
MATHEMATICAL ACCESS WORRIES AND ACCOUNTING

FOR KNOWLEDGE OF LOGICAL COHERENCE

SHARON BERRY

Abstract. A range of current truth-value realist philosophies of math-

ematics allow one to reduce the Benacerraf Problem to a problem con-

cerning mathematicians’ ability to recognize which conceptions of pure

mathematical structures are coherent – in a sense which can be cashed

out in terms of logical possibility. In this paper, I will clarify what it

takes to solve this ‘residual’ access problem and then present a frame-

work for solving it.

1. Introduction

Human beings seem to have significant mathematical knowledge. But,

famously, our possession of this knowledge can seem deeply mysterious.

Specifically, what could explain the match between human psychology and

objective mathematical facts? Certain features of mathematics, like the ap-

parent abstractness and causal inertness of mathematical objects, can make

it seem like even modest human accuracy about mathematics could only

be got by some massive lucky coincidence. Call this the access problem for

realism about mathematical knowledge(broadly understood).

In this paper, I will propose an answer to the above mathematical access

problem, in the following sense1. I’ll try to dispel the common impression

that human possession of significant mathematical knowledge would require

1My proposal has some affinities to a brief suggestion in REDACTED, but is much ex-
panded and addresses issues like how knowledge of the logical coherence of conceptions of
mathematical structures not statable in first order logic can be explained.
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some mysterious coincidence over and above whatever is involved in our pos-

session of widely accepted general purpose faculties like: first order logical

deduction, observation and abduction/inference to the best explanation.2.

Many popular contemporary philosophies of mathematics allow mathe-

matical access worries to be reduced to access worries about knowledge of

logical coherence. These views (views what I will call the Structuralist Con-

sensus3) agree that mathematicians can reliably form true beliefs by making,

essentially, any logically coherent pure mathematical posits they like4. They

can then gain further mathematical knowledge by making logically valid

deductions from these premises5.

Thus, it would suffice to dispel mathematical access worries if we could

dispel analogous worries about knowledge of logical coherence — accounting

for mathematicians’ ability to recognize logically coherent posits (without

positing some mysterious extra coincidence)6. Crucially, the general purpose

2Admittedly, one might desire a more ambitious answer to mathematical access worries.
However, I take it that merely answering intuitive mathematical access worries in sense
above would already be a philosophically significant (c.f. companions in innocence defenses
of moral realism) and, to many philosophers, counter-intuitive result.
3Different views in the structuralist consensus support the relevant claim about math-
ematicians’ freedom in different ways. For example, Modal Structuralists hold that
mathematical claims really express modal claims like ‘It’s logically possible for there
to be objects satisfying certain and logically necessary that if there were objects satis-
fying these axioms then...’. Plenetiudinous Platonists hold that the mathematical uni-
verse is sufficiently large that all or nearly all coherent posits will express truths, as per
[Balaguer, 2001] and classic set theoretic foundationalism. And neo-Carnapian Platon-
ists hold that we have some freedom to choose how our language ‘carves up the world
up into objects’, including freedom to start talking in terms of new types of objects
([Hirsch, 2011, Thomasson, 2015, Berry, 2015, Berry, 2022]).
4Note that pure mathematical posits are assumed to be quantifier restricted to the struc-
ture being posited. Thus, there is no danger of individually coherent posits being jointly
incoherent or constraining the behavior of non-mathematical objects.
5Such deductions might be made via deploying standard first order logic (knowledge of
which we are assuming). But in the case of non-first order logical axioms, they may also
involve some more powerful inference rules for recognizing logically necessary consequences
of these axioms, as discussed below. The story I’ll propose purports to account for both
kinds of knowledge.
6Does knowledge of logical coherence require prior knowledge of abstracta (like set models
or sentences)? It might if we tried to reductively analyze logical possibility using these
notions. However I will instead follow Field[Field, 1984] (and to some extent Putnam in
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logical abilities I’m taking for granted in this paper (ability to do first order

logical deduction) don’t suffice to explain this logical coherence knowledge

on their own. For doing first order logical deduction can deliver knowledge

that I haven’t succeeded in deriving contradiction from some axioms yet.

But this is a far cry from the knowledge we need to explain knowledge

of logical coherence (i.e., ♢ϕ knowledge where ♢ is the logical possibility

operator, and ♢ϕ ensures that no contradiction can be derived )7

In this paper, I’ll suggest a toy model for how creatures like us (in all ways

that generate intuitive access worries) could have gotten good methods of

reasoning about logical coherence sufficient to explain the ability to recognize

coherent pure mathematical posits and thence the kind of mathematical

knowledge we seem to have.

In §2 I’ll clarify how I’m thinking about access worries, and why I take

them to be most naturally and directly answered by providing a kind of toy

model. In §3, I’ll lay out and defend a basic proposal which attempts to

explain our ability to recognize coherent conceptions putative mathematical

[Putnam, 1967]) in taking the ♢ of logical possibility as primitive modal notion (that’s a
logical operator).
Admittedly there’s now a fruitful tradition of identifying logical possibility with hav-
ing a set theoretic model for various mathematical purposes (and validity with not hav-
ing a counter-model). However, there are independent reasons[Gómez-Torrente, 2000,
Hanson, 2006, Boolos, 1985, Etchemendy, 1990, Field, 2008] for thinking we have prior
grasp on a notion of logical possibility which isn’t defined in terms of set models. In a
nutshell, the issue is this. It’s core to our conception of this notion logical possibility that
what’s actual is logically possible. But if we think about logical possibility in terms of set
theoretic models, then the actual world is strictly larger than the domain any set theoretic
model (e.g., because it contains all the sets), so it’s prima facie unclear why every sentence
that truly describes the actual world must have a set theoretic model.
Also, one might feel (with Boolos) that, “one really should not lose the sense that it is
somewhat peculiar that if G is a logical truth, then the statement that G is a logical truth
does not count as a logical truth, but only as a set-theoretical truth”[Boolos, 1985].
7By the completeness theorem[Gödel, 1930] first order logical axioms are coherent (intu-
itively satisfiable) if and only if they are syntactically consistent. So if we could perform
infinitely many calculations in a finite amount of time, we could arguably recognize coher-
ent first order logical axioms, by brute force checking syntactic coherence (going through
all possible proofs). But obviously real-life mathematicians’ ability to choose coherent
axioms can’t be explained by anything like this.
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structures stated in the language of first-order logic.8. In §4 and §5 I’ll

answer some objections to this basic proposal. In §6 I’ll note some reasons

why many (but not all) philosophers of mathematics think our conception

of mathematical structures cannot be stated in the language of first order

logic. Then I’ll show how the basic story told in §3 can be generalized to

account for knowledge of the logical coherence of axioms in a suitably more

powerful language – given plausible (but not uncontroversial) assumptions

about the reliability of abduction when applied to logical possibility facts.

Overall, I aim to provide a basic story about how creatures relevantly

like us could have gotten logical coherence knowledge sufficient to account

for our apparent mathematical knowledge, which can be accepted by most

readers – without taking a stand on vexed questions about exactly what

kind of logical coherence knowledge is needed9.

2. Background

Let’s begin with some background about the problem to be solved: what

does it take for a philosophy of mathematics to face an access problem, and

what would solving such an access problem require?

8Examples of such conceptions are Q (Robinson’s arithmetic) and finite fragments of PA.
9Philosophers sufficiently non-skeptical and realist to face an access worry about math-
ematical knowledge can still disagree about how much logical knowledge is needed to
account for the mathematical knowledge we actually have (because they disagree on the
richness of our conceptions of mathematical structures and/or how much we know about
these structures).
I won’t argue for a position on this debate here. Instead, I’ll try to propose a recipe for
explaining knowledge of logical coherence which is broadly useful, as follows. It can be
used by extreme truth value realists about mathematics (like myself) to answer access
worries – provided that we happen to also be somewhat optimistic about the powers of
abduction and inference to the best explanation (as sociologically tends to be the case).
However, it can also be used by philosophers like Field who are more cynical about how
far abduction and inference to the best explanation can take us, but also (as sociologically
tends to be the case) take a more modest view of the richness of our mathematical concepts
and/or the extent of our mathematical knowledge.
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Following [Field, 1980, Berry, 2020], I take access worries about mathe-

matical knowledge to involve a kind of (ceteris paribus) coincidence avoid-

ance reasoning. A realist account of some domain (like mathematics) faces

an access worry to the extent that accepting it seems to commit us to the ex-

istence of certain kinds of unattractive brute coincidences (regularities that

cry out for explanation but have no relevant explanation), which could be

avoided by adopting some relevant, less realist, alternative theory10.

Thus, access worries arise from a kind of ‘how possibly’ question — and

can naturally be answered by providing a kind of toy model. They involve

a ‘how possibly’ question, in the following sense. It seems unimaginable

how mathematicians could possibly have acquired the accuracy they seem

to have, without benefiting from some kind of striking coincidence that cries

out for explanation. Yet adequate explanation seems inconceivable.

Accordingly, a natural way to answer access worries would be to dis-

solve this feeling of inexplicability by providing a toy model [Cassam, 2007,

Nozick, 1981], i.e., a sample explanation of how mathematical knowledge

could have arisen. This sample explanation doesn’t have to fit all known

facts about how human mathematical knowledge actually arose. However,

it does have to keep the key features of our actual situation that make

adequate explanation seem inconceivable (e.g., our lack of causal contact

with mathematical objects or logically possible worlds). It also cannot be

buck-passing, in the sense that it explains one mysterious extra correlation

the mathematical realist is committed to by appealing to another. For ex-

ample one can’t solve access worries merely by explaining mathematicians’

10So, on one hand access worries can be seen as arising from a kind of informal reasoning
about coincidence avoidance, which is widely accepted and has proven its fruitfulness in
other areas. But, on the other hand, they only provide a ceteris paribus reason for favoring
one theory (sometimes positing extra coincidences is, on net, the right thing to do).
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acceptance of largely true theorems merely by appeal to their acceptance of

largely true axioms.

In the rest of this paper, I will try to provide such a story (centering

on explaining our knowledge of logical coherence facts needed to recognize

acceptable mathematical posits).

3. The Basic Proposal

To introduce the basic idea behind this proposal (and set up the toy model

I’ll develop), imagine creatures who speak a language much like our own11

and already have the widely accepted non-mathematical faculties we are

taking for granted: first order logical deduction, broadly sensory perception

of non-mathematical objects and abduction/IBE.

I take it that it wouldn’t be massively surprising (in the sense relevant to

access worries) if such creatures acquired a kind of minimal notion of logical

possibility. Specifically, I take it that we can (without question beggingly

attempting to explain one coincidence by appeal to another mysterious co-

incidence) further imagine the protagonists of our toy model as having ac-

quired a kind of minimal concept of logical possibility12 which they take

11For simplicity’s sake, I’ll suppose that they speak a fully formal language like first-order
English so we can meaningfully talk about things like substitution instances.
12Arguably it would be surprising if they didn’t develop such a notion. These creatures
face a practical problem. Their language lets them form many different statements whose
falsehood is guaranteed by their logical structure alone. So many plans which they can
verbally represent would, ideally, be discarded as unrealizable purely on the grounds that
they require something logically impossible. And there is practical benefit to recognizing
this and focusing resources on plans and hypotheses, which are, at least, logically possible.
Even though creatures with first-order logic will already be disposed to reject plans when
they derive a contradiction from them, there are further benefits to be gained from having
a positive theory (e.g., being able to infer that one scenario is logically possible only if
another one is, allows one to skip searching for a contradiction in the former scenario after
seeing the later scenario realized).
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to satisfy the two schemas below (and the expectation that ♢ facts should

follow elegant general laws)13.

• ϕ→ ♢ϕ

• When S1 . . . Sm and S′
1 . . . S

′
m are all distinct relations with each S′

i

having the same arity as Si and no S′
i occurs in ϕ, ♢ϕ↔ ♢ϕ[S1/S′

1...Sm/S
′
m]

Informally speaking, the first schema embodies the idea that we are talk-

ing about a notion of possibility, saying that everything actual is logically

possible. The second embodies the idea that we are talking about possibil-

ity with respect to logical form alone, so that systematically replacing one

relation with another (without collision) doesn’t change logical possibility

facts14.

Now we ask, how could creatures like this gain sufficient knowledge of log-

ical possibility to reconstruct the mathematical knowledge we seem to have?

Note that no amount of mere first-order logical deduction (i.e., no first-order

logical proof from empty premises) will ever let one derive even simple logi-

cal possibility facts we seem to know, like the fact that it’s logically possible

for there to be two distinct things ♢(∃x)(∃y)(¬x = y).

I take it we can imagine creatures of the kind envisaged above getting

some general good methods of reasoning about logical possibility via the

following combination of mechanisms.

3.1. From ϕ to ♢ϕ. First, knowledge of non-mathematical objects (got via

the faculties of sensory observation, FOL deduction and IBE we are assum-

ing) can give one some initial data about logical possibility via the above

13That is, I take it we can assume this at the beginning of our story, without risk of
question beggingly explaining away one apparent ‘extra’ coincidence by appeal to another
such coincidence (which is left unexplained). See [Berry, 2020] for more details.
14Note that some natural variants on this initial conception of logical possibility would
intuitively count as getting something else right (e.g., setting out to learn facts about
physical, chemical, metaphysical, or psychological possibility) rather than getting logical
possibility wrong.
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principle that’s what’s actual is logically possible. For example, suppose

you know that some claim ϕ is true about how the relations of friendship,

nephew-hood and having been in military service together apply in just this

way to the royal family of Sweden. Then you can infer that this scenario

is logically possible: ♢ϕ. You can also infer the logical possibility of a cor-

responding hypothesis about which of your friends are gossiping with each

other (involving relations P , Q, and R).

3.2. Abduction from regularities in what’s actual to □ϕ. Second,

patterns in these data points can suggest further facts via abduction and

inference to the best explanation. These generalizations can take the form

of general laws/methods of reasoning about logical possibility which let us

derive additional ♢ϕ claims in cases where we don’t know that ϕ is actual.

For example, we might learn laws/inference methods that let us derive claims

of the form ‘if ♢ϕ then ♢ψ’.

Noticing other patterns in the behavior of non-mathematical objects (that

certain states of affairs are never observed to be actual) and applying IBE

can yield other kinds of logical possibility knowledge. Sometimes the best

explanation for the fact that certain things never happen is that it would be

logically impossible for them to happen. This provides a potential source of

knowledge of ¬♢ϕ facts.

Suppose, for example, that someone thought it was logically possible for

there to be 9 sundaes which differed from one another in which of three

properties they had, e.g., for 9 people to choose different combinations of

sundae toppings from a sundae bar containing three toppings. This person

would have to explain the striking law-like regularity that, regardless of the

type of items and properties in question, we never wind up observing more

than 8 such items. They might postulate new physical regularities to explain
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why apparently random processes of flipping three coins never generated the

forbidden 9th possible outcome. However, this explanation (or some analo-

gous one) would have to apply at every physical scale we can observe, from

relationships between the tiniest particles to relationships between planets

and stars (as well as to less concrete objects like poems and countries). A

much more elegant explanation is that the unrealized outcome isn’t logi-

cally coherent. Recognizing that the forbidden 9th outcome is forbidden in

all possible domains is much more economical and a priori attractive than

hypothesizing separate laws prohibiting it in each specific situation.

In this way, we can think of facts about what’s actual as simultaneously

a useful source of data about what’s logically possible, physically possible,

chemically possible, etc.

Now objector might wonder how it is possible for a single collection of

data to do all these jobs? When we notice a seeming regularity, we face an

in-principle choice about whether to explain it in terms of logical necessity

vs. physical law, metaphysical necessity or mere ceteris paribus regularity.

How could we ever be justified in saying that this regularity holds as a matter

of (say) logical rather than merely physical necessity?

I’d reply that this is not a problem because patterns in our experience can

still rationally motivate (in the sense relevant to IBE) attributing a noted

regularity to logical necessity rather than physical law. For, as noted in the

case above, if the right explanation for some regularity is that it holds as

a matter of logical necessity, we should expect to see that all substitution

instances of it (i.e., all sentences with the same logical structure) are true,

whereas we’d expect the opposite if this regularity holds as a matter of

merely metaphysical necessity or physical necessity.



10 SHARON BERRY

3.3. Reflection and Generalization. Third, one could make further gains

in the power and accuracy of our methods of reasoning about logical possi-

bility by the familiar processes of deriving new consequences from whatever

laws of logical possibility we currently accept, reflecting on our beliefs and

recognizing when they conflict or cohere with one another.

So, to summarize, the core idea is this. We get some initial knowledge

of logical possibility facts via the principle that what is actual is logically

possible (just as we get some initial data about what states of affairs are

chemically possible by observing what actually happens). Abduction and

inference to the best explanation can then help us correct hypotheses about

allowable inferences regarding logical possibility. Facts about logical possi-

bility provide a uniform subject matter which we get initial data about from

our non-mathematical faculties (via the actual to possible inference) and to

which abduction and inference to the best explanation can be fruitfully ap-

plied, with the result that our knowledge of logical possibility is no more

mysterious than our knowledge of physical or chemical possibility.

However, various worries can be raised about whether abduction and

inference to the best explanation can give us enough logical knowledge to

account for our seeming mathematical knowledge via some view in the struc-

turalist consensus (i.e., whether it can explain our ability to recognize ♢ϕ

facts, where ϕ is our conception of some mathematical structure like the

natural number). I will discuss and answer a number of such worries below,

proposing two important generalizations of the above story as needed to do

this.

Additionally, there’s a major technical problem about how to account

for knowledge of the logical coherence of conceptions of pure mathematical

structures that can’t be stated (by finite or recursively enumerable axioms)

in the language of first order logic. I will address this in §6.



MATHEMATICAL ACCESS WORRIES AND KNOWLEDGE OF LOGICAL COHERENCE11

4. A Priority and Innateness

One family of worries about the basic proposal in §3 concerns whether it

can adequately allow for the possibility of (in some sense) innate or a priori

mathematical knowledge.

First, one might argue that the answer to mathematical access worries

proposed above can’t account for our having any very innate/hardwired

propensity to good mathematical (or logical possibility) reasoning. The

basic story about logical and mathematical accuracy sketched above (in-

volving conscious reasoning like applying abduction or inference to the best

explanation) prima facie can’t account for innate inclination to form true

beliefs about logical possibility or mathematics15. Thus, one might object

that my proposal can only solve the general mathematical access problem

on the (unjustified) assumption that we won’t turn out to have much of an

innate push towards good logical or mathematical reasoning.16

In response to this concern, I’d like to suggest that a version of the basic

story (about abduction and IBE leading us from initial datapoints to correct

laws) can be realized at an evolutionary level, if our dispositions to accept

good mathematical reasoning turned out to be sufficiently innate (e.g., if we

were innately disposed to do something like good mathematical reasoning

in a language of thought). Though evolution may not care about elegance

15See Spelke’s experiments with infants in [Spelke and Kinzler, 2009] for an example of the
kind of data which might suggest that certain good methods of reasoning about (something
like) logical possibility or mathematics are relatively innate.
16A third way of realizing the explanatory strategy proposed above involves something
like meme selection on mathematical textbooks and/or practices. We can imagine the
relevant process of using IBE to generate and correct beliefs occurring either within an
individual’s lifetime or over 100s years of intellectual history/via meme selection on social
norms for reasoning about logical possibility. Perhaps each creature learns how to reason
about logical possibility and mathematics from the society around them, and individuals
only very rarely suggest revisions to these methods – but theories which elegantly predict
and explain regularities in what’s actual are much more likely to spread once suggested.
Considering the development of probability theory textbooks (with older theories leading
to countries dutch booking themselves and thus consistently losing money)[Hacking, 1995]
may provide a real life model for such a process.
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and theoretical economy in quite the sense that we do, mental resources

are expensive and those methods of reasoning that could be encoded in the

simplest manner and handle the most general situations would be favored17

Second, one might worry that accepting the kind of story about knowledge

of logical possibility (and thence mathematics) developed above commits one

to a controversial empiricism about mathematical knowledge. As our math-

ematical knowledge is generally assumed to be a priori, this presents a prima

facie problem (though some, like Quine and Mill[Mill, 2002, Quine, 1961],

are happy to bite the bullet).

However, I don’t think any such commitment to empiricism is incurred.

For note that experience playing an important causal role in explaining how

we got accurate methods of reasoning about logical possibility and thence

mathematical reasoning (whether via conscious reasoning or evolutionary

selection) doesn’t prevent the knowledge gained by using these faculties

from qualifying as a priori. Sometimes (in a kind of ‘epistemic Stockholm

syndrome’) conscious experience and inference to the best explanation leads

us to accept some method of reasoning, and then we decide that we should

have reasoned that way all along (so facts discovered using these methods

are a priori knowable).

The online supplement to a New York Times article [Tierney, 2008] on

the Monty Haul problem provides a cute demonstration of this psychologi-

cal fact. It used a computer simulation using a random number generator

to change readers’ opinions about how one ought to analyze probabilities

in that case (and hence whether it would be beneficial to change doors).

So contingent experiences with a computer simulation seemingly changed

17One might question whether something analogous to abduction and inference to the
best explanation can apply at the level of evolutionary selection. But I suspect that most
readers are already committed to a fair amount of optimism on this front; we don’t tend
to think there is any access problem about the fact that human infants have seemingly
correct inclinations to fear heights or avoid poisonous foods.
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readers’ minds about which methods of reasoning about probability are ap-

propriate for use a priori (whether or not you’ve done experiments with a

simulated Monty Haul problem).

5. Does IBE go far enough?

Now let me turn to a series of (progressively more radical) worries about

how far abduction and inference to the best explanation can take us.

5.1. Scientific Induction Unreliable in Mathematics? Most radically,

someone might reject the story above because they hold that abduction and

inference to the best explanation are completely unreliable with regard to

mathematics (and hence plausibly also logical possibility)18. If this were

correct, it would certainly raise a problem for the answer to access worries

about logical possibility sketched above. Someone pressing this worry will

doubt that the mechanisms above could even yield laws that correctly predict

what’s logically possible for finite collections of objects19.

In response to this, I would note that there’s strong independent reason to

reject insinuations that generalization from cases is completely unreliable in

mathematics. Mathematicians frequently use hunches developed from past

experience, judgments of general plausibility or theoretical attractiveness

and the results of computational searches20 to guide their research. For

example, the widespread expectation that Fermat’s last theorem was true

before any proof was found was (partially) motivated by consistent failure to

find a counterexample. If we want to make sense of the apparent success of

this aspect of mathematical practice, we can’t suppose that abduction and

18See [Frege, 1980] pg. 16 for a version of this objection.
19Here I have in mind claims of the form ♢Φ, where Φ logically entails the Fregean
translation into purely logical vocabulary of ‘there are at most n things’.
20Of course, mathematicians don’t do this naively. If they already know that any coun-
terexample must be large, they won’t change their judgments because no small counterex-
amples were found.
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inference to the best explanation are completely unreliable when applied to

the mathematical realm.

Also note that the idea that something like the abduction/inference to the

best explanation found in the sciences can also reliably be applied to mathe-

matics, is a controversial but modestly popular position in the literature on

the search for new axioms in set theory. Gödel famously suggested that we

can reliably add new axioms by choosing principles which unify and explain

the mathematical beliefs which we already have21. If this is true, then it

seems plausible that the creatures in our just-so story could reliably extend

an initial collection of good methods of reasoning about logical possibility

in the same way.

5.2. A Gap Between the Finite and the Infinite? Next, there’s a worry

that the story suggested above cannot explain the degree of mathematical

knowledge we take ourselves to have (specifically) because there’s a big gap

between the laws of logical possibility which apply to the finite and the

infinite.

One might allow that the above mechanisms can explain human accuracy

about logical possibility facts involving finite collections, but argue as fol-

lows. All the ‘inputs’ to the abductive story above (i.e., knowledge of what’s

actually true via sensory perception and inference to the best explanation)

involve finite structures. So abduction from mere knowledge that certain

finite structures are logically coherent couldn’t plausibly lead us to (correct)

laws about what scenarios involving infinitely many objects are logically

possible. Many elegant generalizations that hold for finite collections fail for

infinite structures, e.g., consider Hilbert’s hotel. Thus, (unless we can allow

21In [Gödel, 1947] Gödel writes, “There might exist axioms so abundant in their verifiable
consequences, shedding so much light upon a whole field, and yielding such powerful
methods for solving problems... that, no matter whether or not they are intrinsically
necessary, they would have to be accepted at least in the same sense as any well-established
physical theory.” See [Koellner, 2010] for more on this.
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for some inputs concerning infinite structures) the above proposal can’t ac-

count for our knowledge of logical possibility of axioms describing even the

smallest mathematical structures involving infinitely many objects, like the

natural number structure.22

I propose that we can answer this concern by adding an additional quasi-

Quinean twist to the basic story outlined in §3. Recall that Quine famously

suggested that we can learn mathematical objects exist via the fact that

our best scientific theories quantify over them[Quine, 1961]. This claim is

extremely controversial.

However, note that it would suffice for the story about knowledge of

logical possibility above if scientific use of claims about infinity gave us

knowledge of logical possibility claims directly (rather than knowledge of

truths about non-mathematical objects which can be used to infer logical

possibility claims). And many people, even philosophers who reject this

Quinean idea, tend to allow that either something like long use of some

axioms without deriving a contradiction or scientifically explanatory use of

these axioms is a (ceteris paribus) reliable guide to the logical coherence of

these axioms.

Thus, we can plausibly appeal to the scientific usefulness of theories re-

quiring the existence of infinitely many objects as a reliable source of input

regarding the logical possibility of certain scenarios involving infinitely many

different objects. For example, we might say the scientific-explanatory use-

fulness (or long harmless use of) of reasoning with a space of ‘possible words’

22Arguably faculties continuous with the sensory observation and inference to the best
explanation we are taking for granted can deliver knowledge of the truth (and hence logical
possibility) of a few claims implying the existence of infinitely many non-mathematical
objects. Consider the following first order logical claim, ‘For every spatial region in the
path of Zeno’s arrow there is a shorter one’. It’s not clear whether or not infinitely divisible
regions of space turn out to be part of fundamental physics. However, one might argue
such spatial regions are part of the manifest image and can be known to literally exist
much as holes, shadows, heatwaves, marriages and contracts can be known to literally
exist.
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(abstract objects witnessing possible ways concatenating some letters from

the alphabet A-Z) that’s taken to satisfy certain closure conditions, gives

us some reason to believe in the logical coherence — if not the truth — of

axioms describing this space. And the same goes for explicitly mathemat-

ical structures used in scientific theories, like the natural numbers and the

reals. If initial data points involving the logical coherence of few central

infinite mathematical (or abstract) structures can be secured in this way,

the worry above will be answered. Applying inference to the best explana-

tion/abduction concerning logical possibility (as in the basic just-so story

told above) can then account for our knowledge of the logical coherence of

other (less scientifically useful or frequently studied) conceptions of infinite

mathematical structures23.

Note that the above proposal suggests that long and/or scientifically ex-

planatory use can be a good guide to logical coherence (so that we can add

an extra source of initial data points regarding ♢ϕ facts) as follows, not that

it’s an infallible guide. I allow that it’s sometimes useful and rational to

temporarily adopt (in some sense of the word) logically incoherent scien-

tific theories24 But I would argue that such cases are rare 25. Also what’s

useful (and what people actually do) isn’t accepting these theories without

caveat26, so we might accommodate this point by saying that long scientific

explanatory use without caveat is a good guide to truth.

23Note that I don’t presume (or need to presume) that concrete reality forces any single
unique such structure on us. As Penelope Maddy emphasizes in [Maddy, 2011], science
and philosophy of science may under-determine what logico-mathematical structure to
ascribe to a physical system.
24For example, consider the scientific and explanatory use of the Dirac delta function in
physics.
25See [Vickers, 2013] for extended discussion of a number of cases studies supporting this
point.
26We might also refine the idea of scientific usefulness above to something like following
claim: useful scientific theories tend to be consistent or have their inconsistency flagged
and paired with a, formal or informal, way of using these theories while avoiding first
order logical explosion associated with them (e.g., like the idea that quantum mechanics
is to be used to describe the very small and relativity to describe the very large).
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One might fear that adding the above new quasi-Quinean element to

the core proposal made above re-introduces known problems for Quinean

empiricism. However, the fact that our current story only endorses an indi-

rect relationship between scientific and mathematical beliefs (mediated by

acceptance of general laws of logical possibility) and doesn’t require scien-

tific usefulness for mathematical existence lets us continue to avoid many

important problems for Quine’s account. For example, we have no trou-

ble accommodating recreational mathematics [Hahn and Schilpp, 1986] or

mathematicians’ tendency to learn about scientifically useful mathematical

objects before any scientific usefulness is discovered [Friedman, 2001].

5.3. Extent of Knowledge. Finally, one might worry that the above story

can’t account for our apparent knowledge of facts about logical coherence

(and necessity) involving large infinite collections, such as are plausibly

needed to account for knowledge of set theory. REDACTED discusses a

version of this worry (posed as a response to a simpler predecessor of the

view defended here) in some detail, “A critic might advance the following

analogy: saying [knowledge of logical possibility facts involving finite and

countably many objects yields general principles that can give knowledge of

logical possibility facts involving larger structures as needed to reconstruct

set theory] is like saying that inference to the best explanation plus obser-

vations of birds in New Mexico explains our possession of true beliefs about

birds in Canada as well. Presumably, in the ornithological case, we need

to go gather more data in order to get many true beliefs about birds in

Canada. But, in the mathematical case, we can’t gather more data. Thus,

our apparent possession of substantial true beliefs about what is logically

coherent for larger infinite collections remains mysterious.”
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There I respond to this worry by arguing that abduction and inference

to the best explanation plausibly do give us some knowledge of birds in

distant locals, we just expect this knowledge to be relatively sparse and less

confident than knowledge of birds near by. So the above argument only

suggests that our beliefs about logical possibility should get fewer and less

confident as we consider larger and larger infinite structures. But this is just

what happens with our beliefs about logical coherence and large collections:

as one moves from finite collections to countably infinite collections (like the

natural numbers) to uncountable collections (like the sets) our beliefs do get

more sparse and less confident. For example, the continuum hypothesis27

(CH) is a fairly simple statement involving sets of (relatively) small infinite

size, yet it is known that both the truth and the falsity of CH are compatible

with ZFC.

Now however, I would like to make an additional defensive point. As

discussed in §2, the amount of logical knowledge we need to account for will

depend on the style of realism and optimism about mathematical knowl-

edge one embraces. Personally, I’m inclined to think that logical possibility

facts are sufficiently uniform for the process of reflective equilibrium outlined

above to account (via the structuralist consensus) for our knowledge of the

coherence all the theorems of mainstream ZFC set theory) and (as we’ll see

below) our ability to recognize the logical coherence of non first order logical

axioms categorically describing the natural numbers. But philosophers more

skeptical of the extent of our mathematical knowledge (and who take more

modest logical knowledge to be needed to account for it) are even better sit-

uated. For, less ambitious and/or extensive knowledge of logical possibility

27The continuum hypothesis states that there are no sets whose cardinality is intermediate
between the cardinality of the real numbers and that of the natural numbers.
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facts needs to be explained, in order to account for the degree and kind of

mathematical knowledge they take us to have.

6. More Ambitious Mathematical Axioms

Now let’s turn to the second major problem I hope to solve in this paper:

that of accounting for mathematicians’ ability to recognize good non-first

order logical conceptions of mathematical structures.

As noted above, many popular philosophies of mathematics agree that

we could solve mathematical access problems if we could account for math-

ematicians’ ability to recognize the logical coherence of axioms stating our

conceptions of mathematical structures (and then truth preservingly derive

suitable kinds of logical consequences from these axioms). However (for

reasons to be explained below) many philosophers think our conceptions of

some paradigmatic mathematical structures can’t be fully stated in the lan-

guage of first order logic. This creates a problem for the story above. For,

at first glance, the basic explanatory mechanism proposed in §3 can only

explain knowledge of the logical possibility or impossibility of claims in the

language of first order logic (e.g., ♢ϕ claims where ϕ is a sentence in the

language of first order logic). It appears that this mechanism can’t account

for our ability to recognize logical coherence of ‘rich’ (non-first order logical)

conceptions of mathematical structures.

Philosophers who accept only a very weak form of mathematical realism

— on which only sentences derivable or refutable from some first-order con-

ception of a mathematical structure have a determinate truth-value — may

be satisfied with a story about the ability to recognize the logical coherence

of these conceptions of mathematical structures.
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However, as noted above, many philosophers and mathematicians think

we must have some conception of certain pure mathematical structures that

goes beyond anything stateable in the language of first order logic.

For one thing, many take us to have a conception of the natural numbers

which uniquely pins down their structure, and thereby ensures the truth or

falsehood of all sentences in the language of number theory. And it’s a the-

orem that no such conception of mathematical structures can be formulated

using the language of first-order logic alone (by a single sentence or even an

infinite collection of recursively enumerable axioms).

Indeed, the problem gets worse. For Gödel’s theorem actually shows that

each FOL theory of the kind mentioned above fails to determine an answer

to some Con(T) sentence. These are sentences that only use mathematical

vocabulary, but intuitively say that no number codes a proof of ‘0=1’ from

premises in a certain algorithmically described first-order logical theory T.

Thus we’re disposed to accept (and treat as ad a conceptually central truth,

constraining acceptable interpretations of ‘number’) a biconditional of the

following form:

• Con(T) iff 0=1 isn’t provable from the axioms of T.

Thus, if you accept that there are determinate facts about provability,

the attractiveness of the biconditional above creates pressure to accept that

there are also determinate truth values for all Con(T) sentences. Yet it’s a

theorem that no consistent finite (or recursively axiomatizable) collection of

first-order logical sentences (extending Peano Arithmetic) candidate for our

conception of the natural numbers can decide all such Con sentences.

For these and other reasons, many philosophers accept that our concep-

tion of paradigmatic mathematical structures like the natural numbers can-

not be expressed in the language of first order logic alone. It follows that

to explain the degree of mathematical knowledge these philosophers take us
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to have (via the structuralist consensus proposal assumed in this paper), we

must explain mathematicians’ ability to recognize the coherence of math-

ematical axioms stated using some more powerful logical vocabulary than

that of first order logic (e.g. axioms using second order quantification).

Now if we could (somehow) presume some initial knowledge of some ba-

sic statements Φ involving second-order quantification, then maybe we could

use the story about actual-to-possible inference and generalization above to

explain knowledge of claims about the logical coherence of axioms express-

ing our conceptions of pure mathematical structures (e.g., knowledge that

♢PA2, where PA2 denotes the second-order Peano Axioms).

But there’s a problem. For now we want to explain our knowledge of the

coherence of PA2. But we can’t assume that the protagonists of our toy

model will have any knowledge of non-mathematical facts involving second

order logical quantification, which could then be used as initial data points

for our process of abduction and inference to the best explanation. While the

widely accepted general purpose faculties (of sensory observation, inference

to the best explanation and FOL) we’re taking for granted can clearly give

us knowledge that certain first-order states of affairs are actual (and hence

logically possible, by the inference from actual to possible mentioned above),

it is less clear how we could get knowledge of any claims involving second

order quantification.

Insofar as we can’t see or touch or taste etc. the objects of second or-

der quantification (as opposed to the concrete objects which can figure in

first-order reasoning), these objects can seem to raise all the same access

worries as mathematical objects, and our knowledge of these objects can-

not be presumed. For example, many would say knowledge of facts like

(∃X)(∀x)(X(x) iff x is a brown egg) requires the existence of a second-order

object. And knowledge of (abstract causally inert) second-order objects can
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seem mysterious in exactly the same way knowledge of sets would be. It’s

not like we can just “see” second-order objects. We don’t see sets of eggs

floating over an egg carton28. Thus (at least some philosophers who accept

the structuralist consensus will feel29), we can’t just assume input knowledge

of second-order logic without risking begging the question30. But if we don’t

presume knowledge of some second-order facts as a starting point, then the

abductive story above cannot be used to account for knowledge that various

second-order states of affairs are logically possible.

I propose to address this problem by appealing to a notion of conditional

logical possibility, which has been independently motivated in the literature

on Potentialist set theory as a response to the Burali-Forti paradox31.

The notion of conditional logical possibility naturally extends the notion

of logical possibility simpliciter, and we will see that it has the following

pair of useful features. On the one hand, it offers all the expressive power of

second-order logic. But on the other hand, facts about conditional logical

possibility are sufficiently similar to (and, one might, say continuous with)

facts about logical possibility simpliciter that we can generalize the story

about knowledge of logical possibility above to account for some knowledge

28Or at least, the suggestion that we do in [Maddy, 1992] has proved deeply controversial.
29I have in mind nominalists in the structuralist consensus, like Hellman in [Hellman, 1996]
and thereafter, who reject second order logic as objectionably ontologically committal.
30That is, a story which did this would intuitively fail to solve access worries leaving a
mystery about how this knowledge of second order objects could have arisen.
31Doing this lets one simplify existing formulations and eliminate unnecessary and poten-
tially problematic de re modal claims (claims about what’s possible for a specific object)
in favor of claims about what’s possible given the structure of how some relations apply
and thereby avoids modal shyness worries of a kind noted by Linnebo in [Linnebo, 2018].



MATHEMATICAL ACCESS WORRIES AND KNOWLEDGE OF LOGICAL COHERENCE23

of the logical possibility of axioms stated using the conditional logical pos-

sibility operator3233

6.1. Conditional Logical Possibility. To quickly motivate and introduce

the notion of conditional logical possibility, suppose we have a map like this:

I might say, ‘It’s logically impossible, given the facts about how ‘is ad-

jacent to’ and ‘is a country’ apply on the map above, that each country

is either yellow, green or blue and no two adjacent countries are the same

color.’ Because if we consider all the possibilities consistent with these rela-

tions applying as they actually do, each involves two adjacent map regions

having the same color.

As noted above, the notion of conditional possibility generalizes the no-

tion of logical possibility simpliciter. When evaluating claims about tradi-

tional logical possibility operator ♢, we ignore all limits on the size of the

universe. We consider only the most general combinatorial constraints on

how any relations could apply to any objects (c.f. Frege [Frege, 1980]).

And we ignore subject matter specific metaphysical constraints so, e.g.,

32The story about the acquisition of correct laws and good general methods of reasoning
about logical possibility proposed below will also account for the ability to reliably derive
various further (logically necessary) consequences from such axioms, and thereby gain
further mathematical knowledge in something like the way mathematicians seem to gain
such knowledge.
33Extant work like [Berry, 2018, Berry, 2022] argues that reformulating Hellman’s poten-
tialist set theory in terms of a notion of ‘conditional logical possibility’ operator ♢ allows for
some conceptual simplification, and perhaps has certain other philosophical advantages.
That work also shows how using this notion lets us eliminate appeals to second order logic
(or plural quantification) in our characterization of other mathematical structures.
An alternative approach to the problem at hand (following Hellman [Hellman, 1996]),
would be to employ plural quantification. Perhaps something similar to my proposal
could be articulated using plural quantification. However, in this paper I will work with
the conditional possibility operator because doing so is (at least) expositorally helpful.
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♢∃x(Raven(x) ∧ V egetable(x)) comes out true. When evaluating condi-

tional logical possibility ♢R1...Rn we do almost exactly the same, but we

hold fixed (structurally speaking) how certain specific relations R1 . . . Rn
34

See the appendix A for further clarification of what holding structural facts

fixed means by comparison with claims about set theoretic models.

Using the conditional logical possibility operator, we can formalize the

non-three colorability claim above as follows:

¬♢adjacent,country Each country is either yellow, green or blue and no two

adjacent countries are the same color.

We can also categorically describe the intended structure of the natural

numbers using the conditional logical possibility operator. Recall that we

can categorically describe the natural numbers via the second-order Peano

Axioms (a combination of all the first order Peano Axioms except for in-

stances of the induction schema with the following second order statement

of induction.).

34One can further explain and motivate the notion of conditional logical possibility
by relating it to Stuart Shapiro’s notion of systems and structures [Shapiro, 1997].
Shapiro’s ‘systems’ involve some objects and a choice of relations R1...Rn. For ex-
ample, “An extended family is a system of people with blood and marital relation-
ships [and] a chess configuration is a system of pieces under spatial and ‘possible move’
relationships”[Shapiro, 1997]. And a structure is ‘the abstract form’ of a system, which we
get by “highlighting the interrelationships among the objects and ignoring any features of
them that do not affect how they relate to other objects in the system.”[Shapiro, 1997]. So,
for example, the natural-number structure is equally well exemplified by “the strings on a
finite alphabet in lexical order, an infinite sequence of strokes... and so on.”[Shapiro, 1997]
Note that adding or subtracting objects to the world outside of a given system will make
no difference to which structure that system instantiates.
Although I propose the logical possibility operator as a conceptual primitive, we can
(roughly) explain it in Shapiro’s terms as follows. It is logical possible, given the R1 . . . Rn

facts, that ϕ (i.e., ♢R1...Rn) iff some logically possible scenario makes ϕ true while holding
fixed what structure the system formed by the objects related by R1 . . . Rn (considered
under the relations R1 . . . Rn) instantiates.
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Induct2(∀X) [(X(0) ∧ (∀n) (X(n) → X(n+ 1))) → (∀n)(X(n))]

We can reformulate this claim using conditional logical possibility as fol-

lows35.

• Induct♢: ‘□N,S If 0 is happy and the successor of every happy num-

ber is happy then every number is happy.

In other words: it is logically necessary, given how N and S apply, then

if 0 is happy and the successor of every happy number is happy then every

number is happy.’

Thus, we can write a sentence PA♢, (purely in terms of first order logic

plus the conditional logical possibility operator) which categorically de-

scribes the natural numbers.36 And [Berry, 2018] argues that we can sim-

ilarly rewrite other second-order conceptions of pure mathematical struc-

tures.

Thus, plausibly (given the structuralist consensus), it suffices to answer

mathematical access worries to account for mathematicians’ ability to rec-

ognize that categorical descriptions of mathematical structures like PA♢ are

logically coherent. That is, we need to account for knowledge of facts like

♢PA♢.

Above I argued that we can attractively explain knowledge of ♢ϕ facts in

cases where ϕ is first order, by appealing to initial observations about which

other first-order sentences are actually true, together with knowledge that

35I write ‘0’ below for readability, but recall that one can contextually define away all uses
of 0 in a familiar Russellian fashion in terms of only relational vocabulary
36Just use the fact above to replace the second-order induction axiom in second order
Peano Arithmetic with a version stated in terms of conditional logical possibility. Recall
that the Second Order Peano Axioms are the familiar first order Peano Axioms for number
theory, with the induction schema replaced by a single induction axiom using second order
quantification.
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what’s actual is logically possible and inference to the best explanation. I

now argue we can use the same basic mechanisms to account for knowledge of

♢ϕ facts like ♢PA♢, where the state of affairs ϕ being recognized as logically

possible or impossible is described using the conditional logical possibility

operator ♢....

First, note that if we could establish initial knowledge of a suitably large

class of conditional logical possibility claims as either true or false, we could

leverage the basic story about knowledge via inference from actual to pos-

sible, IBE, abduction etc. proposed above to explain knowledge of general

good methods of reasoning about such conditional logical possibility claims.

We can no longer rely on observation of concrete scenarios to gain this

initial knowledge. However, I propose that we can explain our knowledge

of the truth-values of a large class of subscripted ♢ claims by applying a

version of the story about generalization above!

First, note that what’s actual is automatically conditionally logically pos-

sible fixing the facts about how any list of relations R1 . . . Rn apply. So we

have some initial knowledge of ♢R1...Rnϕ facts and ♢R1...Rn facts.

Second, inference to the best explanation can seemingly give us knowl-

edge of ¬♢R1...Rn facts. For example, the best explanation for the fact that

no one ever three colors some map might be that the map isn’t three col-

orable (i.e., it would be logically impossible to do so, given the facts about

which map regions are adjacent to one another37). Thus, we can get some

initial knowledge of ¬♢R1...Rn facts (and thence, by inference from actual to

logically possible) the corresponding ♢¬♢R1...Rn facts.

In this way, I propose, we can (in principle) gain knowledge of a bunch

of ♢ϕ statements where ϕ uses the conditional logical possibility operator.

37Note that a prediction which follows from this explanation (and not from alternative
theories like that three coloring is merely physically impossible) is that we shouldn’t expect
the map to be three textured or three scented either.
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So, finally, we can notice patterns in these conditional logical possibility

facts. We can use abduction and inference to the best explanation to get

general laws of what’s logically possible or necessary involving conditional

logical possibility claims, which imply the logical possibility of states of

affairs (described in terms of conditional possibility) that aren’t actual38. In

this way, creatures like us (in all ways that generate mathematical access

worries) could have gotten correct general methods of reasoning about logical

possibility with sufficient power to yield knowledge of some logical possibility

claims like ♢PA♢.

7. Conclusion

Many philosophies of mathematics allow us to reduce access worries about

mathematics to access worries concerning our knowledge of logical possibil-

ity, by saying that any logically coherent axioms pure mathematicians chose

would express truths (for one reason or another). In this paper, I have

tried to solve the ‘residual access problem’ of how to account for relevant

knowledge of logical possibility.

To do this, I’ve developed and defended a toy model for how creatures

like us (in all ways that drive access worries) could have gotten armchair

reasoning methods able to deliver this knowledge of logical possibility. On

the basic picture being proposed, sensory and scientific knowledge leads (via

the fact that what’s actual is possible) to initial knowledge of logical possi-

bility. Applying abduction and inference to the best explanation from this

data can then yield good general laws of reasoning about logical possibility

which allows us to recognize logically coherent mathematical axioms. In this

way, logical possibility need be no more deeply mysterious than knowledge

of physical or chemical possibility.

38See [Berry, 2022] for an example of some candidate general laws of logical possibility
and a proof that they have sufficient power to reconstruct set theory.
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However, I’ve suggested that we can certain worries about this basic idea

by making two small additions to the basic picture above: the quasi-Quinian

move in §5.2 and appeal to a notion of conditional logical possibility which

is independently motivated by the literature on potentialist set theory.

Appendix A. Set Theoretic Mimicry

I will now describe how to use the familiar formal background of set theory

to mimic intended truth conditions for statements in a language containing

the logical possibility operator ♢ alongside usual first order logical vocab-

ulary (where distinct relation symbols R1 and R2 always express distinct

relations) as follows.

A formula ψ is true relative to a model M ( M |= ψ ) and an

assignment ρ which takes the free variables in ψ to elements

in the domain of M 39 just if:

• ψ = Rk
n(x1 . . . xk) and M |= Rk

n(ρ(x1), . . . , ρ(xk)).

• ψ = x = y and ρ(x) = ρ(y).

• ψ = ¬ϕ and ϕ is not true relative to M , ρ.

• ψ = ϕ ∧ ψ and both ϕ and ψ are true relative to M , ρ.

• ψ = ϕ ∨ ψ and either ϕ or ψ are true relative to M , ρ.

• ψ = ∃xϕ(x) and there is an assignment ρ′ which extends

ρ by assigning a value to an additional variable v not in

ϕ and ϕ[x/v] is true relative to M , ρ′40.

• ψ = ♢R1...Rnϕ and there is another model M ′ which

assigns the same tuples to the extensions of R1 . . . Rn as

M and M ′ |= ϕ.41

39Here ‘an assignment’ means a partial function ρ from the collection of variables in the
language of logical possibility to objects in M , such that the domain of ρ is finite and
includes (at least) all free variables in ψ
40As usual (?) ϕ[x/v] substitutes v for x everywhere where x occurs free in ϕ
41As usual, I am taking □ to abbreviate ¬♢¬
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Note that this means that ⊥ is not true relative to any model M and

assignment ρ.

If we ignore the possibility of sentences which demand something coherent

but fail to have set models because their truth would require the existence

of too many objects, we could then characterize logical possibility as follows:

Set Theoretic Approximation: A sentence in the lan-

guage of logical possibility is true (on some interpretation of

the quantifier and atomic relation symbols of the language

of logical possibility) iff it is true relative to a set theoretic

model whose domain and extensions for atomic relations

captures what objects there are and how these atomic re-

lations actually apply (according to this interpretation) and

the empty assignment function ρ.
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