

beliefs can seem similar to the role of physical applications in motivating

the choice of axioms for geometry.

However, I think this kind of defense is ultimately quite difficult to main-

tain. Accepting it would require us to reject a certain aspect of mainstream

mathematical practice (or at least, mainstream mathematical belief-revision

dispositions) as irrational. If experience just makes it rational to study sys-

tems in which a certain axiom is true, we ought not to conclude that a

mathematical statement is false in response to failures of these applications,

but only (at most) that other mathematical systems deserve attention as

well. And in the case of geometry this is exactly what happened. When

experience motivated the study of non-euclidean geometry we did not say

euclidean geometry was wrong but only that other kinds of geometry were

worth studying as well. In contrast, in the case of arithmetic our dispositions

to revise beliefs are quite different. Learning that an MH machine ‘verified’

a Π0
1 sentence would make people say that they were wrong to ever believe

23At least near earth for the kind of low-tech uses that can ignore relativistic effects
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its negation. Thus, in contrast with the geometrical case such an experience

would lead us to dismiss our previous beliefs as wrong about the numbers

rather than right about some other system.

5.2. Exception for Π0
1 Sentences? Second, some readers may feel that the

counterexample presented in this paper is not very deep, because it depends

on exploiting special features of the simplest possible kind of independent

statements - independent Π0
1 sentences. Thus, one might think that although

I have presented a genuine counterexample to Tait’s view as stated, my

objection can easily be handled by a simple modification of Tait’s view which

takes Π0
1 sentences to be a special exception to his general claim that there

can be no “grounds upon which a proposition, undecided by our present

axioms, is nonetheless really true or really false.” I will now argue that no

such quick fix solution can be given, without giving up central parts of Tait’s

view.

Π0
1 sentences are special in the following sense: if a Π0

1 sentence is con-

sistent then it is true24. Because Π0
1 sentences have the form ∀xφ(x) where

φ(x) is quantifier free, if such a sentence is false then there is some particular

number n which constitutes a counterexample. Since φ lacks any unbounded

quantifiers, this latter statement will be provable via basic arithmetic rules.

As a result, uncontroversial set theoretic reasoning about the numbers al-

lows us to prove that any Π0
1 sentence of arithmetic which is independent

from our overall theory (or even just the part of it summarized by the Peano

Axioms) must be true[8].

More traditionally realist readers (like myself) will be inclined to think

that these considerations point out a clear ground upon which a mathe-

matical sentence which is independent of our axioms can be right rather

24i.e. if one can add a Π0
1 sentence to any proof practice which (like ours) contains the

Peano Axioms and first order logic, then this sentence expresses a truth [finalcheck!]



18MALAMENT-HOGARTH MACHINES AND TAIT’S AXIOMATIC CONCEPTION OF MATHEMATICS

than wrong. Objective facts about derivability in formal systems like PA

combine with our expectations about the relationships between arithmeti-

cal sentences and derivability to ensure that independent Π0
1 sentences are

“really true” despite our inability to prove this fact.

However, I do not think that Tait could accept the above argument. The

argument above crucially turns on taking our beliefs about the numbers to

latch on to objective proof-transcendent facts about derivability in formal

systems, and make the truth or falsehood of undecidable sentences reflect

these objective facts. Allowing this immediately threatens Tait’s core mo-

tivating idea that our choice of axioms in mathematics is not a matter of

speculating about some independent partly understood subject matter.

If one allows that there are such objective and determinate proof-transcendent

facts about derivability in formal systems, and that the meanings of our

words can latch on to these facts then these facts about provability would

seem to constitute a legitimate subject matter for investigation. Which sen-

tences are provable from which formal systems? Thus, there would seem

to be a portion of mathematics at least (the study of derivability in formal

systems) where “even the most elementary computations, deductions and

propositions” are answerable to “a reality which we, at best, can only par-

tially comprehend and about which we could be wrong.”25 Thus, I think

Tait must deny that our talk about consistency and derivability latches on

to any such proof transcendent facts about derivability26.

25[11] pg.4
26Admittedly, adopting this line of response raises serious problems of its own. For exam-
ple, what sense are we to make of Tait’s own talk of consistency when saying that, e.g.,
inconsistency debars an axiom system from giving meaning to our mathematical claims?
If claims about consistency are only determined to have a particular truth value by being
derived in some axiom system, what axiom system is relevant to Tait’s claim? If the
relevant axiom system is the total collection of mathematical claims we are inclined to
accept, there’s a prima facie problem. This system (presumably) cannot prove its own
consistency[6]. If there is not a finite demonstrable inconsistency in our axioms, then the
question of whether the total collection of axioms that we are inclined to accept determine
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Furthermore, it is not clear that Tait can accept the above account of

provability for Π0
1 sentences while maintaining that we are free to stipulate

right answers to any quantified sentences in the language of arithmetic.

If considerations of consistency are sufficient to provide a sense in which

all Π0
1 sentences are “really” right or wrong (even in cases where they are

not derivable or refutable) then similar considerations allow us to ground

the truth-value of all arithmetic sentences. Thus, in attempting to make

a special exception for Π0
1 sentences we end up extinguishing any role for

stipulation in arithmetic and instead force it to answer to an independent .

The key point to note is that there is a direct relationship between whether

a sentence with n+1 quantifier alternations is true and the facts about what

true (or false) statements with n quantifier alternations can be proved from

it. In particular, a sentence that begins with a universal quantifier and in-

cludes n+1 quantifier alternations followed by some formula containing only

bounded quantifiers (called Π0
n+1 sentence) is true if and only if it adding it

as an axiom to Peano Arithmetic does not allow one to prove some false Σ0
n

sentence, (i.e., some statement that begins with an existential quantifier and

includes n quantifier alternations followed by a formula with only bounded

quantifiers). To see why this is so, consider the example of arbitrary Π0
2 sen-

tence ∀x∃yψ(x, y) where ψ is a formula in the language of arithmetic with

only bounded quantifiers. This sentence is false iff ∃x∀y¬ψ(x, y) is true, i.e,

if there is some number n such that ∀y¬ψ(

n︷ ︸︸ ︷
S ◦ S · · · ◦ S(0), y) is true. But,

from ∀x∃y(x, y) one can derive (over Peano arithmetic) the negation of each

such instance. Thus, an arbitrary Π0
2 sentence is false if and only if adding

it as an axiom allows you to derive some false Σ0
1 sentence.

a consistent and hence true mathematical system, or an inconsistent (and hence meaning-
less) one will turn out to have the same status as independent Π0

1 sentences. This seems
like an odd consequence. It also seems odd that it in stipulating facts about arithmetic we
could thereby determine facts about what alternative choices of axioms would have been
meaningful.
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As a result, if we are only free to stipulate new mathematical axioms in

a way that honors our current expectations about the relationship between

provability and truth in arithmetic, then if our hand is forced with regard

to Σ0
n sentences it will be forced with regard to Π0

n+1 sentences as well. But,

noting this fact allows us to inductively show that our lack of any freedom

to choose truth values for bounded sentences permeates all the way up, and

we are never free to choose how to settle the truth value of any quantified

sentences in the language of arithmetic. We can inductively fix mandatory

truth values for all such sentences as follows:

• Π0
0 = Σ0

0 sentences are true iff they are provable in PA.

• Σ0
n+1 sentences are true iff the Π0

n+1 sentences which form their

negations are false

• Π0
n+1 sentences are true iff adding them to Peano Arithmetic as an

axiom does not allow you to derive some false instance, i.e., a false

Σ0
n sentence.

Finally, even if Tait could somehow motivate making a special exception

for Π0
1 sentences but not more complex sentences of arithmetic, he would still

run into a version of the problem presented by MH machines. Hogarth has

demonstrated that variants of the MH machine can be constructed to check

arbitrary sentences in the language of number theory [7]. The key idea is to

consider a Malament-Hogarth machine which spawns other MH machines.

Thus, to check the truth of a ∀x∃yφ(x, y) sentence one builds a computer

which checks whether ∃yφ(1, y), by building and launching a standard MH

machine computer which is set to look for a y such that ∃yφ(1, y), and radio

back to the main computer if it ever finds one. If the main computer doesn’t

receive a signal within the relevant interval, it decides that ¬∃yφ(1, y) so it

has found a counterexample, and it radios back that ∀x∃yφ(x, y) must be

false. If it does receive a signal from the child computer it decides that
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∃yφ(1, y) is true and proceeds to check whether ∃yφ(2, y) and all other

instances in the same way, using the property of MH machines to accomplish

all this checking in bounded time for the operator. Thus, if we do not hear

back from the master computer within the relevant interval we can conclude

that the relevant ∀x∃yφ(x, y) sentence is true. A similar extension of the

machinery allows one to check the truth of all arithmetic sentences. Thus,

it would seem that the possibility of getting (partly empirical) justification

for believing arithmetical statements which are independent of all axioms

we are inclined to accept is not limited to Π0
1 sentences.

6. Conclusion

In this paper I have argued that experiences as of creating a Malament-

Hogarth machine could provide epistemic justification for believing inde-

pendent mathematical sentences, justification which does not appeal to any

reason to think these statements are provable from axioms we are disposed

to accept.

If this is correct it constitutes a counterexample to Tait’s claim that proof

is the only possible source of warrant for asserting a mathematical claim.

And insofar as we have seen that central features of Tait’s axiomatic un-

derstanding of mathematics lead him to the conclusion that only proof can

justify mathematical claims, reason to deny this epistemic claim casts doubt

on this theory as a whole.

Our discussion of MH machines also provides reasons for doubting pro-

jectivist and pragmatist approaches to truth in arithmetic. We have seen

in the pages above that we expect the right answers to questions about the

numbers to be reflected by certain constraints on how it is metaphysically

possible for infinite physical systems like MH machines to behave. Insofar

as this is the case, we are not free to pragmatically stipulate right answers.
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This result is interesting in itself and has implications for many philosophical

interpretations of mathematics, though none so dramatic as the implications

it has for Tait.
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[4] G. Etesi and I. Németi. Non-turing computations via Malament–Hogarth space-times.

International Journal of Theoretical Physics, 41(2):341–370, 2002.

[5] Gottleib Frege. The Foundations of Arithmetic: A Logico-Mathematical Enquiry into

the Concept of Number Northwestern University Press, 1980
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