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ABSTRACT

Since Benacerraf’s “What Numbers Could Not Be,” there has been a growing
interest in mathematical structuralism. An influential form of mathematical struc-
turalism, modal structuralism, uses logical possibility and second order logic to
provide paraphrases of mathematical statements which don’t quantify over mathe-
matical objects.

These modal structuralist paraphrases are a useful tool for nominalists and re-
alists alike. But their use of second order logic and quantification into the logical
possibility operator raises concerns. In this paper, I show that the work of both these
elements can be done by a single natural generalization of the logical possibility op-
erator.
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1. Introduction

Since Benacerraf’s “What Numbers Could Not Be,”Benacerraf (1965) there has been
a growing interest in mathematical structuralism. One of the most influential forms of
structuralism is the modal structuralism developed in Geoffrey Hellman’s Mathematics
Without NumbersHellman (1994). Modal Structuralism is a nominalist philosophy of
mathematics which maintains that mathematicians can systematically express truths
even if there are no mathematical objects, by interpreting statements about mathemat-
ical objects as modal claims about what is logically possible. Specifically, Hellman uses
claims about logical possibility and second order logic to provide intuitively correct
truth conditions for mathematical utterances without quantifying over mathematical
objects like numbers and sets.

I don’t ultimately find nominalism persuasive, and won’t defend it against standard
objections. However, I think that Hellman’s modal structuralist paraphrases reveal a
close relationship between logical possibility and pure mathematics which is of interest
to realists and nominalists alike1. For they show us how to systematically pair ordinary

CONTACT Sharon Berry. Email: seberry@invariant.org
1The fact that you can capture logical possibility for first order sentences using set theory is well known.



(platonistic) mathematical sentences with modal sentences which have exactly the
truth value a platonist would want to ascribe to the original, but make claims about
logical possibility rather than quantifying over mathematical objects. So, for example,
Hellman’s paraphrase of ‘there are infinitely many primes’ is a modal sentence which
is (intuitively) true at all possible worlds and does not quantify over mathematical
objects.

This is useful to, for example, deflationary realists who want to (somehow) ground
mathematical existence facts in logical possibility2 as well as to nominalists who want
to deny the existence of mathematical objects. Also, one part of Hellman’s story (his
treatment of set theory) provides a natural way of developing an independently popular
view about set theory called potentialism. Philosophers like Charles Parsons, who have
no truck with blanket nominalism about mathematical objects, have been motivated
by specific (i.e., specific-to-set-theory) apparent paradoxes concerning the height of the
hierarchy of sets to understand higher set theory as an investigation of extendability
Parsons (2007). Thus, one might want to accept something like Hellman’s approach
to set theory while being a straightforward realist about other mathematical objects
and structures.

In this paper, I will show how to streamline Hellman’s modal structuralist para-
phrases for mathematics by appealing to a single, intuitively motivated, notion of
logical possibility given certain facts – thus avoiding the need for second order quan-
tification3. In addition to its intrinsic interest, this simplification provides expository
and philosophical benefits over Hellman’s approach.

First, existing potentialist and modal structuralist paraphrases for sentences of set
theory (including Hellman’s) involve quantifying in to the 3 of logical possibility.
That is, they use sentences like ∃x3R(x), where the logical possibility operator is
applied to a formula with free variables. There are significant controversies about the
truth conditions, and indeed meaningfulness, of such statements. For example, there is
disagreement about whether any two things that are actually distinct are necessarily
distinct. There is also disagreement about what to say about statements which quantify
into a world where an object doesn’t exist. For example, Kripke’s approach (which
Hellman invokes) allows sentences like (∃x)3[(∀y)Fox(y) ∧ ¬Fox(x)] to be true, a
consequence which Williamson and others have argued is extremely counterintuitive4.
These controversies can raise doubts about whether our intuitions about quantifying
in are reliable while, to my knowledge, no analogous paradoxes arise in the system I
lay out5.

There is also a Quinean strand of argument which claims that quantifying into modal

Modal structuralist paraphrases attempt to show that you can go the other way around and capture truth

conditions for set theory as a whole in terms of logical possibility.
2By deflationary (ontological) realists, I mean philosophers who accept the existence of mathematical objects

but don’t take these objects/existence facts to be metaphysically fundamental (in terms of grounding). Such
philosophers could re-interpret Hellman’s paraphrases as bi-conditionals which explain how existence facts

about mathematical objects are systematically grounded in facts about logical possibility (just as one might

say that existence facts about cities are systematically grounded in facts about what people are doing, while
believing that cities really exist).
3I will focus on pure mathematics in this paper, but we will see that the same strategy can be used to

streamline what Hellman says about applied mathematics as well.
4While this debate is commonly conducted in terms of metaphysical possibility, it naturally raises similar

concerns for logical possibility.
5Specifically, my account of mathematics is compatible with taking Williamson to show that any notion of

possibility that allows quantifying in (such as metaphysical possibility) must have a fixed domain – provided

one thinks it doesn’t make sense to quantify in to logical possibility. Of course, it’s not compatible with taking
Williamson to show that every modal notion must have a fixed domain.
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contexts is meaningless6. Thus, it seems, at least, rhetorically desirable to demonstrate
that Hellman’s program (as well as potentialist set theory) doesn’t require quantifying
in or similarly controversial notions.

Second, Hellman himself Hellman (1996) has raised worries about whether his use
of second-order logic is nominalistically acceptable, and my modifications show that
his program7 can be accomplished without second order logic, using only concepts
he relies on elsewhere in his program. This is not to say that my modifications defi-
nitely render Hellman’s approach nominalistically acceptable. Indeed, one might even
take my demonstration that logical possibility can fill in for second order logic as an
argument against the nominalistic acceptability of logical possibility itself. Rather,
I show that Hellman can avoid any extra burden imposed specifically by his use of
second order logic. Either my modifications render Hellman’s account nominalistically
acceptable or the very notion of logical possibility employed by Hellman is inherently
nominalistically unacceptable and his program fails regardless of the role of second
order logic.

In later work Hellman considers8 a modification to his core story which avoids second
order quantification9. However, this story relies on an additional assumption (that
“arbitrary [mereological] sums of any individuals independently recognized” exist)
which my story and Hellman’s original story avoid10. This later proposal also does not
avoid the issues about quantifying in noted above.

2. Modal Structuralism: The Core Picture

The key idea behind modal structuralism is to reformulate mathematical claims about
abstract (non-set-theoretic) objects, like the natural numbers, as claims about how it
is possible for objects to be related to one another. For example, something like the
twin prime conjecture may be paraphrased as the claim that it would be possible for
there to be objects with the structure of the natural numbers and that, necessarily,
in any such structure there are infinitely many twin primes. Note that the notion of
possibility here isn’t that of metaphysical possibility. For, as Charles Parsons points
out, our willingness to to talk in terms of large mathematical structures (e.g., the
reals or the Hilbert space of square integrable functions) does not seem to be hostage
to our conviction that it would be metaphysically possible for there to be that many

6I take Quine’s problem with quantifying in, in ‘Reference and Modality’, to be that he dislikes the “Aris-

totelian essentialism” of taking some properties to belong to an object like the number 7 essentially (e.g., being

less than 9) while others apply only contingently (e.g., being the number of planets). As we will see, my system
eschews cross-world object identification of any kind (e.g., cross-world equality or counterpart relations) as well

as quantifying in. Thus criticisms like Quine’s can’t even get off the ground.
7It is striking that eliminating the second order quantifiers seems to result in no significant loss of expressive

power, i.e., if a structure is definable using Hellman’s system then it is definable in my system as well.
8See Hellman (1994) and Hellman’s later paper Hellman (1996).
9These modified paraphrases work by assuming the logical possibility of an (infinite) collection of atoms and

then considering mereological fusions of atoms and plural quantification over these fusions to mimic three layers

of sets (and functions) over this original infinite collection.
10This assumption is controversial, as it not only commits us to the existence of the mereological fusion of

Lewis’ nose and the Eiffel tower (and the Chrysler corporation and the Obamas’ marriage, if one believes
in such non-concrete objects) but requires we believe the same holds true in all logically possible scenarios.

Furthermore (even if Hellman is right about mereology), it can seem unattractive to say that the true content
of, say, real analysis commits one to a generous Lewisian position on the problem of special compositionLewis
(1986) – or that mereological principles hold with logical necessity since, e.g., this conflicts with the intuition

that it would be logically possible for there to be exactly 4 objects. For example, if arbitrary fusions exist,

there could be 2 atoms and hence 3 total objects, or 3 atoms and hence 7 objects, but couldn’t be exactly 4
objects.
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non-mathematical objectsParsons (2007). Thus, it seems like the notion of possibility
which the modal structuralist is reaching for is something more like mathematical or
logical possibility.

In articulating his modal structuralism, Hellman invokes a primitive notion of log-
ical possibility which he does relatively little to describe. He does say that, “[when
evaluating logical possibility] we are not automatically constrained to hold material
or natural laws fixed.” So it may be logically possible that (∃x)(pig(x)∧ flies(x)), but
physically impossible. And he adds that, “we are free to entertain the possibility of
additional objects - even material objects - of a given type.”, which allows us to say
that it’s logically possible for there to be infinitely many objects even if there are only
finitely many objects. Beyond this, however, he just suggests that his applications of
logical possibility will make the notion he has in mind clear.

I will abbreviate the claim that it is logically possible that φ as 3φ, and the claim
that it is logically necessary that φ (i.e., ¬3¬φ as 2φ). With this notion of logical
possibility in place, the modal structuralist proposes to understand a mathematician’s
claim that ψ holds in some mathematical structure (such as the natural numbers),
as really asserting a conjunction of two claims. First, it is logically possible for there
to be some objects with the relevant structure (e.g., there could be an ω sequence
of objects). And second, it is logically necessary that if there were such objects they
would satisfy the description ψ (e.g., if there were an ω sequence of objects, a version
of ψ would be true in it).

Hellman uses second-order quantification to give categorical descriptions11 of such
structures, e.g., the ω sequence mentioned above. Employing these descriptions allows
Hellman’s paraphrase strategy to ensure (assuming second order logic works in the
usual way) that all well-formed claims about these structures are either true or false.
For example, let PA2 be the standard second order categorical axiomatization of the
natural numbers in terms of a successor relation S12 (conjoined into a single sentence)
and let φ be a sentence about the natural numbers. Using φ(N/X)(S/f) to denote
the result of replacing every instance of N in φ with the second order variable X and
every instance of the successor relation13 S with the second order relation variable f
Hellman’s paraphrase of the mathematical claim φ becomes14:

3 [(∃X)(∃f)PA2(N/X)(S/f)]∧
2 [(∀X)(∀f) (PA2(N/X)(S/f)→ φ(N/X)(S/f))]

The first half of this sentence says that it is logically possible for some objects
to form an ω-sequence (with some relation f acting as the successor function). The
second half says that it is logically necessary that if some objects (those in X) form
an ω-sequence (under f) then φ (modified to use X and f instead of N and S) is true
of them.

11Note that, by Lowenheim-Skolem considerations, no categorical description of common mathematical struc-
tures such as the natural numbers can be given using first order logic alone.
12That is, PA2 is the result of replacing the induction schema in Peano Arithmetic with a single induction
axiom formulated in second order logic as described inWolfram (2016).
13Although PA and PA2 are often formulated using a successor function, it is easy enough to transform them

into claims about a successor relation, by adding an axiom asserting that every member of N has a unique
successor in N.
14Note, N is understood to express the property of being a number and S the successor relation, so we cannot
use them as variables by writing something like (∃N)(∃S)PA2.
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This paraphrase strategy (assuming logical possibility and second order quantifica-
tion operate as Hellman expects15) captures the intended truth conditions for most
statements in pure mathematics. However, Hellman also wishes to provide paraphrases
for statements of applied mathematics. Consider the claim that there are a prime num-
ber of rats. One cannot give correct truth conditions for this claim by only talking
about what is logically possible simpliciter – for the truth of ‘there are a prime number
of rats’ is not determined only by facts about what is logically possible. It also reflects
contingent facts about the world.

Hellman addresses this problem by replacing appeals to logical possibility with
appeals to logical possibility given the ‘material’16 facts. So, for example, where the
platonist takes ‘there are a prime number of rats’ to mean something like ‘there is a
function which bijectively maps the rats to the natural numbers below some prime
p’, Hellman will translate this claim approximately as follows. It is logically possible,
given the material facts, that there are objects which behave like numbers (in the sense
of satisfying PA2). And it is logically necessary, given the material facts, that if there
are objects which behave like numbers then there is a function which bijectively maps
the rats to the natural numbers below p.

Hellman considers two approaches to understanding this crucial notion of logical
possibility given the material facts. The first is to leave it as a primitive, “reject[ing]
the demand” for further explanation of what it means to hold material facts fixed.
The second is to cash out the notion of ‘holding the material facts fixed’ by using an
actuality operator @, read as ‘it is actually the case that.’ In either case, we see that
Hellman is already committed to something like a notion of logical possibility holding
some facts fixed. The reader should bear this in mind when considering the particular
notion of logical possibility I offer below.

3. Logical Possibility Sharpened and Generalized

I will now introduce my preferred notion of logical possibility given certain facts. Let
me begin by calling to mind some features of the standard notion of logical possibility
which I take Hellman to be developing.

3.1. The Conventional Notion of Logical Possibility

It seems that we have an intuitive notion of logical possibility which applies to claims
like (∃x)(red(x) ∧ round(x)) and makes sentences like the following come out true.

• It is logically possible that (∃x)(red(x) ∧ round(x))
• It is not logically possible that (∃x)(red(x) ∧ ¬red(x))
• It is logically necessary that (∀x)(red(x))→ ¬(∃x)(¬red(x)).

Philosophers representing a range of different philosophies of mathematics have
made use of this notion17 and are comfortable applying it to non-first order sentences

15Obviously, if it isn’t really possible for there to be something satisfying PA2 (for example because second
order logic is ontologically committal and the necessary second order objects can’t exist) then the paraphrase

Hellman provides for statements in arithmetic would fail.
16Hellman’s notion of material facts seems to include (at least) the fundamental physical facts, and definitely
does not include facts about mathematical objects.
17For example, see the discussion of the corresponding notion of consequence in Field (1989),Rayo (2013)
alongside that of Hellman (1996).
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as well. If you are skeptical that there is such a notion, note that it is definable in
terms of the even more common notion of validity (something is logically possible iff
its negation is not logically necessary iff the inference from the empty premise to its
negation is not valid).

To evaluate whether a claim φ requires something logically possible, we hold fixed
the operation of logical vocabulary (like ∃,∧,∨,¬), but abstract away from any further
constraints imposed by metaphysical necessity on the behavior of particular relations.
Thus, we consider all possible ways for relations to apply whether or not
these ways are describable in our language . For example, it is logically possible
that (∃x)(Raven(x)∧Vegetable(x)), even if it would be metaphysically impossible for
anything to be both a raven and a vegetable. During this evaluation we also abstract
away from constraints on the size of the universe18, so that 3(∃x)(∃y)(¬x = y) would
be true even if the actual universe contained only a single object.

This notion of logical possibility is generally regarded as a fundamental notion19

conceptually distinct from syntactic consistency, i.e., the impossibility of proving a
contradiction. Instead, it corresponds to our intuitive sense that certain mathematical
theories (like second-order Peano Arithmetic) require something coherent, while others
(like Frege’s inconsistent theory of extensions) do not – a sense which is not restricted
merely to first-order descriptions.

A core idea I will develop is that the above notion of logical possibility can be
naturally generalized. A (pure) logical possibility operator doesn’t allow information
to ‘leak out’, so merely adding such an operator to first order logic does little to
increase its ‘power.’ This can make it appear somewhat surprising that, as we shall
see, the tame-looking further step of considering logical possibility holding certain facts
fixed (a concept Hellman already appeals to) is enough to let us relinquish our use of
second order quantification. However, we observed above that the concept of logical
possibility goes far beyond what is capturable in first order logic, so it’s not totally
shocking that we can unlock that power by letting some information pass through (but
not free variables).

3.2. Logical Possibility Generalized

Let us now develop the notion of logical possibility discussed in the previous section.
Consider a sentence like, “Given what cats and baskets there are, it is logically impos-
sible that each cat slept in a distinct basket.” There’s an intuitive reading on which
this sentence will be true if and only if there are more cats than baskets20. This reading
employs a notion of logical possibility holding certain facts fixed (in this case, facts
about what cats and baskets there are). Remember, Hellman’s use of logical possibility
given the material facts commits him to the coherence of something very much like

18See Etchemendy (1990) on the tension between standard Tarskian reinterpretation-based accounts of logical
possibility and the intuitive notion of logical possibility regarding this point.
19At first glance, one might be tempted to simply identify claims about logical possibility with claims about
the existence of a set theoretic model. However, philosophers such as Hartry Field have convincingly argued

that, “We should think of the intuitive notion of validity not as literally defined by the model theoretic account,
or in any other manner; rather, we should think of it as a primitive notion.”Field (2008)

Very crudely, the issue is this: a key aspect of our notion of logical possibility/validity is that what’s actual
must be logically possible. But, if we identify logical possibility with the existence of a set theoretic model,
then it looks puzzling why the inference from actual to possible is permissible. After all the total universe can’t

be represented as a set theoretic model (as it contains all the sets, and hence is proper class sized) even though

it is actual.
20Admittedly, there’s another reading of this sentence on which it expresses a necessary falsehood. However,
this is not the reading I have in mind.
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this notion.
Accordingly, I think we can intuitively understand a conditional logical possibility

operator 3 which takes a sentence φ and a finite (potentially empty) list of relation
symbols R1...Rn and produces a sentence 3(R1...Rn)φ which says that it is logically
possible for φ to be true, given how the relations R1...Rn apply. For ease of reading, I
will sink the specification of relevant relations into the subscript as follows: 3R1...Rn

φ
Thus, for example, the claim, ‘given what cats and baskets there are, it is logically

impossible that each cat slept in a distinct basket’ becomes:

2cat,basket¬
(

(∀x)
[
cat(x)→ (∃y) (basket(y) ∧ sleptIn(x, y))

]
∧

(∀z)(∀w)(∀w′)
[
basket(z) ∧ cat(w) ∧ cat(w′)∧

sleptIn(w, z) ∧ sleptIn(w′, z)→ w = w′
]) (CATS)

Finally, note that by using this notion we can also make nested logical possibil-
ity claims, i.e., claims about the logical possibility of scenarios which are themselves
described in terms of logical possibility. I have in mind sentences like the following:

32cat,basket¬
(

(∀x)
[
cat(x)→ (∃y) (basket(y) ∧ sleptIn(x, y))

]
∧

(∀z)(∀w)(∀w′)
[
basket(z) ∧ cat(w) ∧ cat(w′)∧

sleptIn(w, z) ∧ sleptIn(w′, z)→ w = w′
]) (3CATS)

This sentence says that it would be logically possible for there to be cats and
baskets such that it would be logically necessary, given (the structural facts about)
what cats and baskets there are in that scenario, that some cat lacked its own basket
to sleep in. Note that in a nested claim with this form (32Rψ), the subscript freezes
the facts about how the relation R applies in the scenario being considered, which
may not be the state of affairs in the actual world. For example, 3CATS expresses a
metaphysically necessary truth. For, whatever the actual world is like, it will always
be logically possible for there to be, say, 3 cats and 2 baskets. This scenario is one in
which it is logically necessary (holding fixed the structural facts about what cats and
baskets there are) that: if each cat slept in a basket then multiple cats slept in the
same basket. So it is metaphysically necessary that 3CATS even if the actual world
contains more baskets than cats.

In what follows, I will often use mathematical-looking symbols or schematic-looking
symbols (e.g., N, S) for relations appearing in logical possibility statements rather than
actual relations like ‘happy()’ and ‘loves()’. However, these symbols should be regarded
merely as an abbreviation, so when I write 2P (∀x)(P (x)→ Q(x)) it is shorthand for
something like 2Happy(∀x)(Happy(x)→ Elephant(x)).

Note that the specific choice of relations does not mater, as when a relation occurs
inside a 2 or 3 which does not subscript that relation, it contributes to the truth
conditions for this sentence in exactly the same way that any other relation with the
same arity would. For example, the sentence 3Dog(∃x)(∃y)(Dog(x)∧Cat(y)∧¬x = y)
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will hold if and only if 3Dog(∃x)(∃y)(Dog(x) ∧ Lemur(y) ∧ ¬x = y) does.
This reflects the fact that questions about logical possibility abstract away from all

specific facts about the relations in question (other than their arity). Logical possibility
involves considering all possibilities for the relations mentioned in the statement under
consideration, whether we can describe them or not (this is the analog of requiring
second order quantifiers to range over all possible collections). I emphasize this fact,
because I will translate claims about mathematical objects using claims about how it
would be logically possible for some arbitrarily chosen relations to apply (as Putnam
does in Putnam (1967) pg.10-11) instead of using variables bound by second order
quantifiers as Hellman does.

Some readers may still have questions about how holding relations fixed works.
One could think about 3R1...Rn

φ claims as holding fixed the particular objects in the
extension of the relations R1...Rn – and then asking whether one could supplement
them with other objects (and choose extensions for all other relations) so as to make φ
true21. However, I take the intuitive notion of preserving the structural facts about how
some relations apply (that is, the facts about what might be called the mathematical
structure of the objects with respect to some relations as opposed to facts about any
particular objects) to make sense without appeal to any notion of de re properties or
object identity across logically possible scenarios.

In terms of the CATS example, preserving the structural facts about how cat and
basket apply requires considering scenarios which agree with the actual world on the
number of objects satisfying cat(), the number of objects satisfying basket() and the
number of things in the extension of both cat() and basket(). This does not require
preserving facts about identity. For example, if one cat died and an additional kitten
was born, the structural facts about how cat and basket apply would remain unaltered.

Speaking in set theoretic terms, we might say that the ‘structural facts about
R1..Rn’ are those facts which determine the isomorphism class of the objects falling
under22 some Rj . However, I take conditional logical possibility to be a primitive
notion which we can learn directly.

Note that this notion of relativized logical possibility is stronger than Hellman’s
notion of unrelativized logical possibility supplemented by an actuality operator in one
important way. In appendix D, I show that we can capture the same content Hellman
expresses using his actuality operator by relativizing all our possibility operators to
the relations whose extension in the actual world we wish to discuss23. In contrast,
merely using Hellman’s actuality operator does not allow us to express claims about
what is logically possible relative to scenarios which are themselves merely logically
possible but not actual. This feature turns out to be very useful, as we will see.

4. Reformulating Hellman’s Simple Paraphrases

Now we turn to demonstrating that Hellman’s paraphrases of mathematical claims can
be captured using only conditional logical possibility claims and first order vocabulary.

21This will give the right verdict if we assume that actually distinct objects are distinct in all logically possible

scenarios.
22I say that an object x ‘falls under’ Rj iff it appears in some tuple in the extension of Rj , i.e.,

∃y1, . . . , ymRj(y1...ym) ∧ (x = y1 ∨ x = y2 ∨ . . . ∨ x = ym)
23Note, however, that the translations of a statement in applied mathematics may need to use relation sym-
bols which do not occur in the original statement (as per the Putnamian strategy of replacing mathematical

vocabulary with arbitrary otherwise unused relation symbols with the right arity discussed below).
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4.1. Strategy

My translations will have approximately the same logical form as Hellman’s. Given a
description D of a mathematical structure and a statement φ about this structure, my
translation for φ will still assert that it would be logically possible for the structure
described byD to be realized, and that it is logically necessary that if some objects have
this structure than (a suitably modified version of) φ will be true of them. However,
we will need to replace all of Hellman’s use of second order logic in his translations of
mathematical statements with logical possibility claims.

To illustrate this strategy, consider the case of mathematical statements about the
natural numbers (I describe how to generalize this approach in appendix B). Recall
that one can uniquely describe the intended structure of the natural numbers by
combining the first four Peano AxiomsWolfram (2016) (which can be expressed using
only first order logical vocabulary) with a second order Axiom of Induction, which can
be expressed as follows24 :

(∀X) (X(0) ∧ (∀n)(X(n)→ X(S(n)))→ (∀n)(N(n)→ X(n)))

Informally, this axiom says that if some property X applies to 0 and is closed under
successor25, then it applies to all the numbers. We can express the same idea using 3

(and a predicate we abbreviate as P 26) as follows.

2N,S [P (0) ∧ (∀x)(∀y)(P (x) ∧ S(x, y)→ P (y))]→ (∀x)(N(x)→ P (x))

This formula says that, given the facts about what is a number and a successor,
(i.e., how N and S apply), it would be logically impossible for P to apply to 027 and
be closed under the successor operation but not apply to all the numbers. Call the
result of conjoining this sentence with the four first order axioms of Peano arithmetic
PA3.

Now we can slot this into Hellman’s paraphrase strategy, and so replace his trans-
lation of any first order sentence of number theory φ28. Thus,

3 [(∃X)(∃f)PA2(N/X)(S/f)]∧
2 [(∀X)(∀f) (PA2(N/X)(S/f)→ φ(N/X)(S/f))]

becomes:

3 [PA3(N/P )(S/R)] ∧ 2 [(PA3(N/P )(S/R)→ φ(N/P )(S/R))]

where P is an arbitrary one place relation and R is an arbitrary two place relation.
As noted above, logical possibility claims reflect facts about all possible ways that a
predicate P could apply - whether describable or not. Thus, my translation of a sen-
tence φ about the natural numbers intuitively has the same truth value as Hellman’s

24Let P (0) be shorthand for (∃z)(∀w) (N(z) ∧ ¬S(w, z) ∧ P (z)).
25That is, X applies to a number that is not the successor of any number, and it applies to the successor of

every number it applies to.
26P can be any one place predicate different from the predicate abbreviated by N.
27By this I mean the unique number that isn’t a successor.
28The strategy in appendix B allows us to translate second order sentences of number theory as well.
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translation of that sentence (assuming second order quantification and logical possi-
bility work as Hellman expects)29. In the remainder of this paper, I will simply speak
of the truth-values of Hellman’s translations or Hellman’s intended truth-values, but
in both cases I mean the truth-values his translations would have if the above assump-
tion were true. A similar story can be told for mathematical structures other than the
natural numbers, as I show in appendix B.

Hellman argues for the bivalence of his translations by appealing to the categoricity
of the second order descriptions of the mathematical structures under consideration.
In other words, given any sentence ψ in the appropriate language, either it or its
negation will be necessitated by Hellman’s description D of the relevant structure. If
you accept that my translations of mathematical sentences have the same truth-values
as Hellman’s translations of these sentences, then my translations of sentences about
these mathematical structures will also be bivalent. However, we need not go through
Hellman to see that my translations yield bivalence in cases where it is intuitively
desired (i.e., when we seem to have a suitably definite conception of the relevant
mathematical structure).

To see how this plays out in the case of the natural numbers, note that Hellman’s
translations are intuitively bivalent because he uses second order logic to express the
idea that the numbers are as few as can be (and thereby rule out nonstandard models
which add ‘points at infinity’), by saying that any second order X applying to 0 and
closed under successor applies to all the natural numbers. My translations do that
same work by asserting that it would be logically impossible for a predicate to apply
to 0 and the successor of every number it applies to without applying to all numbers.
Intuitively this has the same effect that Hellman intends his second order description
to have, while not presuming anything about the behavior of second order quantifiers.

5. Hellman’s Potentialist Set Theory

Now let us turn to Hellman’s translations for statements of (pure) set theory, which
have a significantly different structure from his translations of claims about ordinary
mathematical structures.

5.1. Motivations for Potentialism

If we had a categorical description of the intended structure of the hierarchy of sets (in
the language of second order logic), we could nominalistically paraphrase sentences in
set theory using the strategy from the last section.

However, there are well-known reasons for doubting that we have any coherent
and adequate conception of absolute infinity (the supposed height of the hierarchy of
sets). The concern here is not simply that it might be impossible to cash the notion
of absolute infinity out in other terms. After all, every theory will have to take some
notions as primitive. Rather, the worry is that our intuitive notion isn’t even coherent –
in the way that our naive conception of set is incoherent (as demonstrated by Russell’s

29Note that I will not attempt to formally prove that my translations have the same truth values Hellman

intends his translations to have. Just as a formal proof is of little value in verifying you’ve correctly formalized
an English sentence into predicate calculus, so too it is of little value in verifying my translations have the same

truth-values as Hellman’s translations (given Hellman’s assumptions about second order logic etc.). Any formal
proof would have to make assumptions about what statements are equivalent on the intended interpretation

of the two languages – the very aspect most open to doubt.
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paradox).
One might like to say that the hierarchy of sets goes all the way up – so no restrictive

ideas of where it stops are needed to understand its behavior. However, if the sets really
do go ‘all the way up’ in this sense, then it would seem that the ordinals should satisfy
the following closure principle.

For any way some things could be well-ordered, there is an ordinal corresponding30 to it.

But the ordinals themselves are well ordered, and there can be no ordinal corre-
sponding to this well-ordering. If the sets are a definite totality, i.e, a logically possible
collection of objects, this is a contradiction. Thus, this naive closure principle can’t be
correct.

In response, we might try to find some other characterization of the sets as a def-
inite structure (in particular, some other characterization of the intended height of
the hierarchy of sets31). However, it’s not clear that any intuitive conception of the
intended height of the sets remains once the paradoxical well-ordering principle above
is retracted. As Wright and Shapiro put it Shapiro and Wright (2006), all our reasons
for thinking that sets exist in the first place appear to suggest that, for any given
height which an actual mathematical structure could have, the sets should continue
up past this height. Thus, taking set theory at face value can seem to force us to posit
an unprincipled fact about where the sets stop32. This problem isn’t limited to realists,
but applies to all philosophers (including modal structuralists) who take set theory to
be the study of a single definite structure.

5.2. The Potentialist Approach to Set Theory

Potentialists, including Hellman, respond to this problem by taking a potentialist
approach to set theory (along lines suggested by Putnam Putnam (1967)). On this
approach, mathematicians’ claims which appear to quantify over sets should really
be33 understood as claims about how it is (in some sense) possible to extend initial
segments of the hierarchy of sets, i.e., collections of objects which satisfy our intuitive
conception of the width of the hierarchy of sets but not the paradox-generating height
requirement. Hellman, unsurprisingly, understands the relevant notion of possibility
in terms of logical possibility (and I will follow him in so doing)34.

The potentialist takes set theorists’ singly-quantified existence claims, like (∃x)(x =
x), to really be saying that that it would be possible for a collection of objects V0 to
satisfy (a version of) ZFC2 while containing a suitable object x (in this case, an x
such that x = x). The potentialist takes set theorists’ universal statements with a
single quantifier like (∀x)(x = x), to really say that it is necessary that any object x
in a collection of objects satisfying ZFC2 would have the relevant property.

The potentialist handles nested quantification using claims about how collections of
objects satisfying a version of ZFC2 could be extended. For example, Hellman would
offer the following translation of (∀x)(∃y)(x ∈ y): necessarily if V1 satisfies ZFC2 and

30By this I mean an ordinal with the same order-type as the well ordering in question.
31Note that the axioms of ZFC or even ZFC2 don’t suffice to categorically determine the height of the set
theoretic hierarchy. For example, if (as most mathematicians assume) the hierarchy of sets extends beyond the
first inaccessible then the initial segment of the hierarchy below that inaccessible will satisfy ZFC/ZFC2.
32That is, it seems that facts about where the realist hierarchy of sets stops would not be determined by
anything in our conception of the sets (and maybe not even by anything we can have knowledge of at all).
33Strictly speaking, I take it, Putnam would say these claims can be so understood.
34However a number of other approaches are possible. See, for example, the closely related accounts given by
Linnebo Linnebo (2010) and Parsons Parsons (1977)
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includes a set x, it is logically possible for there to be an extension, V2,35 of V1, also
satisfying ZFC2 and containing a set y such that x ∈ y (in the sense of ∈ relevant
to V2)36. Writing this out formally using Hellman’s notion of logical possibility gives
us the following sentence (implicitly restricting V1 and V2 to range over collections of
objects satisfying a version of ZFC2 and using ≥ to denote extension):

2(∀V1)(∀x)[x ∈ V1 → 3(∃V2)(∃y)(y ∈ V2 ∧ V2 ≥ V1,∧x ∈ y)]
Note that by adopting this potentialist understanding of set theory, we avoid com-

mitment to arbitrary limits on the intended height of the hierarchy of sets. We also
avoid the assumption that there is (or could be) any single structure which contains
ordinals witnessing all possible well-orderings, though every possible well-ordering is
realized in some possible initial segment of the sets.

6. Formulating Potentialist Set Theory

Now let us turn to the problem of articulating a suitable replacement for Hellman’s
potentialist paraphrases which avoids second order quantification. I will explain my
version of these potentialist paraphrases informally, but the interested reader should
see Appendix D for more details. The appendix also reviews why bivalence holds for
my translations of sentences in set theory37.

To articulate potentialist paraphrases of set theory in terms of conditional logical
possibility, we must first express the claim that some objects behave like a standard
width initial segment of the hierarchy of sets. Hellman expresses this idea by using
ZFC2, a second order version of the ZFC axioms of set theory. One can show that
ZFC2 suffices to pin down the intended width of the hierarchy of sets (though not
their height). It’s not too hard to write a version of ZFC2 in terms of my notion
of conditional logical possibility, by using a version of the trick for replacing second
order quantification with claims about logically possible extendability demonstrated
in section 4 and generalized in appendix B. This approach lets us write out a sentence
(as it were ZFC3[seti,∈i]) using the logical possibility operator which says that the
objects satisfying seti under the relation ∈i capture the behavior of an initial segment
of the sets.

We now must duplicate the complex statements about extendability used to handle
nested quantification in Hellman’s paraphrases. It is straightforward to define the claim
that seti+1,∈i+1 extends seti,∈i using only the logical possibility operator and first
order vocabulary. This allows us to talk about possible extensions of initial segments
of the sets. However, to fully represent potentialist paraphrases, we also need to mirror
Hellman’s claims which fix an object x from among those which some relations seti,∈i
apply to, and talk about how an element y in a potential extension seti+1,∈i+1 relates
to x. As stated, this claim involves quantifying in, but we must find another method.

The key idea behind my strategy is to require that each initial segment of objects
satisfying seti,∈i be considered together with a relationRi which assigns each ‘variable’
from some countable collection38 to an object satisfying seti. Thus, Ri behaves like

35By this I mean that every element of V1 is an element of V2 and the second order relation quantifier Hellman

uses to give ∈ its meaning on V2 agrees with ∈ on V1 (and, indeed, any element of V2 which is ∈2 an element

of V1 is also in V1).
36Actually, Hellman has a separate story about how to handle restricted quantification in set theory which I
elide for present purposes. See Hellman (1994) chapter 2 section 2.
37That is, if φ is a sentence in the language of set theory, either my translation of φ or my translation of ¬φ
will express a truth.
38We can use the definition of the natural numbers to provide a countable collection of ‘variables’ where we can
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an assignment function which associates each variable with some object within the
initial segment Vi. We can then preserve the behavior of this assignment function in
relevant modal contexts by adding Ri to the subscripts on relevant 2s and 3s and
demanding that Ri+1 agree with Ri everywhere except on the particular variable we
want to select from seti+1,∈i+1. This allows us to preserve our choice of some sets x, y
and z within seti,∈i while considering ways that one could choose an additional object
w from within some logically possible seti+1,∈i+1 extending seti,∈i. The overall effect
will be to duplicate what Hellman achieves via quantifying in, through the use of the
relations Ri.

7. Conclusion

In this paper I have shown how to streamline Hellman’s modal structuralist approach
to mathematics, by invoking a notion of logical possibility given certain facts. We saw
that Hellman already accepts a notion of logical possibility holding the material facts
fixed. Given this, it is only natural that he should also accept my notion of conditional
logical possibility. However, once one does this there is no need to invoke second order
quantification as an additional primitive.

The streamlining I propose also helps us evaluate the two apparent problems for
modal structuralism mentioned in the introduction. We have seen that it is possible
to completely eliminate the controversial practice of quantifying in from Hellman’s
paraphrases.

I think the technical work in this paper demonstrates that there is no unavoid-
able special problem for modal structuralism caused by its reliance on second order
logic. This is not to say that modal structuralism is ontologically innocent. Although
logical possibility intuitively appears ontologically innocent, whether my simplifica-
tion defends modal structuralism’s ontological innocence or reveals that (despite our
intuitions) logical possibility is itself unsuitable for nominalist use depends on the
right answer to certain controversial background questions. Specifically, it depends on
whether we ought to take any other notion which does the same work as second order
logic to be equally ontologically committal.

If similarity of mathematical behavior doesn’t require (or make a strong case for)
similarity of ontological role, then my simplification allows modal structuralism to
shake off the aspersions that have been cast on its nominalistic credentials. If it does,
then we can respond by either giving up on the nominalistic acceptability of modal
structuralism and admitting that the seemingly innocent notion of logical possibility
(and possibly many other notions we don’t suspect) is actually ontologically committal
or by reevaluating our reasons for thinking that second order logic is ontologically
committal (since the results of this paper show that although second order logic is
similar to set theory which looks ontologically committal, it is also similar to logical
possibility which looks non-committal) 39.

use definite descriptions to uniquely refer to each such variable. Specifically we can think about the variable
symbols in the language of set theory as being canonically associated with numbers, and use the sentence

uniquely defining the associated number to refer to the variable.
39Most readers will probably find it immediately more attractive to say that both second order logic and

logical possibility are ‘guilty’ i.e., ontologically committal. However, I think there’s a surprisingly attractive
prima facie case for taking the opposite approach. For, as we saw in the discussion of potentialism in 5.2, there

appears to be a simple and independently motivated way of grounding set theoretic claims in claims about

logical possibility (one which is motivated by the Burali-Forti paradox). But, in contrast, we have seen (in
discussing Field’s remarks in section 3) that it does not seem possible to systematically ground facts about
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In conclusion, we’ve seen that by adopting a small generalization of Hellman’s notion
of logical possibility (the meaningfulness of which he has already endorsed), we can
significantly streamline modal structuralism – and perhaps solve some other problems
as well.

Appendix A. A More Formal Approach to Conditional Logical Possibility

I take the notion of conditional logical possibility to be primitive and intuitive. How-
ever, one can provide approximately correct truth conditions for sentences involving
nested applications of subscripted 2 and 3 operators, in terms of the more familiar
language of set theory with ur-elements40.

First let us define a formal language L, which I will call the language of logical
possibility (though this language may be not able to express all meaningful claims
involving logical possibility). Fix some infinite collection of variables and a collection
of relation symbols, and define L to be the smallest language built from these variables
using these relation symbols and equality closed under applications of the normal first
order connectives, quantifiers, 2 and 3 (where the latter two operators can only be
applied to sentences, so there is no quantifying in).

Specifically, if we ignore the possibility of sentences which demand something co-
herent but wouldn’t have a model in the sets, (such as sentences which require the
existence of proper class many objects) and take all quantifiers appearing outside a
logical possibility operator to be implicitly restricted to some set sized domain of
non-mathematical objects41 we could say the following42:

Definition A.1. A formula ψ is true relative to a model M and an assignment ρ
which takes the free variables in ψ to elements in the domain of M 43 just if the
following conditions obtain44 (note that only the last clause says something out of the
ordinary):

• ψ = Ri(x1 . . . xk) and RM
i (ρ(x1), . . . , ρ(xk)) (as usual RM

i is the interpretation
of Ri by M ).
• ψ = x = y and ρ(x) = ρ(y).
• ψ = ¬φ and φ is not true relative to M , ρ.
• ψ = φ ∧ ψ and both φ and ψ are true relative to M , ρ.
• ψ = φ ∨ ψ and either φ or ψ are true relative to M , ρ.
• ψ = ∃xφ(x) and there is an assignment ρ′ which extends ρ by assigning a value

to an additional variable v not in φ and φ[x/v] is true relative to M , ρ′45

logical possibility in facts about set theory. One might argue that these facts militate in favor of taking logical

possibility to be the more grounding-fundamental notion of the three, and therefore (perhaps) the one whose
apparent ontological commitments reflect the true ontological commitments of everything else that is grounded

in it.
40In this language the non-mathematical objects are taken to be ur-elements as per McGee (1997).
41Our set theoretic approximation can give the wrong answers if there are ‘more’ actual objects than there are

sets.
42Note that if you are a potentialist about set theory in the sense advocated above, these conditions do capture
correct truth conditions for logical possibility but can’t be used to define logical possibility on pain of circularity
43By this I mean a partial function ρ from the collection of variables in the language of logical possibility to

objects in M , such that the domain of ρ is finite and includes (at least) all free variables in ψ.
44As usual I take 2 and ∀ to be abbreviations for ¬3¬ and ¬∃¬ respectively.
45As usual φ[x/v] substitutes v for x everywhere where v occurs free in φ.
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• ψ = 3R1...Rn
φ and there is another model M ′ and a bijection θ from

Ext(RM
1 , . . . , RM

n )
def
=

{y |
∨

1≤i≤n
1≤j≤ki

(∃x1, . . . , xki)
[
y = xj ∧RM

i (x1, . . . , xki)
]
}

to Ext(RM ′

1 , . . . , RM ′

n ) such that

RM
i (x1, . . . , xki) ⇐⇒ RM ′

i (θ(x1), . . . , θ(xki))

and φ is true relative to M ′ and the empty assignment46 .

Note that in the last clause the models M and M ′ need not share any elements.
Rather the structure Ext(RM

1 , . . . , RM
n ) (those elements appearing in some tuple in

the extension of some RM
i ) must be isomorphic (under the relations R1 . . . Rn) to

(Ext(RM ′

1 , . . . , RM ′

n )).
Set Theoretic Approximation: A sentence in the language of logical possibility

is true simpliciter iff it is true relative to a set theoretic model whose domain consists
of the actual objects (which the quantifiers in our original non-mathematical language
range over) and whose extensions for atomic relations reflects the actual extensions of
these relations and the empty assignment function ρ. Note that this definition gives
statements lacking any necessity operators the same truth values as they have in the
actual world.

Appendix B. Modal Structuralist Paraphrases for Regular Mathematics

In this appendix, I will give a general method for simplifying Hellman’s paraphrases
of non-set theoretic mathematics.47. I will follow Hellman in focusing on the case
where the mathematical structure under consideration has a categorical second order
description D, and provide a translation of Hellman’s paraphrases which we may
assume is in the following form48 (where all first order quantifiers in D and ψ are
restricted to M49 and no logical possibility operators appear in D or ψ):

3(∃M)[D ∧ ψ]

We may ignore the difference between quantification over classes and quantification
over relations, by regarding class variables as unary relation variables. For visual clarity
we will use capital letters for second order quantification over relations. We will also
assume that no second order function quantifiers occur in D or ψ, though the same
mechanism can be easily extended to handle function quantifiers. Note that as all first

46Remember φ can’t have any free variables.
47For the reasons discussed in footnote 30, I haven’t tried to give a formal proof of the fact that second order
quantifiers can be replaced with conditional logical possibility operators.
48Officially, Hellman’s paraphrases take the form 3D∧2(D → φ). But when D is categorical this is equivalent

to the form above.
49That is we can assume all quantifiers are of either the form (∃x)(M(x) ∧ φ) or (∀x)(M(x)→ φ)
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order quantifiers are restricted to M , we only need concern ourselves with the behavior
of relations and relation variables on elements of M .

We may now define my translation of Hellman’s paraphrase 3(∃M)[D ∧ ψ] to be
3t(D ∧ ψ) where t is defined via the following recursive definition (with t = t()).

t(R1..Rn)(∃Pφ) = 3M,R1...Rn
t(R1...Rn+1)(φ[P/Rn+1])]

t(R1..Rn)(∀Pφ) = 2M,R1...Rn
t(R1...Rn+1)(φ[P/Rn+1])]

t(R1..Rn)(¬φ) = ¬t(R1..Rn)(φ)

t(R1..Rn)(φ ∧ ψ) = t(R1..Rn)(φ) ∧ t(R1..Rn)(ψ)

t(R1..Rn)(φ ∨ ψ) = t(R1..Rn)(φ) ∨ t(R1..Rn)(ψ)

t(R1..Rn)(∃xφ) = (∃x)[t(R1..Rn)(φ)]

t(R1..Rn)(∀xφ) = (∀x)[t(R1..Rn)(φ)]

t(R1..Rn)(Rk(x1, ..xm)) = Rk(x1, ..xm)

t(R1..Rn)(x1 = x2) = x1 = x2

We now argue that this translation preserves (intended) truth values. Except for
the first two lines the translation is entirely homophonic, so as long as those equalities
preserve (intended) truth values, the entire translation should do so. However, the
first and second equalities simply express the fact that, understand as Hellman intends,
second order relation variables on a domain M range over all logically possible relations
on M and vice versa. Finally, the same consideration (on a given domain, ∃M ranges
over exactly the collections it would be logically possible for a predicate to apply to)
tells us that moving between 3(∃M)t([D ∧ ψ]) and 3t(D ∧ ψ) shouldn’t change the
truth value (again assuming second order quantification operates in the usual fashion
as Hellman expects).

Appendix C. Note about applied mathematics

Although the aim of this paper is to simplify Hellman’s story about pure mathematics,
everything Hellman says about applied mathematics50 is also expressible using my
notion of conditional logical possibility. I only mention this fact because it means that
Hellman could adopt my simplifications without significant harm to his proposal.

As noted in section 2, Hellman paraphrases sentences in applied mathematics, like
‘There are a prime number of rats’ with sentences of the form:

2(holding fixed all material facts)φ

where φ is a sentence asserting that if there are objects behaving like the numbers,
(or whatever mathematical objects are mentioned in the statement to be translated)
then these objects are related to the material objects in some (second-order describ-
able) fashion. For instance, φ might assert that if some things behave like the natural

50Hellman himself doesn’t give a very fleshed out story about how to handle physical quantity statements, like
‘there is an object weighing more than 5 grams’ or say anything about how to handle probability statements

(which are especially challenging insofar as they seem to associate numbers with something like sets of possible
worlds, rather than any physical objects).
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numbers, then there is a function which pairs up the rats in the actual world in a
one-to-one fashion with those natural numbers up to some prime, thereby asserting
that there are a prime number of rats.

It is possible to do equivalent work using my notion of conditional logical possibility.
First we apply the technique outlined in appendix B to replace second order quan-
tification with conditional logical possibility. We then add all the non-mathematical
relations mentioned in the sentence to be translated (in the example ‘there are a prime
number of rats’ this would just be the predicate ‘rat()’) as subscripts to all the 2 and
3 operators in the sentence. The resulting sentence now simply holds fixed every ma-
terial fact it actually makes use of, allowing it to be expressed in terms of conditional
logical possibility51 (without appeal to a notion of holding all the material facts fixed).

Appendix D. Paraphrasing Potentialist Set Theory

Potentialism about set theory replaces claims about a definite totality of sets with
claims about how initial segments of the sets can extend each other. Hellman consid-
ers initial segments of the sets which satisfy ZFC2 and uses quantifying in to formulate
claims about how these segments can be extended. We reformulate Hellman’s poten-
tialist understanding of first order set theory52. in the language of conditional logical
possibility in two steps.

First, we replace the requirement that the initial segments satisfy ZFC2 with an
equivalent characterization ZFC3 in terms of conditional logical possibility, using the
technique described in appendix B.

Secondly, we can reformulate claims about how initial segments can be extended
in a way that eschews quantifying in. Recall that potentialism translates sentences
of set theory by replacing quantifiers over the sets with statements about how it
would be possible to extend initial segments of the sets and choose elements from
those initial segments, e.g., if φ is quantifier free then ∃xφ(x) would translate to
3[ZFC3(set,∈)∧(∃x)(set(x)∧φ(x))] where this says that it would be logically possible
for there to be an initial segment of the hierarchy of sets containing an object that
satisfied φ.

To express potentialist truth conditions without quantifying in, I will require that
each initial segment seti,∈i be paired with an associated assignment relation Ri which
(in effect) assigns each of the countably many variables x1, x2... in the first-order
language of set theory to objects within seti. When we ask about the possibility of
extending the current initial segment (seti,∈i) we can place Ri in the subscript of all
further 2 and 3 expressions to pass along the information about variable assignments.
We allow this choice of assignments for variables to be modified to allow variables to
be assigned to objects in seti+1 (an initial segment extending seti) by defining another

51We presume that the sentence to be translated does not unrestrictedly quantify over all material objects,

e.g., assert the finiteness of the material world, or if it does there is a single predicate that applies to every
material object. Admittedly, there would be trouble if you wanted to translate a single sentence that used all

atomic vocabulary of the right arity. However, there is plenty of atomic vocabulary that doesn’t occur in the

kind of scientific applications of mathematics which Hellman tries to capture (e.g. ‘angel’ ‘blesses’ etc.), so this
is unlikely to be a practical problem.
52Unlike Hellman, I don’t propose to give potentialist translations of second order statements about set theory,

because unbounded second order quantification over a potentialist hierarchy isn’t obviously meaningful. Hell-
man himself admits (in chapter 2 section 3 of Hellman (1994)) that his translations of second order sentences
don’t behave the way we’d intuitively expect, e.g., his translation of second order replacement doesn’t motivate
his translation of first order replacement. Also, those who like Hellman’s treatment of second order set theory
can use the techniques proposed here and in appendix B, in a fairly straightforward way, to reproduce it.
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assignment Ri+1 which must agree with Ri everywhere except for on the (number
representing) the variable allowed to range over seti+1.

I will use V (Va) to abbreviate the claim that seta,∈a satisfy ZFC3(seta,∈a) and Ra
behaves like (the relation corresponding to) an assignment function from the objects
satisfying N to those satisfying seta. More concretely this amounts to the conjunction
of the following three claims:

• ZFC3(seta,∈a), i.e., Va behaves like an initial segment of the hierarchy of sets.
• N, S satisfy PA3.
• Ra behaves like a function from N to seta

Remember that, as discussed on pg. 12, schematic relation symbols (like ∈, seta
and P ) are used as a mnemonic device in place of suitable non-mathematical relations
with the same arity.

Note that my only reason for using PA3 is that the natural numbers (under suc-
cessor) contain infinitely many definable objects, which we can use to represent vari-
ables, for example 1 represents x1, 2 represents x2 etc. In what follows, I will use n,
to abbreviate the formula where n is replaced by a variable constrained to be the
(unique) n-th successor of 0. Thus, for example, a claim of the form φ(1) abbreviates
(∀x)[S(0, x)→ φ(x)]. I will abbreviate the conditionalized logical possibility operators
3setn,∈n,N,S,Rn

and 2setn,∈n,N,S,Rn
by 3Vn

and 2Vn
respectively.

I will use Va ≥i Vb to abbreviate the claim that the seta under ∈a extends the setb
under ∈b and the assignment of variables Rb agrees with Ra everywhere except on i
(where i is the code for xi). Put more concretely, this is to say that

• V (Va)
• V (Vb)
• (∀x)[seta(x)→ setb(x)]
• (∀x)(∀y)[seta(y)→ (x ∈b y ↔ x ∈a y)]
• (∀n)[N(n)→ n = i ∨ (∀y)(Ra(n, y)↔ Rb(n, y))]

We can now translate the set theoretic utterance (∃x)(∀y)(x = y ∨ ¬y ∈ x) into
a claim about how it is logically possible for set1,∈1, R1 to be extended. First we
rewrite this set theoretic statement in a regimented language with numbered variables
as (∃x1)(∀x2)[x1 = x2 ∨ ¬x2 ∈ x1]. Then we translate this sentence into:

3(V (V1) ∧2V1
[V2 ≥2 V1 →

(∀z)(∀y)(R2(1, z) ∧R2(2, y)→ z = y ∨ ¬y ∈2 z)])

That is, such ∃x2∀x1 sentences can be understood as making a claim with the fol-
lowing form. There could be a model of set theory set1,∈1 and a relation R1 assigning 1
(representing x1) to an element of set1 so that it is necessary (holding fixed set1,∈1, R1

and the numbers) than any model of set theory set2,∈2 extending set1,∈1 and relation
R2 assigning 2 to an element of set2 (while agreeing with R1 about the assignment
of 1) makes the interior of the above formula true when x1, x2 are replaced by the
assignments of 1, 2 by R2 and ∈ is replaced with ∈2.

The same strategy works more generally to produce paraphrases of arbitrary sen-
tences in the language of pure set theory. We can use recursive applications of the
following principles to translate every sentence in the first-order language of set the-
ory into a claim about logically possible extendability.
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In particular we define tn as follows:

• tn(xi ∈ xj) is the claim that Rn assigns i to an object ∈n the object it assigns
to j i.e.,(∀z)(∀z′)[Rn(i, z) ∧Rn(j, z′)→ z ∈n z′]
• tn(xi = xj) is the claim that Rn assigns i to the same object it assigns j to

i.e.,(∀z)(∀z′)[Rn(i, z) ∧Rn(j, z′)→ z = z′]
• tn(¬φ) = ¬tn(φ)
• tn(φ ∨ ψ) = tn(φ) ∨ tn(ψ)
• for n ≥ 0, tn+1((∀xi)φ(x)) : 2Vn

[Vn+1 ≥i Vn → tn+2(φ)]
• for n ≥ 0, tn+1((∃xi)φ(x)) : 3Vn

[Vn+1 ≥i Vn ∧ tn+2(φ)]
• t0((∀x)φ(x)) : 2[V (V0)→ t1(φ)]
• t0((∃x)φ(x)) : 3[V (V0) ∧ t1(φ)]

The translation of a set theoretic sentence φ is t0(φ). Note that the validity of the
above translation relies on the fact that for any two structures satisfying ZFC2 one is
isomorphic to an initial segment of the other. Hellman invokes a version of this claim in
chapter 2 section 3 of Hellman (1994) and I think an analogous argument can be made
within my formal system, but reasons of space prevent me from demonstrating this
here. Also note that in the above definition we can replace Vj with Vj mod 2 without
affecting the truth value of the translation. This allows us to translate sentences with
arbitrarily many quantifier alternations using a fixed finite number of atomic relations.

Note that this translation honors the intuitive bivalence of the language of set theory.
Consider an arbitrary set theoretic sentence φ. t(φ) = t0(φ) and t(¬φ) = t0(¬φ) =
¬(t0(φ)). Thus either t(φ) or t(¬φ) will be true.
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