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Abstract This paper argues that scientific realism commits us to ametaphysical deter-
mination relation between the mathematical entities that are indispensible to scientific
explanation and themodal structure of the empirical phenomena those entities explain.
The argument presupposes that scientific realism commits us to the indispensability
argument. The view presented here is that the indispensability ofmathematics commits
us not only to the existence ofmathematical structures and entities but to ametaphysical
determination relation between those entities and the modal structure of the physical
world. The no-miracles argument is the primary motivation for scientific realism. It
is a presupposition of this argument that unobservable entities are explanatory only
when they determine the empirical phenomena they explain. I argue that mathematical
entities should also be seen as explanatory only when they determine the empirical
facts they explain, namely, the modal structure of the physical world. Thus, scientific
realism commits us to a metaphysical determination relation between mathematics
and physical modality that has not been previously recognized. The requirement to
account for the metaphysical dependence of modal physical structure on mathematics
limits the class of acceptable solutions to the applicability problem that are available
to the scientific realist.
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1 Introduction

How can it be that mathematics, the study of what is often taken to be an abstract realm
of structures and relations, is so relevant to our study of the concrete physical world?
Scientists not only model the empirical world mathematically, they use mathematical
structures to make inferences and novel predictions about it. Wigner (1960) refers to
“the unreasonable effectiveness of mathematics in the natural sciences.” What could
explain the astonishing success of applying mathematics to physical systems? This
question is known as the applicability problem. Initially re-popularized by Steiner
(1978, 1989, 1995, 1998), it has beenmore recently addressed by Colyvan (2001a, b),
Pincock (2004a, 2007), Bueno and French (2012), Ye (2010), and Bangu (2012).

This paper explores the connections among the applicability problem, the no-
miracles argument for scientific realism, and the indispensability argument for
mathematical realism.1 The goal is to show that certain features of the indispens-
ability argument for mathematical realism limit the set of possible solutions to the
applicability problem that are available to the scientific realist. In Sect. 2, I identify an
analogy between the no-miracles argument for scientific realism and the indispensabil-
ity argument for mathematical realism that suggests a restriction on possible answers
to the applicability problem. I suggest that there is an important parallel between the
role of unobservable entities and the role of mathematical structures in science. Just
as unobservable entities are taken to explain the behavior of observable entities when
they cause or otherwise nomically necessitate such behavior, mathematical structures
cannot be explanatory unless they bear some determination relation to the observable
structures they are taken to explain.

I argue that this insight must be taken to limit the class of possible solutions to the
applicability problem that are available to the scientific realist. I conclude that the sci-
entific realist must posit a relation of metaphysical dependence between mathematical
structure and modal physical structure. In Sect. 3, I discuss commonly cited instances
of mathematical explanation in the sciences in order to show that the explananda are
modal in each case. I also introduce a case in which mathematical structure was indis-
pensable to the novel prediction of an empirical phenomenon. In Sect. 4, I discuss how
these cases bear on ways that the scientific realist can answer the applicability prob-
lem and I show that the primary purported solution offered by the mapping account is
unsatisfactory. This argument forecloses on solutions to the applicability problem that
do not posit a relation of metaphysical dependence between mathematical structure
and modal physical structure and limits the class of solutions that the scientific realist
can accept to those that do.

1 The conclusions of the indispensability argument remain disputed. For the purposes of this paper, it is
assumed that the indispensability argument is sound. As the indispensability argument has scientific real-
ists as its audience, scientific realism is also assumed here. For background on the connection between
indispensability and scientific realism, see Colyvan (1999, 2001a, b, 2006). Broadly, the indispensability
argument can be seen as an extension of the no-miracles argument to mathematical entities, as indispens-
ability theorists take there to be no in-principle difference between the role that mathematical entities play
in theoretical explanations of observable phenomena and the role that non-mathematical theoretical entities
play in such explanations.
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Section 5 addresses potential relations for the type of metaphysical dependence that
holds between mathematical and modal physical structure. These include Grounding,
supervenience, instantiation, and identity. I suggest that the instantiation of mathemat-
ical structures by modal physical structures is the most promising candidate for the
relevant type of metaphysical dependence.

2 Scientific realism and the indispensability argument

According to the no-miracles argument, scientific realism is the only view that does
not make the success of science a miracle. These successes include science’s ability to
make novel predictions, offer explanations, and unify seemingly disparate phenomena.
Since many novel predictions and scientific explanations of observable phenomena
make reference to unobservable entities, we are committed to the existence of unob-
servables as metaphysically real entities beyond mere theoretical constructs.2 The
no-miracles argument for scientific realism commits us not only to unobservable
entities but to a necessary connection between the unobservables and the observ-
able phenomena they are posited to explain.3 This necessary connection is frequently
though certainly not always taken to be a causal one.4 I suggest that, just as in the case
for scientific realism, the argument for realism about mathematical entities commits
us not only to the existence of the entities themselves but to a metaphysical deter-
mination relation between the entities and the empirical phenomena they predict and
explain. In the next section, I show that the empirical phenomena that mathematical
structures predict and explain are inherently modal. Thus, the behaviors and properties
of modal physical systems can be explained and predicted by mathematical structures
and properties when the former are grounded in the latter.5

ConsiderBaker’s (2009) enhanced indispensability argument formathematical real-
ism:

1. We ought to have ontological commitment to all and only those entities that are
explanatorily indispensable to our best scientific theories.

2. Mathematical entities are explanatorily indispensable to our best scientific theories.
3. Therefore, we ought to be ontologically committed to mathematical entities.

The first premise is motivated by Quinean naturalism, the view that there are no non-
scientific standards that we can use to assess our ontological commitments. The second
is supported by cases such as those discussed in Sect. 3. In order for these cases to

2 The version of scientific realism assumed here is a metaphysical one, though the conclusions of the paper
are compatible with both standard entity realism and ontic structural realism.
3 See Berenstain and Ladyman (2012) for an argument that scientific realists must be committed to a
non-Humean understanding of causation and laws of nature.
4 For what it’s worth, I take there to be numerous examples of both casual and non-causal relations holding
between unobservable entities and the observable phenomena they explain. SeeBerenstain (2016) for further
discussion.
5 The term ‘grounding’ as used here denotes the broad family of relations of metaphysical dependence. It
is not meant to invoke the primitive relation that Wilson (2014) refers to as “Big-G Grounding,” nor does
it imply anything about what specific relation of metaphysical dependence must hold between modal and
mathematical structures.
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provide substantive support for premise 2, it must be the case that the mathematics in
each case is truly explanatorily indispensable rather than merely being explanatorily
helpful or representationally indispensable.

Whether the cases described are ones in which the mathematics is genuinely
explanatorily indispensable remains contested. It has been disputed by Melia (2000),
Leng (2002), Pincock (2004a), Saatsi (2011), and Rizza (2011), and defended by Lyon
and Colyvan (2008), Baker (2009), Colyvan (2010), and Lyon (2012). I do not explic-
itly offer a defense of premise 2 here, though I do elucidate the specific explanatory
indispensability at evidence in each of the cases discussed.

Before turning to the supporting examples, let me add a further claim.Mathematical
entities are indispensable for the prediction and explanation of modal facts, as Lyon
(2012) notes.6 The explanations intowhich they figure are explanations of possible and
necessary features of empirical systems. Thus, the empirical explanations in which
mathematical entities play an indispensable role should generally be recognized as
having modal explananda.

3 Mathematical structure, novel prediction, and scientific explanation

What follows are four examples demonstrating the indispensability of mathematics
to the sciences. The first is an example of mathematics being indispensable to the
novel prediction of an empirical fact; the other three are examples of indispensably
mathematical explanations of empirical phenomena. In the discussion following, I
show that the phenomenon in each case is a modal one. I invoke the notion of modal
physical structure to capture the inherently modal features and relations of the empir-
ical entities and systems discussed. Broadly, a modal physical structure is a web of
relations of nomological necessity that hold among the various entities and properties
that form a physical system or phenomenon. The concept of modal physical structure
is compatible with ontic structural realism, though that view is not assumed here; a
non-Humean conception of modality that acknowledges natural necessity, however,
is presupposed. For present purposes, nothing especially substantive need be assumed
about the notion of structure in the modal physical case or in the mathematical one.

3.1 The Glashow–Weinberg–Salam model

In 1979, Steven Weinberg, Sheldon Lee Glashow, and Abdus Salam received the
Nobel Prize in physics for their unification of the electromagnetic force and the weak
force. In their search for an underlying mathematical structure that could unify the
two forces, the physicists postulated that the weak and electromagnetic interactions
were both governed by some group of exact local gauge symmetries, that this group
was spontaneously broken to U(1) giving mass to all vector bosons except the photon,
and that the theory was renormalizable (Weinberg 1979). They hypothesized that the
relations between the two forces and their carrier particles were embedded within the

6 This bears emphasizing, as not all scientific realists embrace the commitment to a robust conception of
modality that scientific realism seems to require. See, for example, Psillos (2002).
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SU(2) × U(1) gauge group. The resulting electroweak theory postulated the W boson
necessary to explain beta decay—what they were originally seeking to explain—as
well as the previously unobserved and unknownZ boson. The embedding of the known
and hypothesized bosons within the group structure matched the known properties of
the photon and the postulated properties of the W boson, which was the particle they
were attempting to account for in the model. But it also left room for an additional
unexpected particle, a spin-zero boson with neutral charge—what is now known as
the Z boson. In 1983, experiments at CERN confirmed the existence of the Z boson.
The unified electroweak theory successfully predicted the existence of an unexpected
neutral fundamental particle that, along with the electrically chargedW boson, carries
the weak force.

The theoretical unification of known and hypothesized particles within amathemat-
ical framework allowed for the prediction of a novel empirical entity. Themathematical
structure of the gauge group and a spontaneously broken gauge symmetry were indis-
pensable to its discovery. Of course, there were additional substantive assumptions
that went into the creation of the model and thus allowed the gauge group to make
the predictions it did. For instance, it was necessary to hypothesize some mechanism
for the spontaneous breaking of SU(2) × U(1). Weinberg identified the only kind of
field in the renormalizable group that could give mass to the electron and assumed that
those were the only scalar fields in the theory for the sake of simplicity. But after such
choices were established the predictive power of themathematical structure of the spe-
cific gauge group could be expressed. According to Weinberg, “Once one decides on
the menu of fields in the theory, all details of the theory are completely determined by
symmetry principles and renormalizability, with just a few free parameters,7” (1979,
p. 549). The symmetry principles of the SU(2)×U(1) gauge group played an essential
role in establishing the theoretical content and empirically testable predictions of the
unified electroweak theory.

The scientific realist should treat this case as an example of amathematical structure
being indispensable to the novel prediction of a particle. The conclusion that should be
drawn is that scientific realists are committed to the entity or structure (the gauge group,
in this case) that allowed for the prediction of the collection of gauge bosons. Scientific
realism commits us to the view that these particles are real entities with independent
existence, just as the realist takes particles to be in other cases. It would be incongruous
for the realist to assert the robust independent existence of unobservable theoretical
entities when their novel prediction is based in something other than mathematical
structure but to take the Z boson’s existence to be merely a feature of the theoretical
formalism and thus unsurprising. If the scientific realist wants to take the novel and
surprising prediction of the Z boson to be importantly different than standard instances
of theories making novel predictions of other particles—and to thus justify not being
ontologically committed to the mathematical structure that was indispensable to its
prediction—then the onus is on them to offer a principled characterization of the
difference.

7 These free parameters include the lepton charge and masses, the Fermi coupling constant of beta decay,
the mixing angle θ, and the mass of the scalar particle.
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It should be emphasized that the properties of the gauge bosons constitute what I
have called a modal physical structure. The laws that govern their behavior describe
their ranges of possible interactions with respect to the forces they carry. The particles’
natures are characterized at least in part by these modal profiles.8

3.2 Hexagonal tiling and the honeycomb theorem

Lyon and Colyvan (2008) discuss the role that the honeycomb proof in geometry plays
in explaining the hexagonal structure of hive-bee honeycomb. Consider the question
of why hive-bee honeycomb is always divided up into hexagons as opposed to some
other regular polygon. Their answer is two-fold:

1. Selection favors bees that minimize the amount of wax they use to build their
combs over bees that use more energy than necessary by building combs with
excessive amounts of wax.

2. Any partition of the plane into regions of equal area has a perimeter greater than
that of the regular hexagonal honeycomb tiling.

Part (1) of the explanation makes obvious evolutionary sense. Given that scarce finite
resources place limitations on survival, natural selection favors efficiency over inef-
ficiency. Organisms that use more energy than necessary to complete a task will be
less fit than conspecifics that use only what they need. Bees who produce more wax
than necessary do so at the cost of not being able to complete other tasks required
for the survival and reproduction of the germ-line. Darwin explains it thus, “That
motive power of the process of natural selection having been economy of wax; that
individual swarm that wasted least honey in the secretion of wax . . .succeeded best”
(Hales 2001). Selection favors hives whose wax production is the minimum required
for honeycomb production. This part of the explanation is clearly empirical.

Part (2) of the explanation, on the other hand, is purely mathematical. The theorem
states that the hexagon is the polygon that tessellates a planewith the smallest resulting
perimeter. As a theorem of geometry this is neither a contingent fact nor an exclusively
biological one. Rather, it is a necessary fact about possible partitions of the plane into
regions of equal area. No such partitions can have a total perimeter less than that of
the hexagonal partition.

Suppose multiple bee populations arise in similar geographical areas with simi-
lar access to resources. One bee population uses triangles (or an approximation of
them) in their construction of honeycomb, and one uses hexagons. Ceteris paribus,
bee populations that use hexagonal tiling will be better off than bees that use square or
triangular tiling to create their honeycombs. Given natural selection, the equilibrium
state is one in which hive bees produce hexagonal honeycomb.

Let us consider what nomological factors are at play in the selection of the bees that
uses hexagons over the bees that use triangles. It is purely accidental that bees ever
started using hexagons in the construction of their honeycomb; to suggest otherwise

8 Berenstain (2016) offers a view on how to understand the inherently modal nature of physical properties
such as being a Z boson. The view differs from dispositional essentialism, though it shares many of its
motivations.
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would be to paint evolution as a forward-looking teleological force. So it is certainly
not the case that it is necessary that bees produce honeycomb that is hexagonally
structured. But that does not mean that there is no necessity at play in determining
the structure of hive-bee honeycomb. The necessity looks something like this: If some
population of bees starts using hexagons (or some approximation of them) in the
production of honeycomb, all else equal, that bee population will be evolutionarily
favored over a population that uses (an approximation of) some other regular polygon
in honeycomb production.

That bees structure their honeycomb hexagonally is causally dependent on numer-
ous historical and ecological contingencies: That the perimeter of their honeycombs
is made by wax that they produce; that some bee population eventually stumbled upon
an approximately hexagonal structure when constructing their honeycomb; that pes-
ticides or climate change did not wipe out bee populations before they stumbled upon
such a shape, etc. Though contingent on certain historical and ecological circumstances
arising, that hive-bee honeycomb has a hexagonal structure is not a completely contin-
gent fact.9 There are various necessities at play in determining that bees that produce
hexagonally structured honeycomb win out. One of these necessities is the nomolog-
ical one that selection in environments with scarce finite resources favors efficiency
over inefficiency. Another necessity is the mathematical theorem that a hexagonal
tessellation is the most efficient partition of the plane in that it maximizes area while
minimizing perimeter. Themathematical necessity of this result plays an indispensible
role in the explanation of the biological fact that the equilibrium structure of hive-bee
honeycomb is hexagonal.

The explanandum in the explanation stated above is a modal one. To illustrate
this, consider how Sober (1983) sketches the difference between causal and equi-
librium explanation. He writes, “Where causal explanation shows how the event to
be explained was in fact produced, equilibrium explanation shows how the event
would have occurred regardless of which of a variety of causal scenarios actually
transpired” (1983, p. 202). Sober’s language is too strong to perfectly capture the
difference between a merely causal explanation of hexagonal honeycomb and an equi-
librium explanation. It is not the case that the equilibrium explanation shows how bees
would have landed on hexagons regardless of what causal scenarios transpired. But
he does capture the fact that the important difference between causal and equilib-
rium explanation is one of modal information. A merely causal explanation of the
hexagonal structure of honeycomb would leave out two things: (1) the modal status of
the explanandum—that the resulting phenomenon was the most likely one, all things
equal, given certain conditions, and (2) the factors that are responsible for its status
as equilibrium outcome and thus its increased likelihood—in this case, the geometric

9 It is helpful to distinguish between something’s being contingent on certain conditions holding and its
being metaphysically contingent. The two are not the same. Consider, for instance, that the modal status of
ceteris paribus law can be either necessary or contingent. That a law of nature is ceteris paribus does not
thereby mean it is not necessary. A law’s being contingent upon certain conditions is not the same as the
law’s being metaphysically contingent. For if the law holds in every world in which the conditions obtain
then the law, though ceteris paribus, is metaphysically necessary. See Berenstain (2014) for examples and
further discussion.
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theorem ensuring that the hexagonal tiling is the most efficient regular tiling of the
plane.

Lyon (2012) emphasizes the importance of modality in his analysis of what would
be left out by a merely causal explanation that chronologically cited the different
polygons bees tried out over their contingent evolutionary history. “Such an expla-
nation (if it were actually produced) would miss a very important fact: the actual
sequence of shapes tried out by the bees is irrelevant to the final outcome. So long as
the bees try out hexagons at some point, no matter what other shapes the bees try, the
hexagon bees win out. The mathematical explanation for why honeycombs are hexag-
onal gives us this important modal information.” An explanation of the evolution of
the hexagonal honeycomb structure that cites only the contingent causal history of the
bee populations that actually produced hexagonally structured honeycomb would be
incomplete. A complete explanation of why hive-bee honeycomb is hexagonally struc-
tured must incorporate the superior efficiency of the hexagon structure given scarce
finite resources. The optimality of the hexagonal tiling is part of the explanation of
why hive-bee honeycomb takes this structure, and its optimality is explained, indeed
proved, by the geometric theorem. The mathematics in this case is indispensable to a
complete explanation of the empirical phenomenon.

3.3 Squaring the circle

Consider now the challenge of squaring the circle, i.e., of drawing a square that has the
same area as a circle in a finite number of steps using only a compass and straightedge.
It cannot be done. It is a modal fact about our world that it is not possible to square
the circle. What explains this fact?

The formula for the area of a circle is π r2. Since π is a transcendental number,
squaring the circle involves generating a transcendental ratio, namely 1/

√
π . But

only algebraic ratios can be constructed with just a compass and straightedge, namely
those constructed from the integers with a finite sequence of operations of addition,
subtraction, multiplication, division, and square roots. The explanation of why the
circle cannot be squared is that doing so would require constructing a transcendental
ratio, and only algebraic ratios can be constructed from compass and straightedge
alone.

What is interesting about the case of squaring the circle is that the mathematical
necessity is playing the role of prohibiting rather than ensuring certain features of
physical systems. The necessity is also fairly straightforward as is the fact that it
derives from mathematics. Our inability to square the circle does not come from any
practical difficulty like a lack of precision in our tools. It cannot be overcome, for
instance, by improvements in the technology and accuracy of compasses.

While this example is a simple one, its simplicity illustrates how easily we can
construct examples of empirical phenomena whose existence is forbidden by mathe-
matics. It is equally straightforward to create similar examples using graph theory,10

10 What Lyon (2012) did for theBridges ofKönigsberg problemcan also be easily done for the three-utilities
problem.
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knot theory, or theorems of circle and sphere packing. While they may not count as
instances of mathematical explanations in science, these cases are nonetheless illumi-
nating as they are instances of empirical systems whose physical features are limited
by mathematical constraints. The limitations are obviously modal. As Lyon (2012)
points out, a causal explanation of why no one has ever taken a single walk that has
allowed them to cross all seven bridges of Königsberg exactly once could simply cite
all the walks that people have taken over the bridges and show that none of the walks
have the above-stated feature. Thus a merely causal explanation would in some sense
explain why it hasn’t been done but it would not explain why it couldn’t be done. On
the other hand, a graph-theoretic explanation of the structure of the bridges explains
why no one could ever take such a walk. The mathematical explanation is of a modal
fact, and in this case it is a necessary one.

Examples of empirical phenomena whose necessity or impossibility are explained
by theorems in mathematics are ubiquitous. While the examples of the hexagonal
honeycomb in Sect. 3.2 and prime-numbered cicada life cycles in Sect. 3.4 are end-
lessly discussed in the literature, there is nothing particularly special about the way
the mathematics operates in their explanations. We already accept that mathematical
facts can place constraints on physical states of affairs in a number of trivial cases.
The explanation of how this can be need not be any different or more complex in the
complicated scientific cases where mathematical constraints operate alongside other
modal limitations.

3.4 Prime numbers and cicada life cycles

Baker’s (2005) example concerns the prime-numbered life cycles of the North-
American Magicicada. The seven different species of this genus emerge en masse
every 13 or 17 years, depending on the species. The cicadas live for 2-3 weeks, mate,
and die. The nymphs then remain in the ground for the duration of the period until
their next scheduled emergence.

That the emergence of adults is synchronized among allmembers of a cicada species
in a given area has an accepted two-part explanation. Given the short lifespan of adults,
fixed periodic emergence maximizes mating opportunities. Co-emergence in large
numbers also leads to predator satiation, which increases the probability of individual
cicada survival. What is not immediately obvious however is why the cicadas have
13- and 17-year life cycles. Two hypotheses have been proposed, and each relies on
the explanatory power of the number-theoretic features of primeness.

The first proposed explanation is that long prime periods minimize intersection
with periodic predators (Goles et al. 2001). Suppose that a nearby predator species
had a 4-year cycle period.11 The emergence of 13-year cicadas would overlap with
the predator species’ emergence only once every 4 cycles. Contrast this with a 6-year
cicada species, whose emergence would coincide with the predators’ every two cycles,
and it is easy to see the advantage that higher prime-numbered cycle periods carry with

11 The predator hypothesis covers parasitoids that maybe have attacked adults or eggs during the period of
evolutionary development but that have since become extinct (Lloyd and Dybas 1966).
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them. Long prime periods also minimize the chances of predator populations syncing
their generations with divisors of the cicada period and coordinating population boosts
in intersecting years. Thus, the predator hypothesis posits an evolutionary advantage
of prime-numbered life cycles against even non-periodic predators.

The second proposed explanation appeals to another application of the number-
theoretic properties of primeness. Prime periods also minimize interaction between
local cicada species with different cycle periods. This has the benefit of preventing
the creation of offspring with aberrant life cycles. Suppose there were two species of
cicada that had 10- and 15-year cycle periods, respectively. If members of the two
species were to mate with one another and produce offspring with either a 12- or
13-year life cycle, the offspring would miss the emergence of both of the original
species and thus be deprived of the opportunity to mate and reproduce (Baker 2005).
Their resulting low population numbers would also mean that they fail to receive the
protection offered by predator satiation.

Both proposed explanations appeal to the irreducibly mathematical features of
prime numbers. Prime periods are able to minimize intersection with other peri-
odic species because prime numbers have only two divisors. Thus, having a
prime-numbered cycle period bestows an evolutionary advantage that having a
composite-numbered one does not. The hypotheses obtain their explanatory power
by recourse to the relevant mathematical features of the biological system’s structure.

As in the honeycomb case, the mathematical facts appealed to explain a modal
physical fact. Life cycles that are 13- or 17-years long are advantageous because
they cannot be intersected by periods with lengths other than one or themselves. The
evolutionary benefit of such long prime periods derives from this number-theoretic
fact.

As in the honeycomb case, there are also a number of historical contingencies
that play a role in leading up to the state of affairs we observe today. That lengthier
cycle periods were selected for is explained by the evolutionary advantage of avoiding
freezing summers during the glacial age, for instance. So it is not the case that the
entirety of the explanation for species of the Magicicada genus evolving 13- and
17-year life cycles is mathematical. But that is not what is required for this case to
demonstrate the indispensability ofmathematics to the explanationof an empirical fact.
When coupled with the biological fact that having a life-cycle period that minimizes
intersection with nearby periodic populations is evolutionarily advantageous, facts
about primeness determine the likelihood that cicada populations living near other
periodic species will evolve cycle periods that are prime.

4 Why is mathematics so applicable?

The examples discussed in Sect. 3 demonstrate that mathematical structures and rela-
tions are indispensable to our scientific theories and explanations robustly modal
features of the physical world. But even after we posit the mathematical entities
required by the indispensability argument, a major question still remains:Why should
mathematics be so applicable and indispensable to science?
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As Colyvan (2001b) argues, this is a question that all philosophies of mathematics
face. Mathematical realism does not avoid it, nor does it answer it on its own. The
conclusion of the indispensability argument, that we ought to be committed to mathe-
matical entities, does not tell us how or why such entities figure so importantly in our
explanations and predictions of the physical world. The mere existence of mathemat-
ical entities does not explain their applicability to empirical phenomena.

Pincock (2004b) introduces themapping account, which he purports to be a solution
to the applicability problem. Bueno and Colyvan (2011) characterize the account as
follows, “The existence of an appropriate mapping from a mathematical structure
to a physical structure is sufficient to fully explain the particular application of the
mathematical structure in question.” One reason themapping account is unsatisfactory
is that even if we accept it we can still ask why the existence of some appropriate
mapping between the mathematical and the physical is sufficient to fully explain the
particular application of the former to the latter. It is left unclear how a map from a
mathematical structure to a physical onewould illuminate how it is possible for features
of the mathematical structure to play an indispensable role in explaining features of
the physical one.

Another way the mapping account is deficient is that it leaves novel prediction
from mathematical structure unexplained. A satisfactory solution to the applicability
problem must explain how the following is possible: “In the case of novel predictions,
by invoking suitable empirical interpretations of mathematical theories, scientists can
draw inferences about the empirical world that the original scientific theory wasn’t
constructed to make” (Bueno and French 2012).

The mapping account cannot have anything to say about cases in which theorists
accurately predict some future phenomenon that is not yet in existence. Suppose that
scientists had predicted that hive-bee honeycomb would be hexagonally structured
before any honeycombs actually existed. Biologists that knew of bees and their wax
production could have predicted that hexagonally structured honeycomb would be an
evolutionarily stable strategy and thus that bee populations that stumbled upon it and
were stable over time would converge upon this strategy. How would the mapping
account explain this? In this case, there would have been no actually instantiated
empirical structure to which the relevant mathematical structure could be mapped,
since the prediction would have been about an empirical phenomenon that did not yet
exist (namely, hexagonally structured honeycomb). The relevant mapping would have
to have been from the mathematical structure to the modal structure of the empirical
system. Themapping could be between themathematical structure and the equilibrium
state, which is part of the modal structure. This already moves beyond the resources
of Pincock’s account. And there would still be the question of why this mathematical
structure is applicable to the modal physical structure in such a way that it allows for
novel prediction. This, again, is analogous to the parallel question for scientific realists
of why theoretical entities explain and novelly predict observable phenomena.

In the case of scientific realism, we do not solve the no-miracles problem bymerely
positing theoretical entities. We must also spell out the relationship between the theo-
retical entities and the observable phenomena they were posited to explain. Ladyman
and Ross (2007, p. 74) put it as follows: “It is only on the assumption that the unob-
servable entities posited by realists cause the phenomena that they explain them. If
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unobservable entities merely happened to be around when certain phenomena were
occurring, then their presence would not be explanatory.” In other words, in the con-
text of the no-miracles argument it would still be miraculous if observable phenomena
were explained by appeal to theoretical entitieswithwhich theyweremerely correlated
rather than nomologically linked.

In cases of scientific explanation, the nomological relationship between unobserv-
ables and observables is often a causal one, though this is not true for every case.
There are many examples in which unobservable entities and properties figure into
non-causal explanations of observable phenomena. The Lorentz-invariance of space-
time, for instance, is not the sort of property to which we should ascribe causal powers,
as it is a global symmetry of spacetime itself rather than a property instantiated at some
location within spacetime. Yet, it plays an essential role in explaining why time dila-
tion occurs. What is characteristic about all cases in which an unobservable property
or entity explains an observable one is that there is some metaphysical-dependence
relation between explanans and explanandum.

Once the constraint of metaphysical dependence is placed on the set of acceptable
solutions to the applicability problem, the applicability of mathematics becomes less
mysterious. One of the reasons we are able to make inferences from features about a
certain mathematical structure to consequences about an empirical system is that the
modal structure of the empirical systemmetaphysically depends on that mathematical
structure. When we cannot make such inferences, one of the reasons may be that no
such dependence relation holds between the structures.

5 What kind of metaphysical dependence?

I have argued that theremust be somedependence relationbetweenmathematical struc-
ture and modal physical structure. Facts about mathematical structures would not play
an explanatory role in the empirical sciences if they “merely happened to be around.”
Facts about the modal properties of physical systems are grounded in facts about
corresponding mathematical structures. Put another way, modal facts about physical
systems hold in virtue of facts regarding their underlying mathematical structures. But
how should we understand this in-virtue-of relation? What is the specific nature of the
relationship between mathematical structure and the modal structure of the physical
world? I address four possible relations that could do the work of grounding physical
modality in mathematical structure. These are what I take to be prima facie the most
promising options, though they are not exhaustive.

5.1 Grounding

If we invoke the relation put forth by Rosen (2010) and Schaffer (2015) we would
understand the in-virtue-of relation that holds between modal physical structure and
mathematical structure as in instance of the primitive big-G Grounding relation.

Grounding is a relation between facts or sets of facts, understood as true proposi-
tions. It is asymmetric and irreflexive. Rosen (2010) notes that we ought not assume
the relation is a well-founded one. Since it is an open question as to whether there is a
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fundamental level of reality, it is epistemically possible that there is an infinite chain
of facts such that each fact is grounded in a subsequent fact or set of facts. Grounding
is said to be analogous with causation.

But it is not clear how much more can be said about Grounding. Wilson (2014)
argues against Grounding on the basis that it is too course-grained to do the work
required of it, it is not clearly one single thing over and above an aggregation of
more specific small-g grounding relations, and it fails to be illuminating as a primitive
relation.

These considerations against Grounding are not necessarily decisive. If it turns out
to be a useful notion that does important metaphysical work, then perhaps it may be
redeemed and put to work here. For our current purposes, however, exchanging the
mystery of applicability for the no less mysterious metaphysical relation of Grounding
is not a compelling solution.

5.2 Supervenience

On its face, supervenience may seem like a promising notion for understanding how
modal physical structure depends on mathematical structure. However, it is a poorly
suited candidate for our dependence relation. While supervenience is itself a modal
notion, it cannot provide the necessary apparatus for grounding non-Humeanmodality
in mathematical structure. Supervenience can be invoked to define a Humean picture
ofmodal physical structure, wheremodality is grounded in patterns of regularity.What
is key for supervenience to be able to do such work is that modality must be grounded
in something that can change or that could have been different. On theHumean picture,
modality is grounded in universal regularities, which themselves could be and could
have been different.

On a picture where modality is grounded in features of mathematical structures,
invoking superveniencemeans that the grounding relation never holds.Modal physical
structure P supervenes on mathematical structure M just in case the following is true:
There could have been no difference in P without a corresponding difference in M.
But if M is a mathematical structure there is no sense in which M could have been
different, since mathematical structures have their mathematical features necessarily.

There is a sense in which the mathematical structure that underlies the modal struc-
ture of a given empirical system could have been different. But this is just what would
be the case if a modal physical structure instantiates one mathematical structure but
could have instantiated a different one. This leads us to our next option of understand-
ing the grounding relation as one of instantiation.

5.3 Instantiation

Understanding modal physical structures as instantiating mathematical structures
allows us to make sense of the thought that the modal structure of certain physical
systems could have been different.

Consider the structure of spacetime. Suppose the modal structure of our physical
spacetime instantiates the mathematical structure of a four-dimensional pseudo-
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Riemannian manifold with a Lorentz metric tensor. If our spacetime is a token of
this mathematical type, it follows that our spacetime will have the symmetries that
characterize the mathematical structure. From this, it can be derived that the empirical
phenomenon of time dilation will arise.

Yet presumably our spacetime could have been different. If the modal physical
structure of our spacetime had instantiated a toroid, for example, then different sym-
metries would be exhibited. Space would not have been isotropic. Apparently rigid
bodies would appear to undergo expansion and contraction as they moved through
space. The modal features of spacetime could have been different if spacetime had
instantiated a different mathematical structure.12 Unlike supervenience, instantiation
allows us to make sense of how the modal profile of spacetime could have been dif-
ferent.

The instantiation account also fills in what the mapping account leaves out. Why
should the existence of a structural isomorphism between amathematical structure and
some aspect of the physical world allow us tomake inferences about the physical world
and predications about the future states of the physical system? On the instantiation
account, the answer is that the mathematical structure constrains what future states of
the system are possible. That the modal structure of the physical system instantiates
the mathematical structure is what allows the mathematical structure to play the role
of limiting and constraining the physical.

This sort of explanation ismissing from themapping account. Think about an actual
map that corresponds to some area of the world. There has to be some explanation
of how it came to be the case that the map strongly corresponds to the world. On
this metaphor, however, it is the world that limits the map. The explanation for the
correspondence would cite both the features of the world that were to be mapped out
as well as whatever social or professional norms of cartography were that dictated that
accurate representation of some salient aspects of the world were to be desired. On
the mapping account, we understand the relationship between mathematical structure
and the physical world to be one of mapping, and the world limits what mathematical
structures can be used to successfully map its systems.

My suggestion is that, for the reasons given in Sect. 4, the mapping account gets
the direction of the limiting relation the wrong way around. We ought to understand
the mathematical structures that the modal structures of the physical world instantiate
as limiting the possible features of the physical systems that instantiate them. On this
view, we can understand our inferences from mathematical structures to modal facts
as broadly in line with other inferences we make from features of a type to features of
a token.

Instantiation provides the necessary premise that allows us to derivemodal physical
facts from mathematical ones. For instance, we know that the modal structure of the
bridges of Königsberg problem instantiates a specific graph. It is a graph that has no
Eulerian cycle and thus no trail that starts and ends at the same graph vertex. Now, the
bridges of Königsberg have plenty of other contingent non-mathematical properties,
but the physical property of being such that each bridge cannot be crossed exactly

12 A framework of nested modality such as the one developed by Lange (2007) is useful here.
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once derives from the corresponding mathematical property of having four vertices of
odd degree and thus no Euler path.

The instantiation account gives us the resources to understand the fact that the
mathematics limits possible features of physical systems, and it provides us with a
template for understanding how inferences and derivations of the features of these
systems from the mathematical structures they instantiate is possible.

5.4 Identity

Perhaps the strangest possibility is that mathematical structure and modal physical
structure are simply one and the same. This could be thought of in one of two ways.
Either the physical world is itself a mathematical structure or mathematical structures
are just modal physical profiles.13 Tegmark (2007) defends a version of the former,
while the latter fits with attempts to reduce the mathematical to modal possibilities
about the physical.

The most obvious drawback of positing the identity relation is that, as discussed
above, modal physical structures and mathematical structures seem to have different
modal profiles. Seemingly the modal structure of an empirical system such as space-
time could have been different if the empirical system itself had been different. But
the mathematical structures that underlie the modal structures could not have been
different. So if we take modal properties to be real properties of these structures, it
would seem that the modal and the mathematical could not be one and the same. There
are likely ways to get around this difficulty, but they require additional work.14

6 Concluding remarks

This paper has explored a number of cases that demonstrate the indispensability of
mathematics to the prediction and explanation of empirical phenomena. I have shown
that the empirical phenomena in each case must be understood as inherently modal
and that mathematics plays an essential role in explaining the modal features of these
empirical systems. Why is mathematics able to predict and explain so much about the
physical world? It is a lesson of scientific realism that, for theoretical entities to do
explanatory work, they must bear some determination relation to the phenomena they
are supposed to explain. I have argued that any solution to the applicability problem
that the scientific realist can accept must appeal to a metaphysical dependence relation
between mathematics and modal physical structure. While we might understand this
metaphysical dependence in terms of any number of specific relations, the promise of
the instantiation relation looms largest. Instantiation seems to be the candidate relation
most able to accommodate the fact that some modal structures of physical systems

13 Of course identity is a two-way street. But when we talk about discovering that what we initially thought
were two separate things, A and B, are actually one thing, this is frequently spelled out in terms of finding
that A actually has all or most of the properties that we initially thought B had or vice versa.
14 Tegmark’s picture of the mathematical multiverse on which all mathematical structures are physically
realized somewhere in the multiverse may contain the resources to respond to this concern.
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could have been different, to shed light on how it is that we can derive facts about the
physical world from features of mathematical structures, and to illuminate the way
that mathematical facts limit what is possible in the physical world.
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