L i =S P—

Process algebra with four-valued logic

Jan A. Bergstra" *— Alban Ponse’

' Utrech University, Department of Philosophy
Heidelberglaan 8, 3584 CS Utrech, The Nederlands

2 University of Amsterdam, Programming Research Group
Kruislaan 403, 1098 SJ Amsterdam, The Nederlands

—— - - - " anpy—— e —

ABSTRACT. We propose a combination of a fragment of four-valued logic and process alge-
bra. This fragment is geared to a simple relation with process algebra via the conditional guard
construct, and can easily be extended to a truth-functionally complete logic. We present an op-
erational semantics in SOS-style, and a completeness result for ACP with conditionals and four-
valued logic, Completeness is preserved under the restriction to some other non-classical logics.

KEYWORDS: Process Algebra, Many-Valued Logic, Conditional Guard Construct, Conditional
Composition.

. P e

1. Introduction

Three and four-valued logic arise naturally in descriptions of data types with er-
ror/exceptions and divergencies. We take this observation as a point of departure. In
the case of three-valued logic a reference to [JM94] is illustrative: that paper describes
in detail the use of a three-valued logic in the specification language VDM [Jon90].
This logic deals with partial predicates [BCI84], and stems from Kleene [Kle38]. An-
other use of three-valued logic evolves if connectives are interpreted sequentially, and
stems from McCarthy [McC63]. A third variant was defined by Bochvar [Boc39]), in
which a third truth value occurs that 1s strict with respect to all logical operations.
Process expressions can have actions and conditions parameterized by data. If one
uses process expressions as a notation for algorithms, one faces the question how to
interpret conditional constructs in case a condition evaluates to a truth value different
from true or false. In this paper we provide a solution to that question for the four-
valued logic of [BBRS5] and process algebra in the style of ACP (Algebra of Com-
municating processes, see e.g., [BK84a, BK84h, BW90}) extended with a conditional
guard construct as in [BB90]. The reason for using this particular four-valued logic 1s
that it embeds the two typical, non-compatible forms of ‘undefinedness’ that we distin-
guish, and can be easily related to various associated logics. We consider thisextension
of ACP with four-valued logic as an integrated framework for the incorporation of so-
phisticated exception handling mechanisms in ACP style process algebra. As far as

Journal of Applied Non-Classical Logics. Volume 10 — No. 1/2000, pages 27 to 53

28 Journal of Applied Non-Classical Logics. Volume 10 - No. 1/2000

we know, similgr workt has not been reported about ACP or any other process algebra
before. We continue this introduction with a short overview of all in gredientsinvolved,

Four-Valued Logic. We consider four-valued propositional logic as introduced in
[BBROS]. It is based on the set of values T4, which consists of

M (meaningless),
T (true),

F (false), and

D (divergence).

The following set of logical operations is defined and distinguished as truth-
functionally complete:

- (negation),
} (definedness: distinguishing F, T from D, M),
A (conjunction), and

J\ (left sequential conjunction).

Here A denotes McCarthy's left to right conjunction (cf. [McC63]), where we adopt
the asymmetric notation from [BBR95]. Truth tables for—,), A, and A are

z | z | AlM T F D
M M| M. M
F T T F
T F F

F
DM D F D D

1 e B

..(_
R i B My | P
< < <
mNm—- <
mo<

D|D D|

(Observe that A i1s monotonic in M.) The resulting logic is denoted as

E‘l("‘s‘lﬂ/\} J\):

where the subscript 4 refers to the four values of T4. Notice that the connectives A,
{\ , and their duals are associative, and that A and V are commutative as well. A com-
plete axiomatization of its equational theory can be found in [Rod96]. The sequential
fragment L4(—, A\) was carlier axiomatized in [BP96]. Kleene's three-valued logic is
embedded in Z4(—, §, A, A) by T,F, D and -, A, Bochvar’s strict three-valued logic
by T,F, Mand -, A, and McCarthy's sequential three-valued logic by T, F, one of D, M,
and -, A, where the asymmetric symbol for left sequential conjunction is introduced
in [BBRO3S).

Process Algebra with Two-Valued Logic, A basic construct in the combination
of two-valued propositional logic and process algebra is conditional composition
r 4 ¢ b y, introduced in [BB90]. Here z, y are processes, and ¢ is a proposition. This
operation satisfies (among others) the following axioms:

rAaTpby = =
rdAFby = Y,
rdoby = yd-¢ b .

Process algebra with four-valued logic 29

The notation . < _ > _stems from [HHH ™ 87], and in that paper z 4 ¢ > y is defined as
if ¢ then z else y fi.

The special constant o represents the inactive or deadlocking process, and 1s ax-
iomatized by z +d = x and § - z = J where + represents ‘choice’ (so inaction never is
an alternative) and - represents sequential composition. With ¢ the conditional guard
construct from {D1735] (called guarded command in that paper) can be represented in
process algebra. This operation is introduced in process algebra in [BB9(}.with nota-
tion :—, and satisfies

b4z = AP,
T2z = =z
Fimz = J.

For the conditional guard construct the following axiom relates V and +.
VY sz =¢:2z+ Y :— =z,

Its soundness follows from commutativity of both V and -+, and the axioms z 42 = =
and ¢ + & = z. An axiom that reduces repeated application of the conditional guard
construct 1s:

o=+ (Y :i2z)=0AY =z

(note the symmetry in ¢ A). A different approach to process algebra with two-valued
logic is described in [GP94], where propositions are considered process constants (e.g.
¢ -2+ ¢ yexpresses 4 ¢ b y, and ¢ - 1 expresses ¢ A).

Interpretation of Conditional Constructs with Non-Classical Values. A simple
point of departure for defining conditional constructs over four-valued propositional
logic is to start from considerations about the interpretation of conditions. We view a
meaningless condition as one that destroys all operational behaviour (the process ex-
pression contains an irreparable error), and a divergent one as less dramatic in the pres-
ence of alternatives. This gives the following new axioms:

D:—x
M:— x

9,
I

1§

The constant p is new here, and represents meaningless as a process. This constant 1s
axiomatized® by

I

1 “meaningless ruins each alternative,
o and is perpetual”.

T+ U
tx

With vV and A we define

il

d = x+Y oz PV 2z,
¢ = (Y 1= z) PNV 2,
!The following axioms seem also to characierize the chuos process x, which stems from CSP {BHR34].

However, x characterizes the effect of infinite internal activity, and its laws capture an intuition that is not
useful in our set-up. Modeling internal activity explicitly would distinguish u and x.

1

30 Journal of Applied Non-Classical Logics. Volume 10 — No. 1/2000

which for ¢,¢ € {T,F} both agree with the axioms for conditional guard constructs
over two-valued proposition logic. The second axiom expresses that also the order of

eval}lation in¢ :— (¥ :— z) is crucial, and replaces the earlier mentioned symmetric
version,

Structure of the Paper, In the next section we further discuss the fragment of four-
valued logic based on — and the logical operations V and A as introduced above, In
Scction 3, we combine this fragment with an extension of ACP. In the next two seC-
lions we define an operational semantics and bisimulation equivalence, and we prove @
completeness result. In Section 6. we consider four examples in process algebra with
four-valued logic. The paper. ends,with a few .words. on actions parameterized with .
non-classical values, and process algebra with some other many-valued logics.

Acknowledgements. We thank Piet Rodenburg for careful proof reading and sug-
gestions, and Alex Sellink, Wan Fokkink and a referee for discussion and remarks.
Furthermore, the contents of the paper [BBR95], in which various three-valued log—
ics are integrated, turned out to have an unexpected heuristic value for us.

2, A Four-Valued Logic with Propositions

We consider the following set of logical operations on the set T4 = {M, T,F,D} of
truth values: |

" Ty — Ty
AV,A YV, A,V TaxTa— Ty

of which =, A , and A are defined by the truth tables in the previous section,. The-
remaining operations are all definable:

A
Disjunction: zVy = —(-z A-y),
A

Left sequential disjunction: =V y = -(-z A),
. L A

Right sequential conjunction: & Ny =Y\ T,
\ . FAY c\/

Right sequential disjunction: aVy=yVz.

We represent the resulting logic by

24("‘: N, c{\)

(thus without definedness, which indeed cannot be defined anymore). We do not know
any axiomatization, and usc the identities iml?licd by the truth tables fOI'.Eq("‘l, A&).
(This gives 416+ 16 = 36 identities, or 40 if we include tt!e dugl.and right segucn tial
operations). A perhaps convenient representation of these identities (and their duals)

Process algebra with four-valued logic 31

1S given by the following directed graphs

M M

t)

F T

t)

D D M F D M T D
t) Nt/ Nt/
T F T F
A &=V A = Y

The value of z ¢ y 15 the highest of z and y in the { -graphif z and y are connected, and
the value of z otherwise. Observe that all operations in X4(—, A, A) are monotone®
according to the following partial ordering:

M

D

When we use proposition symbols from a set I, we shall write

24(P: T /\,J\):

and for concise notation we shall identify X4(—, A, A) and £4(0, -, A, A). Inor-
der to interpret propositions ¢, i, ... over IP, we use substitution on single proposition
symbols: let p, ¢ € P, then |

4/ple = ¢,
6/plp 2 4,
ld/ple a c force {M, T,F,D},
[#/pl-v = -[¢/pl¥,
[8/P1(1 O w2) = [@/plYn O [8/P10

for & € {A,V, A, YV, A, V),
and as a proof rule the excluded fifth rule:
o(¢) =0o(y) foralle € {_[M/p], [T/}, [F/p), [D/P]}
¢ =

? A binary operation is monotone if © < y implies f(z,c) < f(v,c) and f(c,z) < f(c,).

32 Joumnal of Applied Non-Classical Logics. Volume 10 - No. 1/2000

All in all, this yields a complete evaluation system for X4(P, -, A, A). We write

E-‘l(}P:_':A:d\) l= ¢’=¢

if ¢ = 1 follows from the system defined above. If IP is fixed, we often only write

= ¢ = 1. The identities stated in the following lemma are used in proofs to come,
and can all be easily checked.

Lemma 2.1 The following identities hold in X4(PP, -, A, A):

]“ |=(¢'VT)C(\¢:¢!

2E (VT AWMVTIAd=(¥VT)AS,
3. '=<}5VD:=¢R/D.

3. Process Algebra with Four-Valued Logic

In Table 1 we present a particular variant of ACP (see, e.g., [BK84a, BK84b, BW90]),
for which we shall use the notation

Here A, is.a set of atornic actions.that contains distinguished action.t, and v is a com- |
munication function that is commutative and associative. We take « totalon A, x A; —
Ais, where Ags = A U {d}. The six operations of ACP(A,, v) are

Sequential composition: P - () denotes the process that performs P, and upon com-
pletion of P starts with ¢J;

Alternative composition: P + () denotes the process that performs etther P or Q;

Merge or parallel composition: P || Q denotes the parallel execution of P and @ (in- -
cluding the possibility of synchronization);

Left merge, an auxiliary operator: P || @ denotes P || @ with the restriction that the |
first action stems from the P; ' |

Communication merge, an auxiliary operator: P | Q denotes P || @ with the restric- -
tion that the first action is a synchronization of both P and @; |

Encapsulation: 8y (P) (where H C A;) renames actions of P in H into 4.

In ACP(A;,~) the communication merge is commutative (CMC), by which the sym-
metric variants of (CMJ5) and (CMR) are absent and parallel composition is commuta-

tive.

In Table 2 some additional features are axiomatized: meaningless (u), pre-
abstraction (17, i.e., renaming of all actions in I to distinguished action ¢, not further
used in this paper), conditional guard construct (¢ :—+ as a unary operation), and con-
ditional composition. In these axioms ¢ ranges over X4 (P, =, A, A). The axioms in
Tables 1-2 are parameterized by action set A;. We mostly suppress the - in process

Process algebra with four-valued logic 33

Table 1: Axiomsof ACP(A;,v),a,b € A5, H C A;.

(A1) z+(y+z2) = (z+y)+z

(A2) z+y = YTz

(A3) x4+ =

(A4) (x+y)z = =zz4 yz

(AS) (zy)z = 2(yz)

(A6) r4+d6 = =z

(A7) br = 0

(CF1) alb = ~(a,b) ifa,be A
(CF2) ald = o

(CM1) zfly = (zlLy+ylle)+e|y
(CM2) all z = ax I
(CM3) ezl y = a(z | y)

(CM4) (z+y)llz = =z 2+vyl=

(CMC) sy = ylz |
(CMS5) az|b = (a|b)x

(CM7) az|by = (a|b)(z | ¥)

(CM8) (z+y)|z = zl|z+ylz

(D1) du(a) = a ifagH

(D2) Ou(a) = & ifacH

(D3) Or(z+y) = Ou(z)+0u(y)

(D4) Ou(zy) = Ou(z)0u(y)

14 M ‘ ¢
4 Journal of Applicd Non-Classical Logics. Volume 10 - No, 172000

[’Elblc 2: Re:mmnmg axloms of ACPp m . (Ay, 7, P)abe Ay, I C A,

(Ml) Xz -} =
(Mz) H z = ’:
(GM) M T r = M 1
(GT) Tiwx = X
(GF) F:—=a = §
(GD) Diva = §
(Cond) 2Adgby = ¢ a+giay
| (QCI) ffJ:—-HJ-l-tf):—)a: = ¢VY: =z
(GC2) gzt diny = ¢io(z24y)
(GC3) (6 :=a)y = ¢:>ay
(GCLA) i (Yirz) = dAY oz
(QCS) di~elly = ¢:=(zf v
(OCME6) piralp:—b = pAYp i alb
([GCMT) b az|:ob = ¢AY:— (alb)e
(GCMS8) v an|y = by = ¢AY = (a|d)(z | v)
(LGUC) M(p:—=2) = ¢:—y(x)
('TGCO) il =) = ¢:=t(x)
1 {T1) ti(a) = a ifadl !
{ (T2) tila) = ¢ ifael
(T3) br(e+y) = ti(z)+1(y) |
('T'4) (zy) = tr(z)tr(y)

pxpressong, and brackels according to the following rules: - binds strongest, :— bir
stronger than |}, | 1, all of which in turn bind stronger than +, Conditional compx
ety i Purther considered a derived construct (using axiom (Cond)).

(13-13@@@;3**«& that il a = for all a € Ags by (GT), (G4) and (GCM6), and likew
plag = . The axiom (GCM6) suggests a more general version of (CE1)~(CF2),
(€ M”"’?) and (GOME) con be seen as generalizations of (CM5) and (CM7), resp
tively. Also observe tht

b~y x =y £ PAY = (2]Y)
(wet g -2 & = Toorpandypi—ry= F - 4), We use the acronym
ACPU,M,;t(AtI T HD)

s tefer both 1o this axiom system and 1o the signature thus defined.

Process algebra with four-valued logic 35

In order to combine process algebra and four-valued logic, we finally introduce the
‘rule of equivalence’

24([}]}:_'1/\14\) |:¢= 11[)

(ROEy) —m——rinro—r—or—orm—-oroonrono-—
ACPpm (A, 7, P)Fd:mx=¢ oz

This rule reflects the ‘rule of consequence’ in Hoare's Logic (cf. [Apt81]). We write
ACPpm u(Ae,7,P)+ ROEs 2z =y,

or shortly - =z = y, if z = y follows from the axioms of ACPp m ,(A¢, v, P), the
axioms and rules for £4(P, -, A, A), and ROE,. We end this section with some useful
derivabilities,

Lemma 3.1 The following identities can be derived in ACPp v . (A¢, v, P) + ROEj4:

l.Fod:—=d+2=¢VT:—> z,
2.Fd vt y=0d 2+ VT iy,
3.Fd:>z=0VD:> z.

Proof. As for 1. This is just an application of axioms (GT) and (GC1).
Asfor2. Use¢p :w+z=¢ :— (z+6) = ¢ :— 2+¢ :— §,andapply l on ¢ :— §+y.

As for 3. We apply ROE, on the identity proved in Lemma 2.1.3: ¢ :— 2 = ¢ :—

:n+f5=q5:—)a:+D:—+a:=¢VD:—+J:25'-1-'3¢CVD:-—+¢:.I

4, Operational Semantics for ACPp v (A, 7, P)

In this section we provide ACPp . . (A¢, 7, P) with an operational semantics. Natu-
rally, interpretations of the propositions occurring at ‘top level’ in a process expres-
sion also determine this semantics. As an example, consider for p € P, a € A, the
eXpression

p i+ a.

Depending on the interpretation of p, this process either behaves as p, as ¢, or as 4.
Given a (non-empty) set [P of proposition symbols, let w range over the valuations
(interpretations) W of P in T4. In the usual way we extend w to X4(P, -, A, A):

w(c) :_:- cforc e {M,T,F,D},
w(—¢) z ~(w(¢)),
w(é Q9) = w(g) Quw()for & €{AV, AV, A, V]

With the system defined in Section 2., it follows that if

= w(¢) = w(t)

36 Journal of Applied Non-Classical Logics, Volume 10 - No, 1/2000

Table 3: Rules for y in panth-format

T
z (e,)
DA S b o
| (w, g e) ifw(g) =M _ Hw,z)
I L #(wwsé:"‘}iﬂ)
+ p(w,)
© 1w, x + y)
“ #4(w,y+ ’B)
I | u(w, z - y)
| plw, 2 || y) |
7 plw, y || @)
(] plw, x|l) |
i(w, | y)
| p(w, On ()
] a(wt(x)

for all 1 & W, then |= ¢ =). Foreach w € W and ¢ & L4(P, -, A, A) we define
Inductively in Table 3 the unary predicate meaningless, notation |

p(w,)

OVEL Process terms in ACPp m, o (Ae,y, P). This predicate defines which process ex-
pressions represent the meaningless process jo under a certain valuation w. |
Phe axtoms and rules for (i, .) given in Table 3 are extended by axioms and rules
given inluble 4, which define transitions

tn,u -
52! m:"wmmmw}' rn gﬁ: A(m F}D'M“u (Aﬁ, ’)’, [p)) x ACPD,M'“ (At } 7? [ED)
wnd unary “tick-predicates™ or “termination transitions”
TONY
<=y / € ACPpw(Ar, 7, P)

forall w € W and a € A, Transitions characterize under which interpretations a pro-
cesy expression defines the possibility to execute an atomic action, and what remains
to be executed (if nanything, otherwise / symbolizes successful termination), The fol-
lowing fuct follows easily by induction on the structure of the process expression in-

volved, nnd clarifies the relation between (termination) transitions and the meaningless

predicate (i,)
p» € | N o
Lemmad.l [fae -2ty ¢ or @ == / for some w and a, then —p(w, @),

Note that the converse implication does not hold (set & =). From the aboveitfollows -
that under a certain valuation w, a process expression either resembles meaningless, o

defines outgoing transitions, or represents deadlock (9).

{IeAt

Process algebra with four-valued logic

Table 4: Transition rules in panth-format

a w,a \/ |
2z —2y / r —y g
- __w,a. w,a,
I -Yy—rY T -y—aY

zl y —=y zlLy ==z ||y

37

38 Journal of Applied Non-Classical Logics. Volume 10 - No. 1/2000

The a_,xioms a{ld rules in Tables 3 and 4 yield a structured operational semantics
(SOS) with negative premises in the style of Groote [Gro93]. Moreover, they satisfy

the so called panth-format defined by Verhoef [Ver95], which in this case defines the
following notion of bisimulation equivalence:

Definition4.2 Let B C ACPp y ,(A¢, 7, P) X ACPp m «(Ae, v, P). Then B is a bisim-

ulation if for all P, Q with PBQ the following conditions hold for all w € W and
a & At:

¢ Ww,P) <= u(w,Q),
o VP'(P L% P = 3Q/(Q %% Q' A P'BQ)),
o VQ' (Q —> Q' = 3IP'(P =% P' A P'BQ)),
o P =5/ &= Q-5
Two processes P, () are bisimilar, notation
P& @,
if there exists a bisimulation containing the pair (P, Q).

Furthermore, from [FG96, Ver93] it easily follows that the transitions and meaning-

less instances defined by these axioms and rules are uniquely determined. This can be
established with help of the following stratification S:

S(u{w,2)) =0,
Sz %) = Sz 2% /) = 1.

It follows that we can apply the main result of [Ver95]: bisimilarity is a congruence
relation for all operations involved. Notice that conditional guard constructs are con-
sidered here as unary operations: for each ¢ € L4(P,~, A, A) there is an operation
¢ -+ _. Itig notdifficult, but tedious Lo establish that in the bisimulation model thus ob-
tained all equations of Tables 1-2 are true (recall that conditional composition_ < .. & _
is considered a derived construct), Hence we conclude:

Lemma 4.3 The system ACPpm 4(Ar, 7, P) + ROE4 is sound with respect to bisim-
ulation: forall P, @ € ACPp m ,,(At,7,1P),

ACPDIMI“(AL!,,')(,P)-{*ROE:;|“P-’-’-'"Q = P & 0.

5. Completeness

In this section we prove completeness of ACPp w, . (4:,7, P) + ROE4, 1.e,
Pe@Q < ACPom,(A:,7,P)+ROEsF P =(Q.

Our proof is based on a representation of process expressions for which bisimilarity
implies derivable cquality in a straightforward way. We write

g =1

10 express that s and ¢ denote the same expression.

Process algebra with four-valued logic 39

Definition 5,1 A process expression P € ACPp m . (A¢, v, P) is a basic term if
P=) ¢i:— Qi

1€t

where I is a finite, non-empty index set, ¢; € L4(P,—, A, A), and Q; € {4,a,aR |
a € A, R a basic term},

Lemma 5.2 All process expressions in ACPp v 4 (A:, v, P) can be proved equal to a
basic term.

Proof, Standard induction on term complexity. B

Fora € A; and ¢ € X4(P, -, A, N), the height of a basic term is defined by

h(6) = 0,

h(a) = 1,

h(¢ :— z) = h(z),
h(

Lemma 5.3 If P is a basic term, there is a basic term P’ witht- P = P', h(P’) <
h(P), and P’ has either the form

=4, (1)
or the form
Z Vi i~ Qi (2)
il
satisfying

(a) foralli,j €I, Qi#d, andQi,Q; € A = Qi # Q; ifi # j
(b) ifdi € I, w & W such that w(y;) =M, thenVj € I, w(y;) = M,
(c) foreachi e I thereisw € W such thatw(y;) =T,

(d) fornoi € I and valuation w, w(y;) = F.

Proof. Assume
P E:—-l QS{ = Qi
forsome n > 1, By Lemma 3.1.1 and axiom (GCLA4) we may assume that either Q; &

¢ foralli,orn = 1 and Q, = & which gives form (1). In the first case, each single
action need occur at most once by (GC1). This proves property (a) of form (2). Let

¢ (B1VT) A A (@n VT).

Hi

¢

(Recall that A is associative.) Observe that for each w € W, w(¢) € {T, M}. Let
furthermore . _
Q"'l' q:)c{\ (i),'l_

PH ?:1 Q‘Jf e Ql"

il

40 Journal of Applied Non-Classical Logics. Volume 10 — No. 1/2000

Note that if w(@;) = M for some ¢ and w, then w(¢;) = M forall j € {1,...,n}. Wt
show that

F P =P (3]

by induction on n.
n = 1. This follows immediately from Lemma 2.1.1.

n==k<+ 1__.Let¢: (p2VTDIA ... A(¢n VT), and ¢-, = qSO/\ ¢;. By induction we hav& |

P = ¢y = Qut iy 6i i Qi

With & applications of Lemma 3.1.2 and (GCI4), we obtaint P = ¢1 = ¢ +
Yy ", @i :— Q;. Doing the same once more yields

= (G2 VT) A 1= Qu+ D iy G i Qi

Now it follows easily that = ¢; = (@2 V T) A ¢1 (recall that g2 = ¢ A ¢, and
w(@) € {T,M}). This finishes the proof of (3), and proves properties (a) and (b) of
form (2) for P,
Next we consider all summands from P” for which no valuation makes the conds.
tion true. For each such summand ¢; :— Q; it holds that |= ¢; = ¢; /A F, and thus

}“E:—-)Qf EC{\F:—}Q,'
fi — (F :— Q)
¢i i~ 9.

T |

In case all summands can be proved equal to ¢; :— § in this way, we are done using
(3): _ —
In the other case, w(¢$;) = T for certain w, 7. If - gfaJ 1— Qu7 = qS :— & for some 7,

then by Lemma 3.1.1 and (GCLA), - ¢;J 36+ @i i Q; = (qﬁj VT)J\cﬁ, 1~ Gy,
Now = ¢; = (& i VTIA ¢; as was already used in the proof of (3). Hence we obtain

FP:’:Z:':lE:"’Qf

with k& < n (and possibly some rearrangement of indices), and for each i € {1,...,k}
there is a valuation w with w(¢;) = T. This proves property {c) of form (2), and pre-
serves properties (a) and (b) for P”. Finally we define

iy = ES:R/ D
P = Z:F..—..l ’t,(),' = Q{.
By Lemma 3.1.3 and 1dentity (3) we obtain
FP=P

Moreover, by definition of v; it follows that w(v;) # F for all w, 1, which proves
property (d) for P'. Also, the construction of P’ preserves properties (a)-(c). ®

Process algebra with four-valued logic 41

Lemma 5.4 Let P, Py be basic terms. Then
P]_{::}Pg —— l‘Plﬂpg.

Proof. By the previous Lemma 5.3, we may assume that both P; and P» sat-

isfy either form (1) or form (2) given there. We proceed by induction on h =
maz{h(Py), h(Ps)).

leth=0,then P, = ¢, (= dforn = 1,2, Sot ¢y :=» § & ¢o :— 6 and
w(é1) = M = w(é2) =M.

NOW ¢ i 8 = ¢y := (D12 8) = ¢ AD 1= 6 = (¢, AD)V D : =3 6. Notice
that £ (¢1 A D)V D = (d2 A D)V D, as for each valuation w both propositions
evaluate to either D or M. In particular

w((p1 AD)VD)=M & w(g)=M
]J»(w, qsl R ‘5)

(N
=
2
Ny
J
Nas.

Consequently, - Py = Ps.

Leth >0and Py =) ;o ¥n,i = @n forn = 1,2, By the previous Lemma 5.3,
we may assume that P,, satisfies form (2) given there. Furthermore, we may assume
that for all ¢ € I, Qni % Qn; forj € I, \ {i}. For the case Qi = aR, ; and
Gn.; = aR, ; this follows by induction: R, ; & R, ; impliesk R,; = Ry j, 80
FaRy i = aRy ;, and thus (GC1) could have been applied.

Now each summand of P, can be proved equal to on¢ in Ps..,, and by Lemma 5.3,
each summand yields a transition for a certain w € W,

Assume that P, —%y \/for some w, a. Thus w(¢y, ;) = T for some uniquez: € I,.

By P, & P,, thereis a unique j € J3_, for which P3_, —— /and |= ¢, ; =
Y3-n 5 (the latter derivability follows from the representation as defined in Lemma 5.3
and the non-bisimilarity of different summands). Thus

Fn i a=Ya_n; :—>a.

Assume that P, —> R, ; for some w, a and unique i € I,. Thus w(y,;) = T.

By P; & P, there must be some unique j € I3_n for which Pa_, —= R3_n ;
and R, i & R3_n j, and for which = ¢y, i = ¥a_n ; follows from Lemma 5.3, By
inductionwe find - R,, ; = R3_, j, and therefore - aR,; ; = aRa_, ; and hence

F Ypni = aRp i =P3-n; i aR3.p ;.
By the derivabilities above and symmetry, it follows that- P, = P,. W

With Lemmas 5.2, 5.3, 5.4, and soundness (Lemma 4.3) we obtain:

Theorem 5.5 The system ACPp m ,(A:, 7, P) + ROE, is complete with respect to
bisimulation: for all P,Q € ACPpm »(A4:,7,P),

ACPom 4 (A, 7. P)+ROE4 FP=Q <= P&{Q.

e
o

o P e) H T Y s S,
T R S S R PR RS

42

6.1, Natural numbers extended with {M, D},

Ioury '
wurmal of Applied Non-Classical Logics. Volume 10 - Ng 1/2000

& Examples

It thig nection e
ection we describe some Cxamples in process algebra with four-valyed logic:

6.2, Minimal History Logic,

6.3, Action History Logic,
f.4. Floyd-Hoare Logic,

Example 6,1 (. M0 Datural numbers with {M, D}) Consider the natural numbers

w=1{0,5(0), 5(5(0)), ..}
el let k1o, L range over w, We write 5(0) = 1, 5(1) = 2 etc. Using sequen-

e fm“*"“””m one easily defines the predicates Z (zero predicate) and N (number

1

400) = T,

4(5(z)) = -N(),
N (x) Z(x)VT.

iollows that Z(0) == T, Z(k+) = F,and N(k) = T

We eatendw 10wy = w U {M}, 50 as to give the following definition of the prede-
vemnat function pred

i

pred(0)

pred(S(x))
We julge thin a prototypical occurrence of M.
W extemd the functions and predicates defined above to wy by setting S(M) =
Sy o N(M) == pred(M) = M, which makes predicates Z and N more significant,
arwd weltich sllows us 1o define left sequential equality, notation &= |, in a recursive:

Wy
rgtys (A@AAW)Y
(-4 (2) A7 (y) S pred(x) & pred(y)).
£ fosblown thiat 4 18 symmetric inwyy, in particularM Sz =2 EM=M _

113 the following we describe a prototypical, generic occurrence of p causgd b?r par-
tiatity, Let / - w -+ {T,F) besome arbitrary function. We define semi-effective infini-

rary diggunetion, notation C\/ by
V=0V V(o9

« recursive definitionof (\/ f implics computation of £(0), f(1), f (2),... il f(n) =

e value 11, In the particular case that foralln € w, f (n) = F, it makes sense

T foor s

b define Vf=D

il

M,

N

1

Process algebra with four-valued logic 43

As an example, we consider the following definition of a partial subtraction function
subp (this example is taken from [BCJ84]). The idea 1s that

subp(xz,y) ~ if x = y then 0 else S(subp(S{(z), y)).

(Thus subp(z,y) = y — z if < y.) We first define subp in our set-up with the help
of an auxiliary function ¢

subp(ﬂ:, y) == g(.’L‘, Y, 0)}

ifr =y,

z
9(2,v,2) = { g(S(z),y,5(z)) otherwise,
We analyze computation of ¢g(z, y, z) with help of an auxtliary predicate Aux
glz,y, z) = v <= Aux(z, vy, z, v},

which can be recursively defined by

Aux(z,y,z,v) = (eSS yphz & v)V
(~(z = y) pAux(S(2), ¥, 5(2), v).

It follows that subp(M,) = subp(z, M) = M. Observe thatk + 1 = 0 = F. Hence
we can infer

Aux(S(0),0,0,) = (S(0) = 0A0 & v)

Now set f = Az.S5(z) & 0\ 2 &= v, thus

ux(5(0),0,0,v) = \F.

By S¥+1(0) & 0 = F it follows that f(n) = Fforaln € w, and hence
Aux(S(0),0,0,v) = D, irrespective of v. So we obtain

subp(5(0),0) =
Finally, we extend the functions and predicates defined above towpmp = wpmU {D}
by setting S(D) = Z(D) = pred(D) = D. Observe that inwmp, D & = = D,
M & ¢ =M,and N(D) = D.

Example 6.2 (MHL, Minimal History Logic) Let In be the assertion which is true of
the initial state of a process and false thereafter. Furthermore, let P4(¢) be the assertion

44 Joumal of Applied Non-Classical Logics. Volume 10 — No. 1/2000

that ¢ is valid in the previous state (i.e., the state before the last action): if there is no

such state, P4(¢) = M. We use the subscript4 to distinguish P4 from the usual P (weak
past, [Bur84]), which we can now define as

P(¢) = —In A Palg),
50 that P(#) = F in the initial state. Though P is a modality, we have

P4(T) i ‘ﬁlnc\/ M,
P.:;(F) = lnc(\ M,
Pis(—¢) = —P4(),
Ps(d AY) = Py(é) A Pa(¥),
Ps(dNY) = Pa(d) N Ps(v),
and one can set
P4(M) M:

P4(D) = (InAM)Y (mln AD).
It then follows that P4 can be removed from finite expressions except for atoms of the
form P%(In) for n € w.

To keep track of the history of a process we will use the minimal history operator
Hg, for n € w defined by:

Hy(c) = cfore€ A U {u},
Hp(az) = a-Hp4q(z) fora € Ag,
Hpo(z+y) = Hg(z)+ Hn(y),
Ho(¢:=2) = H,y(é):— Hy(z),
Hu(c) = cforce {M,T,F, D},
H,(ln) = n =0,
Ho(P4(¢)) = M,
Hn11(Pa(4)) = Hal4),
Hn(-¢) = =Hu(4),
Ho(¢ AY) = Hald) A Hn(Y),

Ho(opY) = Ha(@)NHa(d).

The minimal history operator Hy keeps track of the number of actions that a process
has performed since initialization. As an example, constder

d = In
V

(~P4(In) A P(In))
((/

(=P4(In) A =PE(In) A =PZ(In) A P4(In)).
We assume that all communications are 8. Now consider Hq (P || Ps), where

P (® :— a)?(P :— b),
Po (P :— C)('ﬂ‘I’ e d),

I

Process algebra with four-valued logic 45

and where bounded repetition z"y is defined by 2%y = y, and 2"ty = z - (z"y)
[BP97b]. We find that
Ho(P || Po) = acadb.

The history operator in cooperation with & schedules P; || P, as an alternation of
steps, beginning with P .

Consider potentially nonterminating processes, which we specify with *, the binary
Kleene star [Kle56], defined by

'y = z(z y) + .

(See also [BBP94].) In particular, z*J repeatedly performs z, as follows easily from
the axioms (A6) and (A7), and can also be defined by z* = z(z*) (see [Fok97]). An
obvious question is how to provide scheduling guards for potentially nonterminating
processes. This leads us to infinitary propositions. We give some examples first.

Beven = INYV P4 (Peyen).
Thus ®,,., will hold for even step numbers.
Ber = InV (P4 (In) A =P(In) A P(2er)).
So ¢,, will hold if the action history length is a multiple of 3. We notice

In% P4 (InV =P4(In%/ ...))
InY (=P4(In) AP3(In%/.))
In¥ (=P4(In) A P3(In) ¥ .)).

(I)B‘UBR

It easily follows that
Ho((®eyen :— a)"d ” ("“I’even “—r b)*a) = (ab)"'cf,

and

Ho(((Psr i a) (Dt i = 0) (D =P)™ || ((— D 1~)~ Py i~ €))0)
= (adebdecde)*d.

Due to the form of the recursion equations for ®.yey, and @, we find forall n € w
that H,, (®even) and H,,(P:,) have their values in {T, F}.

It is worth looking at such recursive equations in general. First of all we allow only
T,F, In,—~, A, YV, P4 tooccur, thus giving these conditions a clean algorithmic content.

Consider
d=EVd.

This is just c\/,‘m.F, so the plausible value for @ is D (cf. the previous Example 6.1).
For simplicity we consider conditions defined by a single recursion equation

¢ = f(2)

46 Journal of Applied Non-Classical Logics. Volume 10 - No. 1/2000

only, and we assume that f(®) % ®. The interpretation of ® is

lim f*(D),
where f7 (D) is for each n a finite proposition equivalent to one built from atoms
P% (In). This interpretation can be motivated by the fact that all operations are mono-
tone in the partial ordering where D is smallest. For each history, i.e., valuation w on
the P§(In) we have w(f" (D)) € {M, T, F, D}. Furthermore, if w(f™ (D)) # D, then
w(f¥(D)) = w(f" (D)) for k > n, which proves that the limit always exists. For

this to hold with a number of simultaneous defining equations the restriction that only
sequential connectives occur is needed:

@,
)

TV &,
By AM

fl(@lm(l)?):
f2(¢11¢2)'

We find f(D,D) = (T,D), f(T,D) = (T,M), and finally f(T,M) = (M, M), stilla
limit, but with less algorithmic content since & loses the value T.

Let @ = InY/ P4(®). We notice that within the scope of H,,, ® will always evaluate
to T as there must be a finite history. Similarly, &’ = —ln A P4(®') will always evaluate
to F, and & = FY/ P4(®") will evaluate to M in all histories. The occurrence of D
can be avoided if care is taken that all occurrence of recursive calls are in the scope of
Ps.

We conclude that MHL (generated using constant In and modality P4) naturally
leads to a four-valued logic. Together with the history operator it can be used to obtain

conditions which drastically reduce the number of interleavings introduced by parallel
composition.

Il
It

Example 6.3 (AHL, Action History Logic) Action history logic AHL extends MHL
with a predicate L. on A;. The atomic condition L(a) expresses that the last action was
a. In case the state is initial, L(a) evaluates to F. Again, L can be seen as a two-valued
variant of L4 that yields L4(a) = M in the initial state. Then

L{a) = —ln A Ls(a).

Process aigebra with four-valued logic 47

The action history operator H,. will now memorize the last trace (action history) of a
process. So for ¢ ranging over A} and e denoting the empty string,

Hy(e) = cforce Ay U{pnl,
Hy(az) = a-Hgys(z) fora € A,
Ho{z+y) = Hy(z)+ Hol(y),
Hy(¢p:—z) = Hs(¢):— Hol(z),

Hy(¢) = cforce {M,T,F D},
He(ln) = T,
Hya(ln) = F,
He(Pa(¢)) = M,
Hqa(Pa(9)) = Ho(9),
Ha(_“i’) = —Hy(9),
Ho(p AY) = Ho(d) A Hy(y),
Hg(qﬁc(\ Py = Hﬂ(‘f’)g\ﬂa(‘b):
He(La(a)) = M,
Hya(Lg(d)) = a=be{T,F}L
As an example, consider
O In¥ La(a),
Py ((® :—= b1) (D := by + (D :— b3) (D 1= bg))) 4,

Pg (("1‘1‘ R Cl)(“ﬂ@ = a (“1(1’ — Cg) (*'I‘I’ S 63) ("1‘1) L— Cq)))* 5,
P H: (P || Po).
We obtain
P = (01Q(b62Q + b3Qb4Q))",
Q b Cl(a+[}2(’3364Q).

A condition @ can be called static if 1t satisfies
P :—ay=(P®:—z)(® = y).

For dynamic conditions as considered here this equation need not be valid. For in-
stance,

(In :—= a)(In:—=bd) = (In:—=a) -6 = In:— af,

but
In :— ab = (In :— a)b.

Finally, it 1s tempting to assert
a-z=a-(Ls(a) :—),
but also that does not hold:

He(ab | ¢) # He(a - (La(a) :=b) || ¢).

48 Journal of Applied Non-Classical Logics. Volume 10 —No. 172000

Table 5: Axioms and rules for Floyd-Hoare Logic.

(%) {¢)a{-InALs(a) A Pa(9)} |
| (i) ($}4{F)
(213) {¢}n{F}
(i) {#}={¥} {d}u{v}
{¢}z 4+ y{¥}
(v) {¢}z{y} {¥}y{¢}
{¢}x - y{&}
(vi) w
{¢}z"y{¢}
(vid) {oNE}z{P}
{¢} :—= {1}
i) 228 =TE) (#aly) ¥ vy =T(W)
{¢}z{y}

AHL with recursively defined conditions and its semantics is developed just asin
the case of MHL.

Example 6.4 (FHL, Floyd-Hoare Logic) We connect the previous example to Floy-
Hoare logic. The point of this example is to provide a simple set of sound rules for
partial correctness assertions, defined with help of left sequential implication, We wil
not analyze the meta-theory of the proof system however. A partial correctness asser-
tion has syntax

{6} P{¢¥}

where ¢, 1 are assertions, and P is a process expression. An overview of correctness

assertions and Floyd-Hoare logic is givenin [Apt81]. See [Pon91, GP94] for a process
algebraic approach.

Let for o € A} the expression z —+ +/ denote that z can terminate successfully

by performing the actions in o (under appropriate valuations). The interpretation of
correciness assertions 1s defined as follows:

= {$}P{¥} if Yo € A}, Ho(9) & Ho(z) 2o / = Hoor ().

We first argue that there is no uniform definition of a strongest postcondition of ¢ and
P, where a postcondition ¢/ is stronger than postcondition £ if w(y) # w(€) for some

Process algebra with four-valued logic 49

valuation w and for all valuations w,

w¥)=T = w()=T,

w)=F = w(y)=F
Consider the correctness assertion

{#la{~InALs(a) A Pa(d)}.

Though it may seem that =In A Lg(a) A P4(¢) (or L(a) A Ps(¢) for short) is the
strongest postcondition of ¢ and a, this is not the case if ¢ = M as the postcondition
above equals M, whereas a “strongest postcondition” of M and a is of course F.

In Table 5 we give a simple proof system for deriving partial correctness assertions,

based on AHL. Here we use left sequential implication, notation o— , and a three-
valued predicate T defined by

T oy

T(¢)

in order to formulate a weak variant of the rule of consequence (viit). The soundness
of the axioms and rules in Table 5 follows straightforwardly. Finally, note that if =

{T}z{o}, then He(z(¢ :— y)) = He(zy).

[
-
<

]
=

7. Digression

Parameterized Actions and Non-Classical Values. When dealing with actions
a(z) parameterized by z over some data type, it makes sense to consider the case in
which data can also take values D and M (cf. [BS96]). If so, one faces the question how
to interpret a(D) and a(M). Given the preceding interpretation of conditions, a natural
choice 1s to take
a(M)
a(D)

of
d.

H 1

(So a(z) is an atomic action for D # z % M.)

Ifginxe d¢dp yor ¢ :— =z can take value M our process specification features
a modeling error. It 1s vital for the operational meaning that the condition ¢ can be
evaluated whenever needed. The value D is an acceptable consequence of evalua-
tion, M however is an outright error. That jeopardizes the operational understanding
of conditional composition and conditional guard construct in process algebra, whence
rdM>by=M:—z = L.

The only reasonable way in which a(M) can occurisin F :— a(M)orin D :—
a{M). In these contexts the guard prevents the effect of M to become *“visible” in a pro-
cess. So the appropriate style of dealing with M is using expressions ¢(x) :— a(f(Z))
with ¢(Z) € {F, D} whenever f(Z) = M. Occurrence of a(D) is of course less prob-
lematic.

50 Journal of Applied Non-Classjcal Logics. Volume 10 - No. 1/2000

Process Algebra with Three-Valued Logics. As far as we can see, at least two rea-
sonable proposals for the restriction to three-valued logic can be made:

Kﬂ(p) = Ea(p, -, /\)

which has it:s values in T3 = T, \ {M}. This is Kleene’s logic [K1e38], for whicha
comp!ete gxmmatization follows from [Kal58] (see also [BBR95]). This logic can be
combmled In a straightforward way with ACP, and has its own right of existence, as is
argued' in [BP98]. Since K3 (IP) has a complete axiomatization, we do not need the rule
of equivalence, and consider - :— _ as a binary operation. Typically, the principle of
the exf:luded middle—tertium non datur—is not a tautology anymore, but otherwise
very little changes. The adapted version of ACPp y , (A:, 7, P) is ACPp(A4:, 7,P),

whichﬁ 1s obtained by leaving out all axioms that make reference to M and i, and ex-
changing (GCLA), i.e.,

o= (Vi)=Y = 1,

with its symmetric counterpart (GC4), i.e.,
o= (Y 2z)=0AY = 2.

The system ACPp(A,, v, P) is suited to handle algorithms/programs that may contain
divergencies. The associated operational semantics and completeness proof are ob-
tained by leaving out 4 and the meaningless predicate p{w,.). For a completeness
proof, note that all transformations on basic terms underlying the completeness proof
of Theorem 3.5 only use the constants D and T. A detailed completeness proof is given
in [BP98]. An extension of this setting is obtained by involving . In this case too com-
pleteness is preserved®, Notice that both ACPp(A;,, IP) and its extension with p can
be characterized by the (derivable) identity

r=zr+2xd¢Dz,

which does not hold in ACPp y , (A¢, v, P) (set ¢ = M).

A second ‘reasonable’ three-valued logic emerges from a combination of
Bochvar’s strict three-valued logic [Boc39] and McCarthy’s sequential three-valued
logic* [McC63]:

M = ES(IP:“':AJQ/\)

which has its values in T = T4\ {D}. In [BP97a] we argue that the combination
of this logic and process algebra is suited (o analyze concurrent process expressions in
which meaningless can occur. The adapted version of the rule of equivalence 1s

BM(P) k= ¢ = 9
ACPy 4 (Ae, 7, P)Ed a2 =1¢ 2

31n this case, the definition of a basic term should be adapted: ¢ 1~ p is basic too. Furthermore, height
h(s) = 0. Finally, in the proof of the adaptation of Lemma 5.4, the “Case A1 = 0" should also cover
.Pn e Qbﬂ - L. ' | | ‘ |

11n fact we combine both variants of McCarthy’s logic, i.e., left sequential and right sequential, which
are distinguished by the use of asymmetric symbols for the connectives.

(ROEY)

Process algebra with four-valued logic 51

where ACPy ,(A:, v, P) is obtained by leaving out D from ACPp v . (A:, v, P). Also
in this case, the completeness result 1s preserved: we can restrict Lemma 5.3 to prop-
erties (a) — (c¢). Furthermore, in Lemma 5.4, the “h = 0”-case can be proved by the
followingobservation: w(¢1) = M <= w(¢2) = Mimplies that BEM (IP) = ¢; A F =
P2 A F.

Process Algebra with Five-Valued Logic. In [BP99] we extend four-valued logic
to five-valued logic by adding a truth value C (choice or undetermined). In this setting
proposition symbols remain ‘deterministic’, i.e., they still range over {M,T,F, D}. In
the combination of process algebra and five-valued logic, the constant C models the
effect of alternative composition (+) in the logic. Typically,

:BQCDy::i.‘—]-y.

In [BP99] we provide a completeness result that follows from the one proven in this
paper (because C can be eliminated from closed process expressions). Furthermore,
elegant generalizations of ACP(A,y) and Cooperating Sequential Processes [Dij68]
can be expressed in process algebra with five-valued logic. Finally, some considera-
ttons on sublogics containing C can be found in [BP99]. In particular, C also models
the undefined value in Kleene's logic [Kle38] (but differs from D in the extension with

J\), and C and D can be combined in just one way (we provide a complete axiomati-
zation for this combination).

References

[Apt81] K.R. Apt. Ten years of Hoare’s logic, a survey, part I. ACM Transactions on
Programming Languages and Systems, 3(4).431-483,1981.

[BB90] J.C.M. Baeten and J.A. Bergstra. Process algebra with signals and conditions.
In M. Broy, editor, Programming and Mathematical Method, Proceedings Summer

School Marktoberdorf, 1990 NATO ASI Series F, pages 273-323, Springer-Verlag,
1992.

[BBK86] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Syntax and defining equa-
tions for an interrupt mechanism in process algebra. Fundamenta Informaticae,
[X(2):127-168, 1986.

[BBP94] J.A. Bergstra, I. Bethke, and A. Ponse. Process algebra with iteration and
nesting. Computer Journal, 37(4):243-258, 1994,

[BBRO35] J.A. Bergstra, L. Bethke, and P.H. Rodenburg. A propositional logic with 4
values; true, false, divergent and meaningless. Journal of Applied Non-Classical
Logics, 5:199-217, 1995,

[BCI84] H. Barringer, J.LH. Cheng, and C.B. Jones. A logic covering undefinedness in
program proofs. Acta Informatica,21:251-269, 1984.

52 Journal of Applied Non-Classical Logics. Volume 10 - No. 1/2000

[BHRB-'-#] SD Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating
scquential processes. Journal of the ACM, 3 1(3):560-599, 1984,

[B K84a] J.A. Bergstra and JW. Klop. The al gebra of recursively defined processes
fmd the algebra of regular processes. In A. Ponse, C. Verhoef, and S,EM, van Vi
__}mﬂ:n, Algebra of Communicating Processes, Utrecht 1994, Workshops in Com:
puting, pages 1-25. Springer-Verlag, 1995. An extended abstract appeared in
J. Paredacns, cditor, Proceedings 114 ICALP Antwerp, volume 172 of Lecture
Notes in Computer Sclence, pages 82-95, Springer-Verlag, 1984,

[BK;B-fIbl I.A. Bergstra and J.W. Klop. Process algebra for synchronous communica:
tion. Information and Control, 60(1/3):109-137, 1984.

(Bc}c?ﬁ)] D.A, Bochvar, On a 3-valued logical calculus and its application to the anal-
ysis of contradictions (in Russian), MatématiZeskij sbornik, 4:287-308, 1939,

|BPY6} J.A. Bergstraand J.C. van de Pol. A calculus for sequential logic with 4 values.
Technieal Report 160, Logic Group Preprint Series, Utrecht University, 1996, (se
also http: //www.phil.uu.nl/preprints,html).

|BPO7a] J.A. Bergstea and A, Ponse. Bochvar-McCarthy logic and process algebra.
Technieal Report P9722, Programming Rescearch Group, University of Amsterdam,

1997,
(http://www,wins.uva.nl/xesearch/prog/reports/reports.hinl)

|BPO7b] LA, Bergstea and A, Ponse, Process algebra primitives for file transfer, Liber
Amicorum dedicated 0 Paul Klint, pages 33-42, CWI, 1997. Also: Techncil
Report PY725, Programming Reseacch Group, University of Amsterdam, 1997,
(http://www.wins.uva.nl/research/prog/reports/reports.hinl)

[BPYUS] J.A, Bergstra and A, Ponse, Kleene's three-valued logic and process algebra
Information Processing Letters, 67(2):95-103, 1998.

(BP9} J.A. Bergstra and A, Ponse., Process algebra with five-valued condilibons. In
.8 Calude and M.J. Dinncen (eds.). Combinatorics, Com;?iexity, and Logic. Pro-
ceedings of DMTCS'99 and CATS'99, Springer-Verlag, Singapore, 1999. To ap-

DEAL,

[8596] J.A. Bergstra and M.PR.A. Sellink. Sequential dat'fl alg§bra primitives. Techni-
enl Report P9602b, Programming Research Group, University of Amsterdam, 159,
{ht t?:p « //www.wins.,uva.nl /research/prog/reports/reports ,html)

[Bur84] J.P. Burgess, Basic tensc logic. In D. Gabbay and.F. Guenthner (eds.), Hand-
book of Philosophical Logic, Vol, Il, pages 89-133, Reidel, 1984

[BW90] J.C.M. Baeten and W.P. Weijland. Process alg‘ebra. Cambridge Tracts .in
" Theoretical Computer Science 18, Cambridge University Press, 1990.

(Dij68] B. W, Dijkstra, Cooperating sequential processes. In F. Genuys, editor, Pro-

gramming Languages, pages 43~112, Academic Press, New York, 1968.

Process algebra with four-valued logic 53

[D1375]1 E.W. Dijkstra. Guarded Commands, Nondeterminacy and Formal Derivation
of Programs. Communications of the ACM, 18(8):453-4357, August 1975.

[FG96] W.J. Fokkink and R.J. van Glabbeek. Ntyft/ntyxt rules reduce to ntree rules.
Information and Computation, 126:1-10, 1996.

[Fok97] W.J.Fokkink. Axiomatizations for the perpetual loop in process algebra, In P.
Degano, R. Gorrieri and A. Marchetti-Spaccamela (eds.), Proc. 24th Collogquiumon
Automata, Languages and Programming - ICALP’97, Lecture Notes in Computer
Science 1256, pages S71-581, Springer-Verlag, 1997.

[GP94] I.F. Groote and A, Ponse. Process algebra with guards: combining Hoare logic
and process algebra, Formal Aspects of Computing, 6:115-164, 1994,

[Gro93] I.E Groote. Transition system specifications with negative premises. Theo-
retical Computer Science, 118(2):263-299, 1993,

[HHH*87] C.A.R.Hoare, I.J. Hayes, J. He, C.C. Morgan, A.W. Roscoe,].W. Sanders,
I.H. Sorensen, J.M. Spivey, and B.A. Sufrin. Laws of programming. Communica-
tions of the ACM, 30(8).672-686, August 1987.

[IM94] C.B.Jones, C.A. Middelburg. A typed logic of partial functions reconstructed
classically. Acta Informatica, 31(5):399-430, 1994,

[Jon90] C.B. Jones. Systematic Software Development using VDM (2nd edition).
Prentice-Hall International, Englewood Cliffs, 1990.

[Kal58] J. Kalman. Lattices with involution. Trans. Am. Math. Soc., 87:485-491,
1958.

[Kle38] S.C. Kleene, On a notation for ordinal numbers. Journal of Symbolic Logic,
3:150-155, 1938.

[Kle56] S.C. Kleene. Representation of events in nerve nets and finite automata. In
Automata Studies, pages 3—41. Princeton University Press, Princeton NJ, 1956.

[McC63] J.McCarthy. A basis for a mathematical theory of computation, In P. Braffort

and D. Hirshberg (eds.), Computer Programming and Formal Systems, pages 33—
70, North-Holland, Amsterdam, 1963,

[Pon91] A. Ponse. Process expressions and Hoare’s logic. Information and Compu-
tation 95(2):192-217, 1991.

[Rod96] P.H. Rodenburg. A complete system of four-valued logic. Technical Report
P9616, Programming Research Group, University of Amsterdam, 1996,
(http://www,.wins.uva.nl/research/prog/reports/reports.html).
To appear in Journal of Applied Non-Classical Logics.

[Ver95] C. Verhoef. A congruence theorem for structured operational semantics with

predicates and negative premises. Nordic Journal of Computing, 2(2):274-302,
1995.

