
ANNALS OF
PURE AND
APPLIED LOGIC

Annals of Pure and Applied Logic 73 (1995) 1 l-36

The data type variety of stack algebras

J.A. Bergstra”, J.V. Tuckerbq*

a Programming Research Group, Universily of Amsterdam, Kruislaan 403. IO98 SJ. Amsterdam, Netherlands

b Department of Computer Science, University College of Swansea. Singleton Park, Swansea, SA.2 8PP, Wales,
United Kingdom

Received 5 April 1993; revised 2 May 1994; communicated by Y. Gurevich

To Dirk van Dalen

Abstract

We define and study the class of all stack algebras as the class of all minimal algebras in
a variety defined by an infinite recursively enumerable set of equations. Among a number of
results, we show that the initial model of the variety is computable, that its equational theory is
decidable, but that its equational deduction problem is undecidable. We show that it cannot be
finitely axiomatised by equations, but it can be finitely axiomatised by equations with a hidden
sort and functions. This class of all stack algebras, together with its specifications, can be used to
survey the many models in the literature on stacks in a systematic way, and hence give the study
of the stack some mathematical coherence.

1. Introduction

A stack is a structure that stores data. Its state or memory contains data and may be
changed by storing a new datum or retrieving a previously stored datum. It has an
empty state when it is not storing data. In formalising the stack using sets and
functions, the data and stack states are modelled by sets D and S, and the storage
procedures are modelled by constant $J and functions push : D x S + S, top : S + D and
pop: S -+ S. Taken together the sets and functions form a many sorted algebra which is
minimal, i.e. finitely generated by constants named in its signature.

There is a large literature concerned with the semantic modelling of the stack which
is scattered and appears to be theoretically incoherent and inconclusive. There is
a consensus about the initialisation of the stack using q5 and the construction of all
possible stack states using push, and about the normal operation of top and pop when

* Corresponding author. Email: j.v.tucker@swansea.ac.uk.

0168~0072/95/$09.50 0 1995-Elsevier Science B.V. All rights reserved

SSDI 0168-0072(94)00038-7

12 J.A. Bergs&a, J V. Tucker/Annals of Pure and Applied Logic 73 (1995) II-36

the stack is not empty. However, there are many ways to handle

~(4) and pop($),

which give rise to many stack algebras, many axiomatic specifications, and many
algebraic and logical problems in the literature. In this paper we address the following
questions:

What is the class of algebras that is the class of all stack algebras? What are its
mathematical properties? Can it be equationally specified? Are all stack algebras
computable? Are the logical theories of the stack well behaved? Can the class be used
to organise the semantic models of the stack in the literature into a coherent
mathematical theory in which, for example, different stack models can be compared
by means of homomorphisms?

We give an equational specification (C,,, E,,) whose axioms express the consensus
properties of the stack. The class Alg,(&, E,,) of all minimal C,, algebras satisfying
the equations in E,, is then taken to be the class of all stack algebras. The specification
(C,,, E,,) is an infinite recursive orthogonal complete term rewriting system with
computable initial model; a family of finite subsets E,:, for k = 1,2, . . . , of the
specification E,, represent the consensus properties of the behaviour of stacks with the
capacity to store k data. (A complete term rewriting system is one whose reductions or
rewrites satisfy the Church-Rosser property and are strongly terminating.)

First, we examine its logical properties.

Theorem. The equational theory is o-complete. The provability problem for equations
over C,,, i.e. given equation e over C,,, is E,, F e?, is decidable. However, the deduction

problem for equations over Cst, i.e. given equations eI, . . . , ek, e over C,,, is

EStu{eI,..., ek} F e?, is undecidable.

A consequence is that the first-order theory of the stack is undecidable. Then we
examine the axiomatic specification of the class of stack algebras.

Theorem. The class Alg,(ZSt, E,,) and the initial model T(C,,, E,,) do not possess
a finite equational specification (C,,, E). There is a finite equational specification
(Cast, E,,,) with a hidden sort and two hidden operations that specifies the class
Alg,.,,(&, E,,) of all stack algebras and its initial algebra T(&,, E,,). Furthermore, the
specification is an orthogonal complete term rewriting system.

We give a finite conditional equation specification (C,,, C,,) of the initial algebra
T(Z,,, E,,) but which fails to specify the class Alg,,,(&, E,,) of all stack algebras.

To study the stack, we must consider the data type to be modelled by a class of
non-isomorphic minimal algebras, and develop methods of specifying such classes
using equations and conditional equations. In particular, of primary interest here is
the class Alg,,,(C, E) of all minimal algebras in the variety Alg(C, E), which we call an
MA variety, or data type variety, in the context of data type theory. The specification

J.A. Bergstra, J. V. Tucker I Annals of Pure and Applied Logic 73 (I 995) I I-36 13

of the class and the initial algebra is a new object worthy of general study. In algebraic
data type theory, data types are specified by means of equational or conditional
equational axioms, most commonly up to isomorphism using initial algebra semantics
for the specification. The relationship between the specification of the initial algebra of

a class and that of the whole class can be complicated.
The basic concepts are carefully defined in Section 2 on equational specifications

and term rewriting systems. In Section 3, we introduce the specification (&, E,,) and
the class AIg,(Cst, E,,) and examine its term rewriting properties. In Sections 4-7 we
prove the theorems: results about the equational theory and deduction problem are in
Sections 4 and 5, and results about finite specifications are in Sections 6 and 7. In
Section 8 we summarise the open problems.

This paper is associated with our attempts to survey and make a coherent theory of
the stack, beginning in [7] and currently under revision. It is also relevant to our series
of studies on the adequacy and power of algebraic specification methods for data
types which we began in [l] (see especially [6] and our other references, and the
survey [21]).

The reader is assumed well versed in universal algebra (see [23,20] and initial
algebra specification methods (see [16, 14,241. An elementary knowledge of logic and
the theory of the recursive functions is necessary for the computability results (see
[15, 121 for instance).

2. Algebras and equational specifications

We summarise the usual concepts we need. Appropriate references are [20,23],
for basic universal algebra, [14,24] for algebraic specifications, and [17] for term
rewriting.

2.1. Preliminaries on algebras and specifications

2.1.1. Signatures and algebras. A signature C consists of a non-empty set S of sorts,
and a family of sets of constant symbols and function symbols. We assume all
signatures are finite.

Let C1 and C2 be signatures. If C1 is a subsignature of Cz then we write C, E Zz.
Let C be a signature. A C-algebra A consists of a family of non-empty sets, called the

carriers of A, that interpret the sorts, together with families of elements and families of
functions that interpret the symbols in the signature. If CJ E C is of type
w(l) x ... x w(k) + s then it is interpreted by function Ok: F&,,~~, x ... x II,,,(~) + A,.

A C algebra is minimal if it contains no proper subalgebras.
If A is C algebra and C, c Z then the reduct A 1 z. is the algebra obtained from

A after removing the carriers, constants and operations of A not named in Co. Note
that the carriers remaining in A Ir,do not change, but since some of their elements may
no longer have the status of constants, AIz, need not be minimal.

14 J.A. Bergstra, J. V. Tucker/Annals of Pure and Applied Logic 73 (1995) I I-36

2.1.2. Term algebras and equations. Let X be a set the elements of which are called
variable names. We define the C term algebra T(Z, X) of terms over C in variables of
X in the usual way. We write T(C) when X = 0; the terms of T(Z) are called closed.

2.13. Lemma. Let =1 and =2 be congruences on T(C). Let IC/:T(C)/G~ + T(C)/E~

be a homomorphism. Then II/([tll) = [t12 for all t E T(Z). Thus,

T(C)/ =I z T(C)/ -2 0 T(Z)/ =I = T(Z)/ =2.

Let C be a signature and X a set of variable names. An equation is an expression e of
the form t(X) = t’(X), where t(X), t’(X) E T(C, X) are of the same sort. Let
Eqn (Z, X) be the set of equations.

We say that two equations e and e’ of the same sort are cr-equivalent if there is
a permutation of the set X of variablesthat transforms e to e’. We write e + e’ if e and
e’ are a-equivalent. The cr-closure of a set E of equations is the set E’ = {e’:e’ =a e for
some e E E >; we say that E is u-closed if E = E’.

Given a state CJ: X -+ A of the variables, we define the term evaluation map
evalA,a: T(Z, X) -+ A in the usual way, by induction on terms; the map is
a C homomorphism. From this we can define validity or satisfaction A kt (X) = t’(X).

2.1.4. Varieties and MA varieties. Let Al@, E) denote the class of all C algebras
satisfying the equations in E; such a class is called a variety.

Let Alg,,,(C, E) denote the class of all C minimal algebras satisfying the equations in
E. We call such a class a MA variety.

2.1.5. Term rewriting systems. Let T(C, X) be the algebra of terms over C in variable
names X. Let E G Eqn(C, X) be a set of equations such that for each t = t’ E E the
LHS t is not a variable. We can formalise the use of equations in derivations of terms
in T (Z, X) where the reduction t +E t’ requires substitutions to be made in some
equation e E E and the LHS of e is replaced by the RHS of e in t to obtain t’.

We call the pair (C, E) an equational term rewriting system or equational TRS, for
short.

The term rewriting system (C, E) is complete if the reduction system dfi on T(C, X)
is Church-Rosser and strongly terminating.

We denote by NF(C, E) the set of all normal forms of +E and by EE the
congruence associated with +E. We define T(C, E) = T(C)/ Ed.

2.1.6. Lemma. T(Z, E) is the initial algebra of Alg(C, E).

The term rewriting system (C, E) is left linear if for all t = t’ E E, each variable that
appears in t does so only once.

The term rewriting system (C, E) is non-overlapping if for any pair of equations
t = t’, r = r’ E E, including the pair where t = r and t’ = r’, the equations do not

J.A. Bergstra, J. V. Tucker 1 Annals of Pure and Applied Logic 73 (1995) II-36 15

overlap in the following sense: there exist closed substitutions 7, p oft, r such that p(r)
is a proper subterm of .r(t) and the outermost function symbol of p(r) occurs as a part
of t.

The term rewriting system (C, E) is orthogonal if it is left linear and non-overlap-
ping.

2.1.7. Lemma. Zf (C, E) is an orthogonal TRS then it is Church-Rosser.

2.1.8. Algebraic specifications. Let A be an algebra of signature Z. Then A is said to
have a (jkite) equational specijkation (Z, E) under initial algebra semantics if E is
a (finite) set of equations over C such that T(C, E) z A.

An algebra A of signature C is said to have a jinite equational hidden enrichment

specification (C’, E’) if Z E C’ and E’ is a finite set of equations over C’ such that
T(C’, E’)lz z A.

2.1.9. Lemma. Let A be a Z algebra and (C, E) an initial algebra specification of A. Let
E’ be a set of equations over C that are valid in A. Then (C, E u E’) is an initial algebra

specification of A.

2.1.10. Lemma. Let E, El, and E2 be sets of equations over C. Suppose that

EvEIkE and EuEZFE1.

Then T(C, EWE,) E T(C, EuEZ).

2.1.11. w-completeness. An equational specification (C, E) is w-complete if for any
equation e with variables from X,

T(C, E) k e if and only if Alg(Z, E) k e.

2.2. Specification of classes

Let K be any class of minimal C algebras.

2.2.1. Definition. The class K has an equational specijication (Z, E) if E is a set of
equations over Z and K = AIgIII(C, E), i.e. the class K is a MA variety. The concept of
a conditional equational specijication is defined similarly.

2.2.2. Lemma. Let K have an initial algebra I and be closed under homomorphisms.
Then the following are equivalent:
(i) (C, E) is an equational specijication for I under initial algebra semantics;
(ii) (C, E) is an equational specification for K.

16 J.A. Bergstra, J. V. Tucker/Annals of Pure and Applied Logic 73 (I 995) I I-36

Proof. Suppose (i). Then K = Horn(I) implies K = Hom(T(C, E)) and, since

47lnG E) = HOG, E)),

K = AIg,(C, E).

Conversely, if K = Alg,(.Z, E) then I ? T(Z, E), by the uniqueness of initial ob-
jects. 0

The problem we address has the following form: we have a class K = AIg,,,(C, E) for
which we seek an alternative specification. In these circumstances, we deduce the
following from the following lemma.

2.2.3. Lemma. Let (Z, E) and (Z, E’) be equational specijications with common signa-
ture C. Then

Alg,,,(Z, E) = Alg&, E’) o T(C, E) z T(C, E’).

2.2.4. Definition. The class K has an equational specijication (Z’, E’) with hidden sorts
and functions if C E C’, E’ is a set of equations over C’, and K = Alg,,,(C’, E’)I,.

When K = Alg,,,(Z, E), we have the following complement to Lemma 2.2.3.

2.2.5. Lemma. Let (C, E) and (Cl, E’) be equational speci$cations and C E C’. Then

Alg,,,(C’, E’)), = Alg,(C, E) implies T(C’, E’)jr z T(C, E).

Proof. Using the premise, we show that T(C’, E’)jz is initial in Alg,(C’, E’)I,. By the
uniqueness up to isomorphism and the premise we deduce the isomorphism of the
algebras.

Let A E Alg,,,(Z’, E’)I,. Choose any B E Alg,,,(C’, E’) such that A = BI,. By initial-
ity, there is a Z’ homomorphism 4: T(C’, E’) + B, and hence q5 is a C homomor-

phism T (C’, E’) lz --* BJZ. However, we must check 4 is unique: since the classes are
equal, A = BI, is C minimal. Thus 4 is unique. 0

2.2.6. Lemma. Let Z E C’ and B be a minimal C’ algebra. The following are equiva-

lent:
(i) BI, is a minimal C algebra.

(ii) For each t“ E T(Y) there is a t E T(Z) such that B k t’ = t.
If E is a set of equations or conditional equations ouer 1 then B \ E implies B lz. k E.

2.3. Computability

The definitions of a computable and semicomputable algebra are taken from [6]
and derive from [22,19], independent papers devoted to founding a general theory of
computable algebraic systems and their computable morphisms.

J.A. Bergstra, J. V. Tucker 1 Annals of Pure and Applied Logic 73 (I 995) 11-36 17

2.3.1. Computable algebras. Let C be an S sorted signature. A many sored algebra
A of signature C is said to be eflectiue if for each sort s E S there exists a recursive set
s2, of natural numbers and a surjection ~1, : 52, + A, such that for each operation

symbol c E C and corresponding operation cA: Awcl) x ... x AwckJ -+ A, of A, there
corresponds a recursive tracking function 0: QWC1, x ... x 12,~~) + Sz, which com-
mutes the following diagram:

A w(l) X ... X k(k) A A,

Lzw I I x

sz w(l) x “. x!&(k) A 52,

wherein aw(xl,...,Xk)=(a,(l)(X1),...,a,(k)(Xk)).

Taken together the sets of numbers and the tracking functions form an algebra
Q and a: C? + A is an epimorphism. We refer to c1 as an effective numbering or
coordinate system.

Consider the S sorted relation =a on the number algebra Q, defined for x, y E s2, by

x =a7 y if and only if a,(x) = a,(y) in A.

The relation is a C congruence on 52.
Suppose the relation =, is recursive, i.e. for each s E S, =., is recursive on Q,. Then

we say A is computable under a.
Suppose the relation --a is recursively enumerable, i.e. for each s E S, E~, is

recursively enumerable on Q,. Then we say A is semicomputable under a.
If A is computable under r then an S sorted set X c A” is (a-) computable or (G+)

semicomputable accordingly as

a-‘(X) = {(x1)...) x,)Enw:aw(xI)...) xk)EX]

is recursive or. r.e.

2.3.2. Lemma. Let A be a computable algebra and E a congruence on A. If E is

computable or semicomputable then the factor algebra Al- is computable or semicom-

putable accordingly.

2.3.3. Lemma. Let A be a semicomputable algebra with semicomputable congruence

= . If there exists a semicomputable transversal for = then the factor algebra A/ = is
a computable algebra.

2.3.4. Computable term algebras. The algebras T(C, X) are computable under any
standard giidel numbering y. If A z T(Z)/=,,, then A is computable or semicomput-
able if and only if --A is computable or semicomputable on T(Z), respectively.

From y we can construct a computable numbering ye of the set Eqn(Z, X) of
equations in an obvious way.

18 J.A. Bergstra, J. V. Tucker/Annals of Pure and Applied Logic 73 (1995) I I-36

We may define E c Eqn(C, X) to be recursively enumerable if yp ’ (E) is recursively
enumerable.

We note that if E is recursively enumerable then the closure E’ is recursively
enumerable.

However, we define E c Eqn(Z, X) to be recursive if 7; l(E) is recursive and if
y, 1 (E’) is recursive.

2.3.5. Lemma. Let (C, E) be a jinite equational term rewriting system specijication.

Then
(i) the reduction system +E and the congruence GE are semicomputable; and

(ii) the set of normal forms NF(C, E) is computable.

In particular, T(C, E) is a semicomputable algebra. If (C, E) is recursive or recursively

enumerable then (i) and (ii) hold, but the set NF(C, E) is cosemi computable.

Notice that NF(C, E) need not be a transversal for Ed.
The rule application problem is the following: given any term t, is it the case that

there is a LHS of a rule in E which is a-equivalent to t?

The rule application problem is equivalent to the decidability of the set of normal
forms.

2.3.6. Proposition. Let (C, E) be a r.e. equational term rewriting system specijcation

which is complete. Suppose that the rule application problem is decidable. Then

T(C, E) is a computable algebra.

2.3.7. Some logical decision problems. Let (C, E) be an equational theory. The prova-

bility problem for equations over C is the following: given any equation e over Z, is
E k e?

The deduction problem for equations over .Z is the following: given equations

ei, ek, e over c, is Eu{e,, . . .) ek} F e?

2.4. Application in theory of data types

Consider the concept of an MA variety and its use in data type theory. Suppose that
a concrete implementation of a data type is modelled by a many sorted minimal
algebra A. Then a data type is modelled by some class K of minimal algebras of
common signature. Two concrete data types are equivalent if they are isomorphic as
algebras. An abstract data type can be modelled as a class K of minimal algebras
closed under isomorphism, i.e. if A E K and B E A then B E K.

An abstract data type K is equationally specified by (C, E) if K = Alg,,,(Z, E), i.e. is
an MA variety.

The results of Section 2.2 concern the relationship between the specification of the
class K and that of its initial algebra. In particular, note that Lemmas 2.2.2 and 2.2.3
state that the notions are equivalent, if the specification does not involve hidden

J.A. Bergstra, J. V. Tucker 1 Annals of Pure and Applied Logic 73 (I 995) II-36 19

functions. However, our work on the stack shows that the specification of a class by
hidden sorts and functions is a necessary activity, and is one that may be more difficult
than that of the specification of its initial algebra (Lemma 2.2.5).

3. Stack algebras

A stack is modelled by a minimal algebra of signature Z:,, satisfying a set E,, of
equations, defined as follows:

signature: C,,

sorts: data, edata, stack

constants: dI, . . . , d,: -+ data

QJ: + stack

operations : i:data + edata

push : edata x stack + stack

top : stack + edata

pop : stack + stack

We assume there are at least n 3 2 constants of sort data, and ignore operations
involving data only. The sort edata is for extended data which allows the data to be
augmented by error elements, unspecified elements, etc. The operation i maps data

into edata. The stack is conceived as a stack of extended data.

To define the set E,, of equations over C,, that we assume true of all stacks we must
avoid specifying the behaviour of the operations in “debatable” circumstances. First,
we define a sequence of standard stack polynomials.

Letal,a2,... be a fixed list of variables of type data. The standard stack polynomials

over these variables are inductively defined by

To = 8,
Tk+l = puW(ak+lL Tk),

for k E N.

Thus, the sequence begins:

O,pushWl),O), puW(a2), puW(al),O)),

These polynomials represent standard stack states containing data and no extended
data. Notice that Tk represents a standard stack state containing k elements of sort

data.
The equations in E,, are for k E N,

Top equations:

Pop equations:
top(Tk+l) = ib+l)

POPU’,. I) = Tk

t-wk + 1,

pseqnk + 1.

20 J.A. Berg&a, J. V. Tucker/Annals of Pure and Applied Logic 73 (I 995) I l-36

Thus, E,, is an infinite equational specification and the sequence begins:

Q(Ps4(ar), 8)) = i(ar) t-eqn 1,
?wJmwh~~ 0)) 0
wdpush(i(a,), push(i(a,), 0))) I i(az)

p-w 1%
Wn2,

P~P(PN~(~2), P~WhL 0))) = pudwh), 0) p-w2,

The equations leave unspecified the effects of the operations on 0 and on any extended
data. Notice that the first 2k equations for any k = 1,2, . . . in the list specify that the
top and pop operations function as expected on all standard stack states containing
k elements of sort data.

3.1. Definition. A stuck algebra is a minimal algebra in the variety Alg(C,,, E,,); thus
the data type variety of stacks is the MA-variety Alg,(&, E,,).

3.2. Theorem. The injinitary equational specijcation (C,,, E,,) is an orthogonal com-

plete TRS. The set N(C,,, E,,) of normal forms of the TRS is decidable, and there is

a unique total computable function n that computes normal forms. The initial algebra

T(C,,, E,,) of the variety is computable.

Proof. The specification is orthogonal by inspection. Since the application of any
equation in E,, reduces the length of terms in a sequence of rewrites, i.e. for

t, t’ E T(&,, X),

t -b t’ implies ItI > It’I,

the TRS is strongly terminating. Hence (Z,,, E,,) is complete.
Given t E T(C,,, X) to decide whether or not t E N(C,,, E,J, it is sufficient to

observe that t can be reduced only by means of equations from E,, whose LHS is
smaller than It I. Thus, we can compare t with the first 2 It I equations in the list and
decide if a rewrite is possible. The existence and uniqueness of the total function n that
computes normal forms follows from the completeness of the specification; its com-
putablity follows from the decidability of normal forms.

Finally, T(C,,, E,,) = T(C,,)/-,.. For t, t’ E T(C,,),

t -_E,, t’ 0 E,, k t = t’

0 n(t) = n(t’),

which is a decidable relation. Hence, T(C,,, E,,) is computable. 0

We consider the algebras of finite and unbounded stacks. For k E N, we define

E,q = 8,

E,: = {t-eqnI, p-eqnl, . . . , t-eqnk, p-eqnk}.

Clearly, E,, = IJk E NEft.

J.A. Bergstra. J. K Tucker 1 Annals of Pure and Applied Logic 73 (I 995) I I-36 21

3.3. Definition. A stack algebra of depth k. is a minimal algebra in the variety
Alg(C,,, C$) for k E N; thus the data type variety of stacks of depth k is the MA-variety

Algm(&t, -G).

3.4. Theorem. The finite equational specification (Cs,, Et,) is an orthogonal complete

TRS. The set N (C,,, Et,) of normal forms of the TRS is decidable, and there is a unique

total computable function n that computes normal forms. The initial algebra T(C,,, Ei,)

of the crariety is computable.

3.5. Theorem. Let i, j E N and i 2 j. There is an epimorphism

4ij: T(C,,- E!t) + T(C,,, EB,)

but if i #j then

T(&, Eb,) and T(&, Ei4

are not isomorphic. Furthermore,

lim T(C,,, Ed,) 2 T(C,,, E,,)
iGN

and ,for each i E N,

T(& R6,) and T(& E,,)

are not isomorphic.

Proof. The ~ij are natural homomorphisms obtained from the fact that Eit c Ed,.

Suppose i # j. The term

is closed and a normal form of Eit but not of Ef,, because it reduces under p-egni. So
the equation

pop(Cdl,...,d,la,,...,ailTi)=i(dl)

is not valid in T (C,,, E,‘,) but is valid in T (C,,, Ef,). Since there are only finitely many
di we substitute i times the constant dl in the term.

The direct limit property follows from E,, = Uk E N Ett.

Finally, suppose for a contradiction that

T(& J%) g T(&, &)

under isomorphism (Pi : T(Z,,, E,,) -+ T(C,,, Ef,). Let

4i. rr : T(Cst, Ek+ ‘1 + T(Cst, Es,)

22 J.A. Bergstra. J. V. Tucker/ Annals of Pure and Applied Logic 73 (1995) II-36

be an epimorphism. Thus,

(Pi”4i,m:T(Cst,E6t+1) + T(Cst~Edt)

is an epimorphism. Since ~i,i+ I : T(C,,, Ed,) + T(C,,, Ett”) is an epimorphism we
have

T(&,, Ef:‘) z TG,, Ef,)

which contradicts a previous part of the lemma. 0

4. The equational theory of stacks

4.1. Theorem. The specification (Cs,, E,,) is w-complete and its equational theory is
decidable.

This is proved using the following analysis of the valid equations.

4.2. Lemma. Let n = n(C,,, E,,) compute normal forms of terms for (Cst, E,,). For any

equation t = t’ over Cst,
(i) T(C,,, E,,) 1 t = t’ o n(t) = n(t’);

and hence,
(ii) (Cst, E,,) k t = t’ o n(t) = n(t’).

The proof of Theorem 4.1 using Lemma 4.2 is straightforward. First, for any
equation t = t’ over C suppose that (Cst, E,,) k t = t’. Then by combining (ii) and (i) of
Lemma 4.2, T(Z,,, E,,) k t = t’ and hence (Zst, E,,) is w-complete.

Secondly, for any equation t = t’ over C we ask E,, k t = t’ or, equivalently,
E,, k t = t’. Then by Lemma 4.2(ii) this is equivalent to n(t) = n(t’) which is decidable
because n is a computable total function (Lemma 3.2).

Notice that the equational theory Th(T(C,,, E,,)) of the initial model is decidable.

Proof of Lemma 4.2. First we show that statement (ii) follows from statement (i). Let
t = t’ be an equation over C,,.

If n(t) = n(t’) then (Cst, E,,) F t = t’ and (C,,, E,,) 1 t = t’.
If E,, k t = t’ then T(Z,,, E,,) k t = t’ and, by (i), n(t) - n(t’).

We now consider (i). Again, if n(t) = n(t’) then T(C,,, E,,) k t = t’. So we have to
show for all C,, equations that

T(C,,, E,,) 1 t = t’ implies n(t) = n(t’).

Contrapositively, we will show for all C,, equations that

n(t) $ n(t’) implies T(C,,, E,,)f t = t’.

J.A. Bergstra, J. V. Tucker 1 Annals of Pure and Applied Logic 73 (I 995) I l-36 23

This is done by constructing a substitution G such that o(n(t)) and a(n(t’)) are closed
normal forms and are distinct.

4.3. Lemma. Let t = t(a, p, x) be a normal form of (C,,, E,,). Then the following are

also normal forms:

(9 C~o~(Wxl4

(ii) [pop pop @)/xl 4
(iii) [d/a] t for any constant d of sort data,

(iv) [i(d)] t for any constant d of sort data.

Proof. We demonstrate (i) and leave the other cases as exercises.
Suppose for a contradiction that [pop(~#~)/x] t is not a normal form. Then t has

a subterm r such that [pop(q5)/ x r can be rewritten. This rewrite must use one of the]

two kinds of axioms in Est:
(a) a top eqUatiOII t-eqnk for some k E N+; or
(b) a pop equation p-eq& for some k E N +.

Consider case (a). The LHS of t-eqnk is top(T,) and so [pop(4)/x]r is a substitution
instance of this term. Notice that x must occur in r for otherwise r = [pop(4)/x]r

rewrites and t is not a normal form. So top(Tk) has a substitution instance containing
pop($) as a subterm. However, this is impossible because only substitution instances
by data variables and data constants for data variables are allowed for Tk.

Case (b) is similar and we omit it. 0

4.4. Lemma. Let t and t’ be normal forms of (ZS,, E,,) such that t f t’. Then there is

a substitution IS, composed of substitutions of the forms (i)-(iv) in Lemma 4.3, which

results in closed normal forms o(t) and o(t’) of (C,,, E,,) and such that a(t) $ a(t’).

Hence because these terms are closed, T(C,,, E,,) fa(t) = a(t’).

Proof. Consider a classification of equations t = t’ in Table 1. There are three main
cases determined by the sort of the equation, and 22 subcases in total. To prove the
lemma we use induction on max (I tl, 1 t’l).

Basis: max(I tl, I t’l) = 0. This has 8 subcases as follows: the 4 cases of sort data;

subcase 1 of sort edata; and subcase 1 of sort stack. We check two subcases.
In case 1 of sort data t = t’ is d = d’ for constants d and d’. Since t f t’ we have

d f d’ and the required substitution o is the identity, which is equivalent to [d’/a],

a substitution of type (iii) in Lemma 4.3.
In case 1 of sort stack t = t’ is x = x’. Here the required substitution 0 is

CPoP@)v PoPPoP(Wx, x’l,

which is a composition of substitutions of type (i) and (ii) of Lemma 4.3.
The other 6 basis subcases are equally obvious.

24 J.A. Bergsira, J K Tucker JAnnals of Pure and Applied Logic 73 (1995) II-36

Table 1
Classification of equations

t t’

Sort data
1 d
2 d
3 a
4 a

Sort extended data
1 P
2 P
3 P
4 i(s)
5 i(s)
6 i(s)
I top(s)
8 top(s)
9 top(s)

Sort stack
1 x
2 x
3 x

4 PM% 9 s2)
5 pusNs11 s2)
6 Pas& 3 s2)
I POP(S)
8 POP(S)
9 POP(S)

d

:
a’

4
i(s’)

toP(s’)
4
i(s’)

top@‘)
4
i(s’)

top(s’)

x’

pus&;, 4)
POPW
X’

pws;, 4

POP(S’)
X’

pusw, s;)
POPM

Induction step: Suppose the lemma is true for all t, t’ with max(1 t], jt’l) < n. Here
there are 14 cases.

Consider, for example, subcase 5 of sort edata, where t = t’ is i(s) = i(s’). By
assumption, s f s’. So by the induction hypothesis, there is an appropriate substitu-
tion o,, such that so(s) f o,(s’). This substitution oO also distinguishes the normal
forms oo(i(s)) and oO(i(s’)).

The other cases are similar. Notice that any substitution of the required class works
with subcases 4-9 of sort stack.

5. The undecidability of the equational deduction problem

By Theorem 4.1, the equational theory of (C,,, E,,) is decidable, i.e. it is decidable
whether or not E,, t- t = t’, given any equation t = t’ over Z,,. Now we prove that the
following form of the equational deduction problem for (C,,, E,,) is undecidable, i.e.
whether or not E,, u (el, . . . , ek} t- e, given any k E N, equations e,, . . . , ek and closed
equation e over Z;,,. This follows from the stronger result:

J.A. Bergstra, J. V. Tucker/Annals of Pure and Applied Logic 73 (1995) II-36 25

5.1. Theorem. There is a jinite set ER of equations over C,, such that it is undecidable
whether or not E,, v ER F e, given any closed equation e over C,,. This ER can be chosen

to make the deduction problem a complete r.e. set.

Proof. The membership problem for r.e. sets will be reduced to the equational
deduction problem for (Cst, E,,) as follows. Let W E N be any r.e. set and R any
register machine program that defines it, i.e. for n E N,

nE W o R(n)l.

To R we associate a finite set ER of equations over Z,,, and give an algorithm that lists
closed equations e(O), e(l), . . . such that

R(n)1 o E,,uERFe(n).

Thus, choosing W to be an r.e., non-recursive set shows the problem to be undecid-

able.
Consider a programming language for the register machine. We assume that each

program R involves finitely many variables rl, . . . , r,,,, and consists of finitely many
numbered instructions R = II, . . . , Ik. Each instruction I, has one of the following

forms: let 1 < ~1, /3, y 6 k, 1 < i, j d m,

1 zero ri: =0

2 successor ri 1 = Vi + 1
3 predecessor ri: = ri - 1

4 transfer Vi: = rj

5 jump goto P
6 conditional jump if ri = 0 then goto /I else goto y
7 halt H

Three syntactic conditions are placed on R:
(i) R contains one halt instruction which is the last instruction Zk.

(ii) R does not contain a jump instruction of type 5 or 6 that points to the first
instruction II.

(iii) Each instruction I, in R that has the form of an assignment of types l-4 is
followed by a goto instruction I,+ 1 of type 5.

Semantically, a state of a computation of R on the register machine is represented
by an m + 1 tuple

a=(nl ,..., n,,,,or)~N~+‘,

wherein for 1 < i < m, ni is the contents or value of register variable ri and c(is the
number of the current instruction in R.

A step of a computation is denoted 0 +[, a’, in which instruction I, is applied to a in
the usual way.

26 J.A. Bergstra. J. V. Tucker J Annals of Pure and Applied Logic 73 (1995) I l-36

A computation sequence for R is a sequence of states (T 1, a2, . . . , oN such that for all
1 < i d N - 1, ei +I,rri+ r, where Oli is the number of the current instruction in ei.

A computation sequence iS terminating if EN = k.

To compute an r.e. set W E N using program R we use initial state
CJi,t(n) = (n, 0, . . . ,O, 1) and, if R terminates, we require that its final state is
an,(n) = (n, 0, . . . , 0, k). It is easy to check that any r.e. set may be computed by
a program satisfying these conventions.

We will encode each state of a register machine computation by R using a closed
term over C,,, and each instruction in R as an equation or pair of equations E(Z) over
C,, such that each step of the computation performed by I corresponds with a rewrite
using E (I).

First, define polynomials tL(xl, . . . , xL) inductively by

ro = POP@X

tL.+1@1, XL)-PuSh(POP(Xt+l),~L(X1,...,XL)).

Thus, the sequence is

POP(0)> PwPoPbl), pop(Q))), PuswPoP(x2)T PwPoPhh POP@)))), ‘.. .

Fix L=m+l and let r(~~,...,x,+~)=r,+~(x~,...,x,,,+~). We code a state

a(ni, n,, a) by the closed term

r(a) = ~(P~P”~(~),...,P~P”*(~),P~P”(~)).

Thus, in computing an r.e. set using R we represent the initial state by

tinit = z(aint(n)) = z(PoP”(0)~ 03 ... 3 09 POP(Q))

and the final state, if any, by

rri”(n) = z(afin(n)) = t(PoP”(0)~ 07 ... Y 09 POP”(0)).

For each instruction I, in R we form an equation (or pair of equations) &(I,),
1 < a < k. There are 6 cases corresponding with the first 6 types of instruction. Let
l~a<k,ldi,j~mandldp,y6k,

Case 1: I, is ri:= 0,

=Z(Xl,...,Xi-l,O,Xi+l,...,Xm,PoPOL+l(0)).

Case 2: I, is li := ri + 1,

z(x1, . . . ~~i-l~~i~Xi+l~~~~~Xm~PoP”(O~~

=z(x1,..., Xi-l,P”P(Xi),Xi+l,...,Xm, PoPa+‘(O

J.A. Bergstra, J. Y. Tucker/ Annals of Pure and Applied Logic 73 (I 995) I I-36 21

Case 3: I, is Ti:= ri - 1,

= Z(X1,...,Xi-l,O,Xi+lr...,Xm,PoPa+l(0)).

Case 4: I, is Ti := rj,

= ~(Xlt...,xi-l,xj,xi+l,...,xm~PoP”+l(0)).

Case 5: I, is got0 /I,

7(Xl,...,X,, POP=(~))=~(X,,...,X,,POP~(~)).

Case 6: I, is if ri = 0 then goto fi else goto y,

7(X1 ,...,Xi-l,O,Xi+l,...,Xm,PoPd(0))

=7(X1,...,Xi-l,0rXi+l,...rXm,PoPB(0)),

7(X1, ..eyXi_ l~p”p(Xi)~Xi+l~~~~~Xm~PoPa(0))

=7(Xlr...,Xi-l,p”P(Xi),Xi+l,...,X,,PoPY(0)).

We examine the correspondence between computation steps and rewrites. Let cr, 6’
be computation states and 01 be the number of the current instruction of R in (T. Then,
by inspection of ER, we have the following.

5.2. Lemma. CT +,,d o 7(a) -+E(I,)7(o’).

By induction on the length N of a computation sequence cl, . . . , cN, and
Lemma 5.2, we can prove that ER k ~(0~) = 7(cN).

5.3. Lemma. For all n E N,

R(n) 1 * (Cst, Est WE,) k tint(n) = tfi.(n).

Proof. If R(n) 1 then there is a terminating computation sequence

oint(n) = 01, GZ,..., CN = afin(

Thus, we have

ER t- r(oi”t(n)) = r(ofi”(n))

as required, since z(ai,,(n)) = ti,,(n) and r(ari,(n)) = trin(n). Notice that E,, is not
needed.

28 J.A. Bergstra, J. V. Tucker 1 Annals of Pure and Applied Logic 73 (1995) II-36

Conversely, suppose that (&, E,, u Es) I- tin,(n) = tti”(n). The TRS (C,,, E,, u ER) is
orthogonal. By Lemma 2.1.7, the TRS is confluent so tint(n) and trin (n) have a common

reduct r(n). Since tfi”(n) is a normal form we have r(n) = tfin(n) and hence a reduction
tint(n) to tfin (n). This reduction path encodes a terminating computation path of R by
Lemma 5.2. q

An equivalent form of Theorem 5.1 is the following.

5.4. Theorem. There is a jinite set ER of equations over C,, such that T (Z,,, E,, v En) is

a semicomputable but not a computable algebra.

6. Finite specifications without hidden sorts and functions

We consider the absence of a finite equational or conditional equation specification
(C, E) for the class Alg,(&, E,,) of stack algebras. Recall from Lemma 2.2.3, if (&, E)
is an equational specification then

6.1. Theorem. T(C,,, E,,) does not possess a jinite equational specification (C,,, E) and,
hence, neither does the class Alg,,,(&, E,,) of stack algebras.

Proof. Suppose for a contradiction that (C,,, E) is a finite equational specification for
T(C,,, E,,). For each equation t = t’ E E we compute the normal forms n(t) and n(t’)
with respect to (Cs,, E,,) and from the equation n(t) = n(t’). Let N(E) be the set of all
such normalised equations.

Let EO c E,, be a set of equations sufficient to perform all the reductions of the
elements of E to the elements of N(E). We choose k E N sufficiently large so that

Eo c E,: = {t-eqni, p-eqni: i = 1, . . . , k}.

6.2. Lemma. T(C,,, N(E)uE,k,) r T(&,, E,,).

Proof. By Lemma 2.1.9, (C,,, E u Et,) is a finite equational specification of T (Z,,, E,,)
because E,: is valid in T(C,,, E,,). Now, E and N(E) are logically equivalent in the
presence of Ei,, i.e.

EWE:,)-IV(E) and N(E)uE~~FE.

Thus, by Lemma 2.1.10, we deduce that

T(&,, EuE:,) = T(&,, N(E)uE,:)

and hence the lemma is proved. q

J.A. Bergstra, J. V. Tucker/Annals of Pure and Applied Logic 73 (I 995) I I-36 29

Proof of Theorem 6.1 (continued). Next we consider the equations of N (E). Since each
n(t) = n(t’) E N(E) is valid in T(C,,, E,,) we know from Lemma 4.2(i) that n(t) E n(t).
Hence, each equation in N(E) is trivial and can be removed in Lemma 6.2, i.e.

However, this contradicts Lemma 3. 0

The question arises: Does there exist a finite conditional equation specification
(Csf, C) for the class of stack algebras? Here we know that if (&,, C) is such a specifica-
tion then

&m(&, C) = &,(&, E,,) implies T(.&, C) E T(&,, &).

We will prove the converse statement is false.
Consider the set C,, of conditional equations over Cs,:

top(push(i(a), 0)) = i(a),

POP(PUSh(i(48)) = 8,

top(x) = i(a) + top(push(i(b), x)) = i(b),
top(x) = i(a) + pop(push(i(b), x)) = x,

r-eqn1,

p-em 7
t-ceqn,
p-ceqn.

6.3. Theorem. (Es,, C,,) is a finite conditional equation specijication for T(Z,,, E,,) and

T(L, C,,) = T(&,, Es,).

However, it is not a specification of Alg,,,(C,,, E,,), and we have the proper inclusion

Proof. The axioms of C,, are valid in T(C,,, E,,) by inspection. Hence, there is an
epimorphism T(C,,, C,,) + T(C,,, E,,). To prove the converse, and hence the first part
of the theorem by Lemmas 2.1.9 and 2.1.10, we prove

by means of induction on the index k of the equations of E,,.

Basis: k = 1. This is immediate because t-eqnl and p-eqnl of E,, are contained
in C,,.

Induction step: k + 1. As induction hypothesis we take C,, F Eit. Consider first
equation t-eqnk+l, top(Tkfl) = i(a k + 1). By induction, we know top (T,J = i(u,J, so by
conditional equation t-ceqn we have top(push(i(b), Tk)) = i(b). Substituting &+ 1 for b,

tOp(pUSh(i(ak+l), Tk)) = i(ak+1), which iS by definition Of Tk+l, tOp(T,+,) = i(ak.1).

The second equation p-eqnk+ 1 can be shown similarly. (Notice it depends on the
provability of t-eqnk + 1 .)

To complete the theorem, we construct an algebra

A E Alsrn(& &) and A$A&,,(&,, C,,).

30 J.A. Bergstra, J. V. Tucker 1 Annals of Pure and Applied Logic 73 (I 995) II-36

Let u be a new constant symbol of sort stack which added to Z’,, forms the signature
c st(Uj. We define a set &(,, of equations over Csttuj to be E,, with the following added:

(i) POP(~) = 4
(ii) pop(u) = u,

(iii) top($) = i(d,),

(iv) top(u) = i(d,),

(v) PWP, 4 = u,
wherein d1 is a fixed constant of sort data in Z,,. Because E,, c &(,) we have that
A = T(.&,), Est&lz,, is in Alg(C,,, E,,) using Lemma 2.2.6. Because of (i), A is in
Alg,(C,,, E,,) using Lemma 2.2.6.

We show that t-ceqn of C,, is not valid in A. Suppose for a contradiction that this
conditional equation is valid. By (iv), in combination with t-ceqn, we deduce that

top(push(i(a), u)) = i(u). (*)

But by W,

push(i(a), u) = u,

and so

W(pWW, 4) = W-+4,

and, by (iv),

= i(d,).

If we substitute a constant d2 distinct from dl in (*) then we obtain

J%,J I- i(A) = i(&)

because E,, (“) is orthogonal it is confluent, and i(d,) and i(d,) have a common reduct.
This is a contradiction because both are normal forms.

6.4. Problem. Does there exist a finite conditional equation specification &,, C) for
the class A/g,&,, E,,) of stack algebras?

7. Finite specifications with hidden sorts and functions

We define a finite equational specification (C,,,, E,,,), with a hidden or auxiliary
sort, for T(C,,, E,,) and Alg,(Z,,, E,,). Recall from Lemma 2.2.5, if (C, E) is any
eqiational specification with C,, E C then

AIgIII(& J%, = Algrn(&, E,,) implies T(& E)l,, E TV,,, -%,)

but the converse is not necessarily true.

J.A. Berg&-a, J. V. Tucker/Annals of Pure and Applied Logic 73 (1995) I I-36 31

data

astack

POP

Fig. 1.

To C,, we add a new sort astack for an auxiliary stack, and new constant and
operations

0st : -+ astack,

push,,, : data x astack + astack,
i,,, : astack + stack.

The full signature Z,,, is illustrated in Fig. 1.
The four equations of E,,, are

push (i(a), L (4) = &,, (PUh&, z)),
w(iast@~~h,st (a, 4)) = i(a),
wG(P~~hast(a, 4)) = L(z),

where a is a variable of sort data, and z is a variable of sort astack.
The idea is to enumerate standard stack states (via standard stack polynomials over

sort data) within the sort stack using the hidden sort astack.

7.1. Theorem. The jinite equational specijication (C,,,, E,,,) is an orthogonal complete

TRS. The set N(Z,,, E,,) of normal forms of the TRS is decidable, and unique normal

forms are computable. The initial algebra T(C,,,, E,,,) is computable.

Proof. The TRS(C,,,, E,,,) is orthogonal by inspection. It is terminating because every
application of a rule of E,,, reduces the number of function symbols from C,,; the
length of any sequence of rewrites of t is bounded by the number of symbols from
Z,, appearing in t. The other properties are easy to check. (7

32 J.A. Bergstra, J. V. Tucker /Annals of Pure and Applied Logic 73 (1995) II-36

7.2. Theorem. (C,,,, E,,,) is a jinite equational specification with hidden sort and

functions for the class Alg,,,(Z,,, E,,) of all stacks, i.e.

Alsm(&,t, &st)lz,, = A&,(&,, &)

and

Proof. First we show that Alg,(C,,,, E,,,) IL,, c Alg,(&, E,,). Let B E Alg,(C,,,, E,,,)
and A = BIzS,. We show that
(i) A F E,,, and

(ii) A is Z,, minimal.
We prove E,,, I- E,,; thus B b E,, and hence A F E,,. Define the standard astack

polynomials

T as*
k+l = /‘u&t (ak + I , Tkas’).

7.3. Lemma. E,,, F &(Tpt) = Tk.

Proof. This is proved by induction on k.
Basis: k = 0. The equation is equation 1 of E,,,.

Induction step: k + 1. We calculate:

iaSt (TFi 1) = i,,, (pushaSt (ak + 1, T,““‘)) (by definition)

= push(i(a,+ 1), i,,, (Tyt)) (by equation 2)

= pus&&+ I), Tk)) (by induction)

= T k+l (by definition).

Consider the equations of E,, . First, t-eqnk+ 1 :

toP(Tk+,) = top(LS,(T,a;fl)) (by lemma)

= top(iast(Pushast(ak+l, TkaS?)) (by definition)

= i(ak+ 1) (by equation 3)

This proves the equation. Next, p-eqnk+ 1:

PoP(Tk+ 1) = pop(L(T;“: 1)) (by lemma)

= pop(i,,t(push,,,(a,+ 19 G-7)) (by definition)

= i(TtSt) (by equation 4)

Now we prove (ii), that A is EC,, minimal. By Lemma 2.2.6, it is sufficient to prove that
for any t’ E T(Z,,,) there is t E T(C,,) such that E,,, F t’ = t.

J.A. Bergstra, J. V. Tucker 1 Annals of Pure and Applied Logic 73 (1995) 11-36 33

Let East2 be a set of equations formed from E,,, by changing sides as follows:

i,,, (0ast 1 = 0,

Clearly, for any t’ E T(C,,,) and t E T(C,,),

(C,,,, E,,J k r’ = r 0 (Cast, East2) I- r’ = t

by initial algebra semantics.
First, we notice that (Cast, East2) is a terminating TRS because for each rewrite the

following number of operation symbols decreases:

IPOPI + IQ1 + Ii,,,1 + 10,,d

Notice that East2 is not orthogonal.
Choose any t’ E T(C,,,) and let n(t’) be some normal form of t’ with respect to

(C,,,, Eas,2). We claim that n(t’) E T(C,,) and E,,, F t’ = n(f) shows minimality. Sup-
pose for a contradiction that n(t’)$ T(C,,). This implies that there is a maximal
subterm r of sort ast. Thus, n(t’) = C[r], where C is a non-empty context. We can
write C [r] = C1 [C, [r]], where C1 may be empty and C2 involves only one function
symbol from C,,,. Then C2 = &,,[.I for if this function symbol were JUY~,,~ then
Y would not be maximal of sort ast. But C2 [r] is not a normal form hence n(P) is not
a normal form, which is the desired contradiction.

Conversely, we show that Alg,(C,,, E,,) E Algm(CaSt, E,,,) IL,,. For each
A E Alg,,,(&, E,,) we construct B E Alg,(C,,,, E,,,) such that A = BII,,. To expand the
C,, algebra A to the C,,, algebra B we add the set D* of finite sequences over the set
D of sort data in A, to interpret the sort ustuck. The new constant and operations
needed are as follows: let k E N and d, d,, . . . , dk E D,

(9 0 - 1, the empty sequence astB -

(ii) p~sh,,~s: D x D* -+ D*,

pusLB(d, cd,, . . . , dd)= (dl,...,dk,d)

(iii) iastB: D* + S,

ias,&) = 0.4

iastd(dl, . . . , 4)) = ~ush~(i~(dd, iastB((dly . . , dk-l)))

Clearly, B is I,,, minimal and B Ix,, = A. we must show B k E,,,.

Let k>O,dl,..., dkr d,, 1 E D and (d,, . . . , dk) E D*. Let o be a state of the vari-
ables in B with

a(u)=d,+, and o(z)=(dl,...,dk)

34 J.A. Bergstra. J. V. Tucker/Annals of Pure and Applied Logic 73 (I 995) I I-36

We consider the four equations of E,,, in turn.
asteqnl: B 18 = &(0,,,). On evaluating for the arbitrary state ci we obtain

euab.,(0) = A and eu4&,,,(0,,d) = 1

by definition of the operations in B; so the equation is valid.
asteqn2: B k push(i(a), i,,,(z)) = iaSt(push,,,(a, z)). On evaluating the RHS for arbit-

rary state o,

eualg,,(i,,t(~u~h,,t(a, 4)) = Ldp~&st&&+ 1, (4, . . . , A- 1)))

= ias,B((dl,...,dk,dk+l))

=~~sh~(i~(dk+l,iastB((dl,...,dk))))

by definitions of pushaStB and of iastB for B;

= et&, d (push (i(a), L(z)))

by evaluation.
Before the next equation, we prove a lemma.

7.4. Lemma. Let dl , . . . , dk E D and let 0 be u state with o(ui) = dip 1 d i < k, and

o(z) = (d,, . . . , dk). Then

(B, 4 1 L(z) = Tk.

Proof. This is done by induction on k.

Basis: k = 0. This is by definition of iastl, etc:

et&,&&)) = iast&) = 0~ = Ed&..@))

= euu18,,(To).

Induction step: k + 1. Suppose the lemma is true for k and consider state g with
a(ai) = di, 1 Q i < k + 1, and C(Z) = (d,, dk, dk+l). NOW,

e~43,,Lt(4) = eh3.d (iast(pu&sth+ 1,411

by definition of iastl, where

u’(z) = (d, , . . . , 4) and ~‘(a+~) = di+l;

= eu&3,,~(wW(~k+ 11, iast(-9))

by validity of asteqn2 proved earlier:

= eu&,,,(push(i(ak+ I), Tk))

by induction hypothesis:

= et&,ATk+ I)

J.A. Bergstra, J. K Tucker/Annals of Pure and Applied Logic 73 (1995) I I-36 35

by definition of Tk + 1 :

since z is not free in Tk + 1.

asteqn3: B 1 top(i,,,(push,,,(a, z))) = i(a). To apply the lemma, we choose, without
loss of generality, the equation with variable ak+ 1 in place of a. We evaluate the LHS
on state 0 in B:

eualB,.(top(i,,,(push,,,(ak+ I, 4)) = eualB.b(top(push(i(ak+ 11, L(z))))

since asteqn2 is valid in B:

= eual,,,(top(push(i(ak, I), Tk)))

by Lemma 7.4:

= er&,.(tcp(T~+ 1))

by definition of Tk + 1 :

= e4dh+ 11)

by equation t-q&+ 1 of E,, and A i= E,,. Hence the equation is valid at any state CJ.
asfeqnrl: B k pop(i,,,(push,,,(a, z))) = iast(a). The argument follows that of asteqn3,

with pop replacing top. 0

7.5. Problem. Does there exist a finite equational specification involving hidden
functions but no hidden sorts for the class Alg,(C,,, E,,) of all stacks?

8. Concluding remarks

The diversity of algebraic models of the stack is a reflection of the diversity of ideas

for the design of stack mechanisms. Despite the progress of algebraic methods in
software design (compare surveys [18,25, 1 l] for example) much remains to be
understood theoretically about this diversity, which is a general phenomenon for data
types, not one specific to the stack. The stacks form an important class in algebraic
data type theory for obvious reasons. A task is to resurvey the literature on algebraic
models of the stack in the light of the mathematical results about the data type variety
in this paper (see [7] for previous surveys).

References

[l] J.A. Bergstra and J.V. Tucker, Algebraic specifications of computable and semicomputable data
structures, Mathematical Centre, Department of Computer Science, Research Report IW 115/79,
Amsterdam (1979).

36 J.A. Bergstra, J. l! Tucker 1 Annals of Pure and Applied Logic 73 (I 995) II-36

[2] J.A. Bergstra and J.V. Tucker, A natural data type with a finite equational final semantics specifica-
tion, but no effective equational initial specification, Bull. EATCS 11 (1980) 23-33.

[3] J.A. Bergstra and J.V. Tucker, A characterisation of computable data types by means of a finite
equational specification method, in: J.W. de Bakker and J. van Leeuwen, eds., Automata, Languages
and Programming (ICALP), 7th Colloq. Noordwijkerhout, 1980, Lecture Notes in Computer Science
81 (Springer, Berlin, 1980) 7690.

[4] J.A. Bergstra and J.V. Tucker, Initial and final algebra semantics for data type specifications: two
characterisation theorems, SIAM J. Comput. 12 (1983) 366-387.

[S] J.A. Bergstra and J.V. Tucker, The completeness of the algebraic specification methods for comput-
able data types, Inform. and Control 54 (1983) 186200.

[6] J.A. Bergstra and J.V. Tucker, Algebraic specifications ofcomputable and semicomputable data types,
Theoret. Comput. Sci. 50 (1987) 137-181.

[7] J.A. Bergstra and J.V. Tucker, The inescapable stack: an exercise in algebraic specification with total
functions, Programming Research Group Report P8804, University of Amsterdam (1988). Revised
version Report P8804b (1990).

[S] J.A. Bergstra and J.V. Tucker, Equational specifications, complete term rewriting systems, and
computable and semicomputable algebras, Programming Research Group Report P9215, University
of Amsterdam (1992).

[9] J.A. Bergstra and J.V. Tucker, Equational specifications for computable data types: 6 hidden functions
suffice and other sufficiency bounds, in: J.V. Tucker and K. Meinke, eds., Many Sorted Logic and its
Applications (Wiley, New York, 1993) 89-102.

[lo] J.A. Bergstra and J.V. Tucker, On bounds for the specification of finite data types by means of
equations and conditional equations, in: J.V. Tucker and K. Meinke, eds., Many Sorted Logic and its
Applications (Wiley, New York, 1993) 103-122.

[l l] M. Bidoit, H.-J. Kreowski, P. Lescanne, F. Orejas, and D. Sannella, eds., Algebraic System Specitica-
tion and Development: A Survey and Bibliography, Lecture Notes in Computer Science 501
(Springer, Berlin, 1991).

[12] N. Cutland, Computability: An Introduction to the Theory of the Recursive Functions (Cambridge
Univ. Press, Cambridge, 1980).

[13] N. Dershowitz, Termination of rewriting, J. Symbol. Comput. 3 (1987) 69-116.
[14] H. Ehrig and B. Mahr, Fundamentals of Algebraic Specifications 1, EATCS Monographs in Theoret-

ical Computer Science 6 (Springer, Berlin, 1985).
[15] H.B. Enderton, A Mathematical Introduction to Logic (Academic Press, New York, 1972).
[16] J.A. Goguen, J.W. Thatcher and E.G. Wagner, An initial algebra approach to the specification,

correctness and implementation of abstract data types, in: R.T. Yeh, ed., Current Trends in Program-
ming Methodology, IV. Data Structuring (Prentice-Hall, Engelwood Cliffs, NJ, 1978) 8(r149.

[17] J.W. Klop, Term rewriting systems, in: S. Abramsky, D. Gabbay and T.S.E. Maibaum, eds., Hand-
book of Logic in Computer Science, Vol. 2 (Oxford Univ. Press, Oxford, 1992) 1-l 16.

[18] B. Kutzler and F. Lichtenberger, Bibliography on Abstract Data Types, lnformatik Fachberichte 68
(Springer, Berlin, 1983).

[19] AI. Mal’cev, Constructive algebras, I., Russian Math. Surveys 16 (1961) 77-129. Also in: The
Metamathematics of Algebraic Systems. Collected Papers 19361967, translated and edited by B.F.
Wells III (North-Holland, Amsterdam, 1971).

[20] K. Meinke and J.V. Tucker, Universal algebra, in: S. Abramsky, D. Gabbay and T.S.E. Maibaum,
eds., Handbook of Logic in Computer Science, Vol. 1 (Oxford Univ. Press, Oxford, 1992) 189-411.

[21] J. Meseguer and J.A. Goguen, Initially, induction and computability, in: M. Nivat and J. Reynolds,
eds., Algebraic Methods in Semantics (Cambridge Univ. Press, Cambridge, 1985) 459-541.

[22] M.O. Rabin, Computable algebra, general theory and the theory of computable fields, Trans. Amer.
Math. Sot. 95 (1960) 341-360.

[23] W. Wechler, Universal Algebra for Computer Scientists (Springer, Berlin, 1992).
[24] M. Wirsing, Algebraic specifications, in: J. van Leeuwen, ed., Handbook of Theoretical Computer

Science, Vol. B: Formal Models and Semantics (North-Holland, Amsterdam, 1990), 6755788.
[25] M. Wirsing and J.A. Bergstra, Algebraic Methods: Theory, Tools and Applications, Lecture Notes in

Computer Science 394 (Springer, Berlin, 1989).

