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In this paper we compare the propositional logic of Frege’s
Grundgesetze der Arithmetik to modern propositional systems,
and show that Frege does not have a separable propositional
logic, definable in terms of primitives of Grundgesetze, that cor-
responds to modern formulations of the logic of “not”, “and”,
“or”, and “if . . . then . . . ”. Along the way we prove a number
of novel results about the system of propositional logic found
in Grundgesetze, and the broader system obtained by including
identity. In particular, we show that the propositional connec-
tives that are definable in terms of Frege’s horizontal, negation,
and conditional are exactly the connectives that fuse with the
horizontal, and we show that the logical operators that are de-
finable in terms of the horizontal, negation, the conditional, and
identity are exactly the operators that are invariant with respect
to permutations on the domain that leave the truth-values fixed.
We conclude with some general observations regarding how
Frege understood his logic, and how this understanding differs
from modern views.
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The Propositional Logic of Frege’s
Grundgesetze: Semantics and

Expressiveness

Eric D. Berg and Roy T. Cook

1. Introduction

Gottlob Frege is often, and quite rightly, identified as the fa-
ther and founder of modern formal logic. While there is no
doubt that Begriffsschrift and Grundgesetze set the stage for the
revolution in logic that occurred over the next half-century (the
ramifications of which are still being investigated and assessed
today), there remain many unanswered questions regarding the
exact nature of Frege’s logic, and how it influenced the develop-
ment of the formal approaches, techniques, and constructions
with which we are familiar today. The primary reason for this
unfortunate gap in our understanding of this important aspect
of the history of logic is not hard to identify, at least with regard
to work on Frege in the English-speaking world: the lack—until
very recently (Frege 2013)—of a complete translation of Grundge-
setze, the work where Frege presents his final, mature account
of formal logic.

The present essay is an attempt to fill in some of these missing
details. The topic we shall focus on, however, might strike some
readers as odd, unexpected, or not worthy of the sort of extended
examination given here. The present essay focuses on Frege’s
propositional logic. Furthermore, for the most part we will ig-
nore that aspect of Frege’s logic that typically receives the most
attention: Frege’s deductive system. Instead, we shall focus on a
topic often thought to be of minimal interest within the study of
formal logic: the semantics of Frege’s propositional logic, and in

particular, whether or not the connectives introduced by Frege
in Grundgesetze are expressively complete.1

Although most of the technical arguments below will focus on
results regarding the expressive power of various sub-systems
of Grundgesetze, the larger philosophical/historical issues with
which we are primarily concerned can be expressed in terms of
a very simple question—one that might be thought to have a
simple and obvious answer:

Question: What, exactly, is Frege’s propositional logic?

As we shall see, answering this question adequately and com-
pletely turns out to be much more complicated than one might
initially suspect.

Of course, this question has a trivial and affirmative answer
on one reading. After all, Grundgesetze contains operators (the
horizontal, negation, and the conditional) that, although func-
tioning differently from modern propositional connectives in
various ways (e.g. being total functions on the entire domain),
are nevertheless clear Fregean analogues of the modern notion
of propositional connective. Hence, on this simple reading the
propositional logic of Grundgesetze is the logic obtained via re-
stricting our attention to the explicit propositional operators
contained in Grundgesetze—that is, the horizontal, the negation
stroke, and the conditional stroke.

Things in the Grundgesetze are not so simple, however. While
the point of the previous paragraph is correct as far as it goes, it
misses some deep and important aspects of the particular, and
sometimes peculiar, way that the logic of Grundgesetze operates.
Frege does, of course, introduce operators that are clearly the

1Note that this focus on Frege’s semantics, and our explicit construction of
a formal semantics inspired by the informal semantics described by Frege in
Grundgesetze, is counter to accounts, such as that found in Landini (2012), that
understand Frege’s logic as defined and understood primarily (or even solely)
in terms of deduction. For recent accounts that place more importance on the
role of semantics in Frege’s logic, however, see Heck (2012) and Cook (2013).
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analogues of (and are the historical precedents of) our modern
propositional connectives. But, as we shall see, he also intro-
duces additional operators that are not analogues of modern
propositional connectives, but which allow him to define new
propositional connectives not definable in terms of the explicit
propositional connectives he does introduce. Hence the em-
phasis, in what follows, on the expressive power of various
collections of logical operators from Grundgesetze.

These complications stem in great part from the dual role that
the identity function plays in Frege’s logic. The identity function
(that is, the dyadic function that maps α, β to the True if and
only if α is identical to β, and maps any pair of distinct objects to
the False) is often used as if it were a propositional connective—
in particular, it is often used in lieu of a biconditional when
both arguments are guaranteed to be truth-values. But there
are good reasons for thinking that the identity function is not a
propositional connective (or an analogue of one)—at least, not
in the contemporary sense of “propositional connective”—and
we should recognize that, in using the identity function as if it
were the biconditional, Frege is, strictly speaking, going beyond
the bounds of propositional logic.

As a result, there are logical operations that are (in a sense to
be made precise in §3) propositional operators, but which can
only be defined, within the language of Grundgesetze, in terms of
identity. What about these? Should these be counted as part of
Frege’s propositional logic? Arguing for one or another answer
here is probably pointless, of course. Rather, the more fruitful
task we undertake in this paper is to carefully characterize and
compare the various subsystems of Grundgesetze that might be
thought to correspond, more or less loosely, to the contemporary
understanding of propositional logic.

Before moving on, it is worth making an important termi-
nological clarification. We have, and will continue, to use the
expression “propositional connective” for the horizontal, the

negation stroke, and the conditional stroke, as well as for other,
relevantly similar functions that can be defined within Grundge-
setze (again, see §3 for a precise definition of what is meant
by “relevantly similar” here). This use of terminology should
not be taken to imply that Frege’s logical operators are, strictly
speaking, connectives in the modern sense. On the contrary, his
horizontal, negation, and conditional stroke are total functions
from the domain of discourse to the True (⊤) and the False (⊥).
They are not connectives in the contemporary sense, where a
connective is an operator that applies to well-formed formulas
and produces more complex well-formed formulas. Neverthe-
less, the negation stroke in Grundgesetze is, roughly speaking,
clearly meant to do much of the same work as does “¬” in
contemporary presentations of propositional logic—in particu-
lar, they are both formalizations of “not” or “it is not the case
that” in English2 and hence it seems natural to use uniform
terminology here to emphasize the conceptual and historical
connections between Frege’s horizontal, negation, and condi-
tional strokes and our contemporary connectives, even as we
examine in detail the significant technical differences between
the two approaches. These observations, of course, further em-
phasize the peculiar nature of Frege’s use of identity, since it is,
again roughly speaking, meant to do much of the same work
as both the biconditional “↔” (a propositional connective) and
the identity predicate “�” (not a propositional connective) in
modern formal logic.

As a result, there are a number of (consistent) “sub-systems”
of the full (and of course inconsistent) logic of Grundgesetze that
are of interest when investigating whether, and in what sense,
Frege’s Grundgesetze contains a clear development of something
resembling modern propositional logic:

1. The class of propositional connectives definable in terms

2And natural language negation in German, etc.
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of Frege’s primitive propositional connectives (i.e. the hor-
izontal, negation, and the conditional).

2. The class of propositional connectives definable in terms of
Frege’s primitive propositional connectives plus the iden-
tity function.

3. The class of logical operators (propositional connective or
not) definable in terms of Frege’s primitive propositional
connectives plus the identity function.

One of the main results of this paper is showing that these three
collections are distinct: the first is a proper subset of the sec-
ond, which is a proper subset of the third. Further, there is no
list of primitive operators of Grundgesetze such that the second
collection—the collection of all propositional connectives defin-
able in Grundgesetze—is exactly the collection of logical operators
definable in terms of the members of that list. In addition, as
a sort of corollary we will also show that there is no subsystem
of Grundgesetze, identifiable in terms of some subcollection of
Frege’s primitive logical operators, that captures exactly the sec-
ond class of logical operators listed above (and nothing else). In
short, the class of propositional connectives of Grundgesetze is
not separable from the logic of Grundgesetze as a whole (or, at the
very least, not separable from the logic of the Fregean identity
function). The remainder of this paper is devoted to developing
and discussing these and related results, although we will of
course point out interesting corollaries of the results needed for
this argument and explore interesting digressions as they arise.
After all, the real purpose of this paper is not merely to make
a rather picky observation about the expressive limitations of
the language of Grundgesetze, but to use the examination of this
issue to develop a much deeper understanding of the precise
way that the logic of Grundgesetze functions.

The paper proceeds as follows: In the next section we will
present a brief overview of that portion of the language and
logic of Grundgesetze that we need for this project—in particular,

the primitive propositional connectives (horizontal, negation,
and the conditional) and the identity function. This section will
also include a brief discussion of Frege’s use of Roman letters as
a device for expressing generality (for reasons that will become
apparent). Then, in §3, we investigate the class of proposi-
tional connectives that are definable in terms of the primitive
propositional connectives of Grundgesetze (again, the horizon-
tal, negation, and the conditional), and show that this class can
be described in two other ways that would have been of central
importance to Frege given the manner in which he (informally)
sets up the semantics of Grundgesetze. In §4 we then introduce
a novel set of propositional connectives—what we shall call the
alternative horizontal, the alternative negation, and the alternative
conditional, and show that these connectives are not expressible
in terms of Frege’s primitive propositional connectives. In short,
in this section we show that the first class in the list above is not
identical to the class of all propositional connectives. We then
consider the system that would result from combining the “of-
ficial” Fregean connectives and the alternative versions of these
same connectives in §5, and examine which sub-collections of
these six connectives are and are not expressively complete with
respect to the class of all Fregean propositional connectives. In
§6 we then show that, if we add Frege’s identity function to
Frege’s official set of connectives (the horizontal, negation, and
conditional strokes), we are able to express every Fregean propo-
sitional connective (although we get “too much”, in a sense, since
this collection of operators also allows us to define functions
that are not propositional connectives at all). This, of course,
amounts to showing that the second class is distinct from the
third. Finally, after a brief digression on the various readings of
the biconditional that are possible within Grundgesetze in §7, we
precisely characterize the class of logical operators definable in
terms of the horizontal, negation, the conditional, and identity
in §8. In this section we shall also identify a striking and hereto-
fore unnoticed connection between this subsystem of the logic
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of Grundgesetze and the role that permutation invariance plays
in current debates regarding the nature of logic and of logical
operators generally. Finally, we draw some general conclusions
regarding the nature of Frege’s propositional logic (and the lack
of a separable propositional logic) in the conclusion.

2. Frege’s Grundgesetze Connectives

At the outset, it is important to remember that Frege requires
that every function be defined on every argument—that is, for
Frege any function whatsoever is a total function on the entire
domain.3 As a result, Frege’s propositional connectives behave
differently from modern connectives, since we usually do not as-
sume that the latter are defined on arguments other than {⊤,⊥}.

The first propositional connective (or analogue thereof) that
Frege introduces in Grundgesetze is the horizontal.4 The horizon-
tal is a unary function that maps every object to either the True
or the False—that is, in Frege’s terminology is a 1st-level concept.
Thus, if α names an object, then:

3The discussion of the nature of Frege’s logical operators in this section
borrows heavily from Cook (2013), which is also highly recommended to the
reader desiring more details regarding Frege’s logical notation.

For a detailed discussion of what, exactly, Frege’s requirement that functions
be total amounts to, and in particular whether the requirement should be
understood as requiring that functions be total on all objects whatsoever,
or only on those objects that happen to be in the current (not necessarily
universal) domain, see the exchange in the symposium: Cook (2015), Rossberg
(2015), Wehmeier (2015), Blanchette (2015).

4It is worth noting that, in Grundgesetze„ the terms “horizontal”, “nega-
tion”, and “conditional” are names of linguistic items, not (“officially”) names
of the functions these linguistic items name. Since nothing hinges on this
in the present context, however, we shall use “horizontal”, “negation”, and
“conditional” to refer to both the functions in question and the function name
used to refer to them—thus, “horizontal” is systematically ambiguous in what
follows, denoting either the horizontal stroke or the horizontal function that
the stroke denotes, depending on context (and similarly for the other primitive
or defined logical operators).

α

names a truth-value. Frege provides the following informal
description of the semantic behavior of the horizontal:

I regard it as a function-name such that

∆

is the True when ∆ is the True, and is the False when ∆ is not the
True. (Frege 2013, I: §5)

In short, if α names an object, then “ α” can be understood,
loosely, as denoting the truth-value of:

α is (i.e. is identical to) the True.

In what follows we shall represent the horizontal as “ f HOR(ξ)”
(or simply f HOR) rather than “ ξ”, since this will make the
proofs that follow a bit more perspicuous and also provides a
nice template for introducing additional functions not present as
primitive logical operators in Grundgesetze.5 The logical prop-

5The claim that Frege’s two-dimensional notation is difficult to read or
reason with is nothing more than a pernicious myth, with its roots in un-
charitable reviews of Frege’s work by his contemporaries—in particular Venn
(1880) and Schröder (1880). Frege himself refutes such slanders in “On the
Aim of ‘Conceptual Notation’ ”:

I pause here to answer some objections to Schröder. He compares my
representation of the exclusive “A or B” with his mode of writing:

ab1 + a1b � 1

and finds here, as elsewhere in my “conceptual notation”, a monstrous
waste of space. In fact, I cannot deny that my expression takes up more
room than Schröder’s, for which its part is again more spread-out than
Boole’s original:

a + b � 1

But this criticism is based upon the view that my “conceptual notation”
is supposed to be a presentation of abstract logic. These formulas [of
my “conceptual notation”] are actually only empty schemata; and in their
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erties of the horizontal function are thus summed up in the
following table:6

α f HOR(α)

⊤ ⊤

⊥ ⊥

other ⊥

It should be emphasized that the table above is not a truth-table
in the modern sense: Frege’s logical operators are not truth-
functions, since they are not functions from n-tuples of truth-
values to truth-values. Instead, Frege’s horizonal is a function
from any object to a truth-value (similar comments apply to the
negation-stroke and conditional-stroke, discussed below).

application, one must think of whole formulas in the places of A and B—
perhaps extended equations, congruences, projections. Then the matter
appears quite different. The disadvantage of the waste of space of the
“conceptual notation” is converted into the advantage of perspicuity; the
advantage of terseness for Boole is transformed into the disadvantage of
unintelligibility. (Frege 1882–83, 97)

Nevertheless, it is unfortunately true that Frege’s notation can become some-
what unwieldy in metaproofs about the logical system of Grundgesetze—that
is, when we are treating his logical system as an abstract logic—hence our
introduction of f HOR, f NEG, and so on.

6It is perhaps worth noting that the fact that Frege does not distinguish be-
tween the False and non-truth-values in his definition of the horizontal stroke
(and similarly for his definitions of the negation stroke and the conditional
stroke, see below) suggests that a table with only two rows, corresponding to
(i) the true, and (ii) everything else, might be more natural. While this obser-
vation is correct, distinguishing between the False and non-truth-values at this
stage will help to motivate the notion of non-Truth-non-distinguishing con-
nectives examined in §4 as well as the introduction of the alternative Fregean
connectives, and the corresponding notion of non-Falsity-non-distinguishing
connectives, examined in §5. At any rate, although he did not do so in his
definitions of the connectives, and hence cannot do so solely in terms of these
connectives, the logical resources of Grundgesetze (in particular, identity) do
allow for Frege to distinguish between the False and other objects that are not
identical to the True (see, e.g., the constructions in Grundgesetze §10!)

Next up is negation. Negation is also a 1st-level concept: if “α”
names an object, then:

α

names a truth-value. Frege summarizes the semantics for nega-
tion as follows:

The value of the function:
ξ

is to be the False for every argument for which the value of the
function:

ξ

is the True, and it is to be the True for all other arguments. (Frege
2013, I: §6)

Frege’s gloss on negation is given in terms of the semantics for
the horizontal, but we can easily reformulate it along the same
lines as the informal semantic clause for the horizontal along
the following lines:

Negation is a function-name such that:

∆

is the True when ∆ is not the True, and is the False when ∆ is the
True. (Frege 2013, I: §5)

Hence, if α names an object, then “ α” can be understood,
loosely, as denoting the truth-value of:

α fails to be (i.e. fails to be identical to) the True.

In what follows we shall represent Frege’s negation function
as “ f NEG(ξ)” (or simply f NEG), and we can sum up the logical
properties of negation in the following table:

α f NEG(α)

⊤ ⊥

⊥ ⊤

other ⊤
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The third, and final, primitive propositional connective in
Grundgesetze is the conditional stroke. Frege’s conditional stroke
is a binary function symbol that attaches to names of objects—
in Frege’s terms it names a 1st-level relation: if α and β name
objects, then:

β
α

is the name of a truth-value. Frege describes the logical behavior
of the conditional as follows:

I introduce the function with two arguments:

ξ
ζ

by means of the specification that its value shall be the False if the
True is taken as the ζ argument, while any object that is not the
True is taken as the ξ-argument; that in all other cases the value of
the function shall be the True. (Frege 2013, I: §12)

Hence, if α and β name objects, then β
α

can be understood,

loosely, as denoting the truth-value of:

Either α fails to be (i.e fails to be identical to) the True,
or β is (i.e is identical to) the True.

We will use “ f CON(ξ1 , ξ2)” (or simply f CON) to symbolize this bi-
nary function below. The logical properties of f CON are summed
up in the following table:

f CON ⊤ ⊥ other

⊤ ⊤ ⊥ ⊥

⊥ ⊤ ⊤ ⊤

other ⊤ ⊤ ⊤

(The left-most vertical column represents the value of “α”, the
antecedent or subcomponent of the conditional statement; the

top-most horizontal row the value of “β”, the consequent or
supercomponent.)

These are the only propositional connectives that occur primi-
tively in Grundgesetze, if by “propositional connective” we mean
an n-ary 1st-level function g(ξ1 , ξ2 , . . . , ξn) that maps every ob-
ject to a truth-value, and which does not distinguish between any
two non-truth-values as argument (we shall tighten up this cri-
terion for being a propositional connective in §3 below). Before
moving on to the identity function, however, it is worth exam-
ining two features of Frege’s propositional connectives that will
play a central role in the results below.

First, Frege suggests that the negation-stroke and the
conditional-stroke can be understood as consisting merely of
the actual vertical strokes or lines involved in their formaliza-
tion, with the attached horizontal portions of their notation un-
derstood as separate occurrences of the horizontal. For example,
when discussing negation he writes that:

. . . ‘ ∆’ always refers to the same as ‘ ( ∆)’, as ‘ ( ∆)’ and
as ‘ ( ( ∆))’. We therefore regard ‘ ’ as composed of the
small vertical stroke, the negation stroke, and the two parts of the
horizontal stroke each of which can be regarded as a horizontal
in our sense. The transition from ‘ ( ∆)’ or from ‘ ( ∆)’ to
‘ ∆’, as well as that from ‘ ( ∆)’ to ‘ ∆’, I will call the fusion
of horizontals. (Frege 2013, I: §6)

and when discussing the conditional he writes that:

It follows that:
Γ

∆

is the same as: (
( Γ)
( ∆)

)

and therefore that in:
‘ Γ

∆’
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we can regard the horizontal stroke before ‘∆’, as well as each of
the two parts of the upper horizontal stroke partitioned by the
vertical, as horizontals in our particular sense. We speak here, just
as previously, of the fusion of horizontals. (Frege 2013, I: §12)

Frege’s suggestion that negation and the conditional have occur-
rences of horizontals as parts should not be taken too literally,
since it is not clear that the result of prefixing the vertical portion
of the negation symbol “ ” (without its horizontal “parts”) to
an argument α—that is, something like “ α”—is a well-formed
concept-script expression in Grundgesetze.7 Nevertheless, what
is clear is that Frege is suggesting that the horizontal, negation,
and the conditional can be treated as if they contain occurrences
of the horizontal.8 In short, Frege is pointing out that, for any
α:9

α � ( α),� ( α) � ( ( α))

or, in the notation introduced above:

7Further, the “metatheoretic” argument that every concept-script expres-
sion in Grundgesetze has a reference, found in Frege (2013, I: §§10, 30–31),
do not cover such cases, rendering these arguments incomplete (and obvi-
ously so) if Frege genuinely intended us to understand “ ξ” and “ ξ2

ξ1

”

as complex symbols. It is worth noting that Frege talks here of “regarding”
the negation and the conditional as if they had a certain complex structure,
not that they in fact have that structure. Frege might be understood as claim-
ing that the negation stroke ξ and the various function names obtained by
fusing negation with one or more horizontals—that is:

( ξ), ( ξ), ( ( ξ))

have the same reference (i.e. name the same function), despite having distinct
senses. Defending this nuanced reading is beyond the scope of the present
work. (Thanks to a referee for suggesting this idea.)

8These comments also apply to the concavity stroke—that is, to Frege’s
analogue of the universal quantifier (see, e.g. Frege 2013, I: §8). This fact,
while obviously important, is orthogonal to the present project.

9Note that the occurences of “�” here are metatheoretic: these are not
identity claims formulated within the language of Grundgesetze itself.

f NEG(α) � f NEG( f HOR(α))

� f HOR( f NEG(α))

� f HOR( f NEG( f HOR(α)))

Along similar lines, it must be the case, for any α and β, that:

β

α

�

(
β

α

)
� β

( α)

� ( β)

α

� ( β)

( α)

�

(
( β)

α

)

�

(
β

( α)

)
�

(
( β)

( α)

)

or:

f CON(α, β) � f HOR( f CON(α, β))

� f CON( f HOR(α), β)

� f CON(α, f HOR(β))

� f CON( f HOR(α), f HOR(β))

� f HOR( f CON(α, f HOR(β)))

� f HOR( f CON( f HOR(α), β))

� f HOR( f CON( f HOR(α), f HOR(β)))

Frege calls these equivalences, and the transformations that re-
sult from replacing one of the concept-script expressions listed
above with another, equivalent formulation, the fusion of hori-
zontals.

The role that the fusion of horizontals plays in the logic of
Grundgesetze helps to explain what might otherwise appear to
be an unnecessary redundancy in Frege’s notation. As we have
seen, Frege explicitly introduces both the horizontal and nega-
tion. But once we have negation, we no longer need the hori-
zontal as an additional primitive notation, since the horizontal
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is explicitly definable in terms of negation.10 In other words, if
α names an object, then:

α � α

or, equivalently:

f HOR(α) � f NEG( f NEG(α))

Frege explicitly proves this in Grundgesetze—the following,
which is labelled IVb, occurs in §49:11

( a) � ( a)

10The horizontal is also definable in terms of the conditional. For any α and
β:

α � α
β
β

11Interestingly, Frege claims in the introduction to Begriffschift that he could
have combined theorem (31) (Frege 2002, 156):

a

a

and theorem (41) (Frege 2002: 158):

a

a

into (Frege (2002): 107):

( a � a)

This is correct, in Begriffschrift, since Frege understands the horizontal, nega-
tion, and the conditional as something akin to our contemporary conception
of sentential operators, rather than as functions on the domain, in the earlier
work. In particular, there is no indication that connectives need to be total
functions in Begriffsschrift. Note that the formula above is not a theorem of
Grundgesetze since a � a is the False when a is not a truth-value.

Thus, Frege does not need the horizontal as an additional prim-
itive in his system—at least, he does not need it because of any
additional expressive power it affords us once negation is al-
ready in play. But the comments above regarding the fusion
of horizontals suggest another role that the horizontal plays in
the presentation of Grundgesetze: The horizontal is required in
order to provide an exact description of the connectives that are
definable in terms of the primitive propositional connectives of
Grundgesetze. As we shall see below, it is not merely the case
that both negation and the conditional fuse with the horizon-
tal. In addition, the propositional connectives that fuse with
the horizontal are exactly those definable in terms of Frege’s
negation and conditional. In short, the horizontal, redundant
or not, denotes exactly the notion required to characterize the
propositional connectives definable in terms of Frege’s primi-
tive propositional connectives. Although there does not seem
to be any textual evidence that Frege was aware of this fact or
was in a position to prove it, we find the fact that Frege retained
the horizontal in spite of its obvious expressive redundancy to
be rather suggestive that he might have at least suspected some-
thing like this result.

There is a second observation regarding the nature of Frege’s
propositional connectives that is worth making at this point.
In providing the informal “semantic clauses” for the horizontal,
negation, and the conditional, Frege divides arguments into two
kinds: the True, and any object that is not the True (including
but obviously not limited to the False). Hence the horizontal
maps the True to the True, and any other object to the False;
negation maps the True to the False, and any other object to the
True, and the semantics for the conditional can be summarized
in a similar simplified form via the following table:

f CON ⊤ not : ⊤

⊤ ⊤ ⊥

not : ⊤ ⊤ ⊤
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Thus, none of Frege’s primitive propositional connectives can
distinguish between the False as input and any non-truth-value
as input. Importantly, as we shall show below, the propositional
connectives introduced by Frege—that is, the horizontal, nega-
tion, and the conditional—do not merely have this property,
which we shall call non-Truth non-distinguishing, as a matter of
happenstance. Instead, the propositional connectives that do
not distinguish between the False and non-truth-values are ex-
actly those that fuse with the horizontal, and hence are exactly
those that are definable in terms of Frege’s primitive proposi-
tional connectives.

As we have already noted, however (although the proof of this
fact will have to wait until §5), this class of connectives is not
identical to the class of all propositional connectives. In order to
obtain resources sufficient for defining all of the possible propo-
sitional connectives, we will have to move beyond the proposi-
tional connectives Frege explicitly introduces in Grundgesetze. In
particular, we will need the dyadic identity function “=”. Frege
provides the following informal description of the semantic be-
havior of the identity function:

We have already used the equality-sign rather casually to form
examples but it is necessary to stipulate something more precise
regarding it:

‘∆ � Γ’

refers to the True, if Γ is the same as ∆; in all other cases it is to
refer to the False. (Frege 2013, I: §7)

Thus, identity is a binary function, and:

α � β

is the True if and only if α and β are identical, and is the False
otherwise. Other than its slightly different syntactic form (i.e. it
is a two place function from objects to truth-values, rather than a
relation in the contemporary sense of “relation") Frege’s identity

function works very similarly to the modern notion of identity
mobilized in, for example, contemporary first-order logic. In
the sections to follow we shall use f�(ξ1 , ξ2) (or simply f�) to
refer to this binary function, and we shall be careful to use “=”
only when making metatheoretic claims about the logical system
within which f� occurs.

As we have already emphasized, the identity function
f�(ξ1 , ξ2) is not a propositional connective—even on the Fregean
way of understanding what it is for a total function to be a propo-
sitional connective—since it can distinguish between non-truth-
values. To make this point clearer, consider what happens if we
attempt to present Frege’s dyadic identity function in terms of
a 3 × 3 chart similar to the manner in which we were able to
represent the logical behavior of the conditional:

f� ⊤ ⊥ other

⊤ ⊤ ⊥ ⊥

⊥ ⊥ ⊤ ⊥

other ⊥ ⊥ ???

Everything goes swimmingly until we get to the bottom-right
entry. Then the problem becomes apparent: unlike the proposi-
tional connectives (i.e. the horizontal, negation, and the condi-
tional) discussed above, knowing that two arguments are both
non-truth-values is not enough to know the result of apply-
ing the identity function to them. In addition, we need to know
whether or not they are the same non-truth-value. Since a propo-
sitional connective should, in some sense, only care about truth-
values as inputs, and should, as a result, output some default
value when all inputs are non-truth-values (and, further, should
output the same default value in all such cases, since otherwise
the connective would in fact be distinguishing between differ-
ent sequences of inputs based on distinctions other than what
truth-value, if any, the inputs are), identity is not a propositional
connective.
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This completes our survey of those primitive notions from
Grundgesetze that will be needed in what follows. There are
two additional issues that we need to deal with, however. First,
Frege’s logic does not contain any primitive names—either of
truth-values or of anything else—and hence if we consider the
subsystem of Grundgesetze that contains only the horizontal,
negation, the conditional, and the identity function, we will
find ourselves unable to proceed very far, since the subsystem
in question will contain no sentences.12 There are two ways to
rectify this: The first, and arguably simplest, would be to supple-
ment the system with a stock of primitive names (where these
names should be understood as having both truth-values and
non-truth-values as their potential referents). From a techni-
cal perspective this approach would be perfectly adequate, but
it does involve adding something genuinely new to Grundge-
setze.13 Instead, we will take ourselves to be working within a
slightly wider sub-system of Grundgesetze that includes, in addi-
tion to the notions surveyed above, the Roman letter generality
device.14 Thus, we will take formulas with object-level variables
occurring in them to be understood as (or as equivalent to) in-
stances of (prenex-only) universal quantification. There is, of

12Since Grundgesetze contains no primitive names, one must first form com-
plex names via applying 2nd-level functions to 1st-level functions to obtain
complex names of objects before one can form names via the application of
1st-level functions to names of objects.

13Note that our use of f HOR, f NEG, f CON, and f� does not involve adding
anything new to the logic of Grundgesetze. Instead, we have merely intro-
duced new, more typographically convenient names for the very same func-
tions present in Frege’s original work. In other words, introducing these new
notations no more implies that we have introduced new functions, or new
understandings of these functions, than does the fact that the authors of this
paper refer to these notions using “horizontal”, “negation”, “conditional”,
and “identity”, while Frege referred to them as “Wagerechten”, “Vernein-
ungsstrich”, “Bedingungsstrich”, and “Gleichheit”.

14Thus, we will interpret formulas of the languages containing f HOR, f NEG,
f CON, and f�, as well as the extended languages obtained by adding additional
functions, as bound by implicit prenex first-order quantifiers.

course, plenty of controversy regarding how, exactly, we are to
understand Frege’s Roman letters. Fortunately for us, none of
these subtle issues in any way affects the rather unsubtle use we
make of the device—as a way to make claims about all objects
in a particular domain, and nothing more.15

Second, we need to flag a methodological assumption adopted
in the constructions below. We assume throughout that func-
tions are individuated extensionally in the logic of Grundge-
setze—that is, that two functions are identical if and only if
they map the same arguments to the same outputs—and we
construct our formal version of Frege’s informal semantics ac-
cordingly.16 Not all Frege scholars agree with this assumption
(see, e.g. Benis-Sinaceur, Panza, and Sandu 2015). Nevertheless,
this simplifying assumption should not prevent such scholars
from accepting the results proven below, since the vast majority
of results in this paper require proving that a function of such-
and-such kind exists (or something similar), but do not depend
on there being a unique such function. In short, all of the re-
sults below can be easily (but tediously) re-cast as holding of a
non-extensional interpretation of Grundgesetze.17

15It is worth mentioning, however that we are sympathetic to the reading of
the Roman letter generality device provided in Heck (2012), especially §3.2.

16Frege, of course, denied that we can express the claim that two functions
are identical (or not) in the formal language of Grundgesetze—the best we can
do in the formal context is assert that two functions agree on every argument
(and, equivalently, that their value-ranges are identical). This has no bearing
on whether or not Frege (or his commentators) could take a meaningful stand
on the identity, or not, of functions from the perspective of the metatheory
within which the semantics and deductive system of Grundgesetze is detailed.

17Of course, both authors of this essay believe that Frege did, in fact, have
an extensional understanding of functions. Hence the implicit assumption
of such in the formalism is not only a simpifying device, but also reflects
our own views regarding how best to understand the logic of Grundgesetze.
The point, however, is that those scholars who disagree can easily modify
the constructions and proofs given below so that they are appropriate to a
non-extensional reading.
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3. Negation, Conditional, and Horizontal

Having identified the primitive propositional connectives
of Grundgesetze (and introduced the new notation—“ f HOR”,
“ f NEG”, and “ f CON”—for these notions) we are now in a posi-
tion to make some technical observations regarding the logical
“behavior” of the system that results from restricting attention
to the corresponding subsystem of Grundgesetze.

Before proving such results, we first need to construct a bit
of formal machinery that corresponds to Frege’s informal dis-
cussion of the semantics of the propositional connectives. As
the discussion of the previous section makes clear, Frege un-
derstood propositional connectives to be functions mapping n-
tuples from the domain of all objects whatsoever (which in-
cludes the truth-values ⊤ and ⊥) to the truth-values. Thus, in
order to study Frege’s connectives, we need the following notion
of Fregean domain:18

Definition 3.1. A Fregean domain is any set ∆ where:

⊤,⊥ ∈ ∆

18It is perhaps worth commenting on our mobilization of Fregean domains,
since Frege is widely (but not universally) interpreted as admitting only a
single, universal domain of quantification (again, see the exchange: Cook 2015,
Rossberg 2015, Wehmeier 2015, Blanchette 2015). Presumably, a contemporary
theorist who believes that there is only one legitimate domain of quantification
(for whatever reasons) will nevertheless gain much from a study of arbitrary
models, so long as that theorist is unsure of the exact content of the one
true legitimate domain, for the simple reason that anything that is true of
all models will also be true of the one true legitimate domain. Presumably a
formal reconstruction of Frege’s informal semantics, such as the one mobilized
here, can adopt the same approach. There are questions regarding how such
an approach relates to Frege’s notorious dispute with Hilbert regarding the
role of models in consistency proofs, of course, but this in no way affects the
usefulness of modern model-theoretic methods as tools for understanding
the complexities of the formal system of Frege’s Grundgesetze. We plan to
examine how such methods relate to Frege’s anti-model-theory attitudes in
future work.

It is now very natural to define a Fregean propositional connective
as a specific kind of function that maps n-tuples of objects from
a Fregean domain to the truth-values:19

Definition 3.2. An n-ary function g is a Fregean propositional
connective if and only if, for any Fregean domain ∆ where |∆| ≥ 3, g
is total on ∆n , the range of g is {⊤,⊥}:

g : ∆n → {⊤,⊥}

and, for any n-tuple:

〈α1 , α2 , . . . , αn〉 ∈ ∆
n

any:
B ⊆ {m ∈ N : 1 ≤ m ≤ n}

and any δ ∈ ∆ where δ < {⊤,⊥}, we have:

g(α1 , α2 , . . . , αn) � g(β1 , β2 , . . . , βn)

where:

βi �

{
δ, if αi < {⊤,⊥} and i ∈ B;

αi , if αi ∈ {⊤,⊥} or i < B.

FPC is the class of Fregean propositional connectives.

Loosely speaking, a Fregean propositional connective is any total
function that maps n-tuples from a Fregean domain ∆ to {⊤,⊥}

that does not distinguish between any two non-truth-values. As
our discussion of Frege’s horizontal, negation, and conditional

19We do not claim that this is Frege’s notion (since, of course, Frege never ex-
plicitly identified a subsystem of Grundgesetze as the propositional subsystem),
nor do we claim it is in some sense the right understanding of “propositional
connective”. All that we require is that it is a relatively natural and indepen-
dently interesting understanding of what it is to be a propositional connective
in the Fregean setting.
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makes clear, Fregean propositional connectives can be naturally
represented in ways that resemble (but are not identical to) fa-
miliar treatments of the connectives in three-valued logic, since
there are three relevant kinds of input to consider: ⊤, ⊥, and
non-truth-values. For example, binary Fregean propositional
connectives (such as the conditional stroke, but also binary con-
nectives definable in terms of other notions) can be represented
as 3 × 3 matrices of outputs of the form:20

con ⊤ ⊥ other

⊤ V1 V2 V3

⊥ V4 V5 V6

other V7 V8 V9

where Vi ∈ {⊤,⊥} for 1 ≤ i ≤ 9. Similar comments apply to
n-ary Fregean propositional connectives and 3n-ary matrices for
n ≥ 0.

The three propositional connectives explicitly given in
Grundgesetze are, of course, Fregean propositional connectives:

Proposition 3.3. f HOR , f NEG , f CON ∈ FPC.

Note, however, that we make no assumption at this point that
Grundgesetze contains all of the Fregean propositional connec-
tives. In fact, as we shall see, although all Fregean propositional
connectives are definable in the language of Grundgesetze, some
of these connectives can only be constructed within Grundge-
setze via the use of functions (in particular, identity) that are
not Fregean propositional connectives. With this in mind, it is
worth noting explicitly that f� is not a Fregean propositional
connective, since it is able to distinguish between different non-
truth-values:

20It should be emphasized once again, however, that these are not truth
tables, strictly speaking, and Frege’s logic is not a three-valued logic, since the
third type of inputs are, by definition, not truth-values!

f�(α, β) �

{
⊥, if α, β < {⊤,⊥} and α , β;

⊤, if α, β < {⊤,⊥} and α � β.

We shall now identify three sub-classes of Fregean propositional
connectives that are of interest in the present context. The first,
and most obvious, perhaps, is the class of Fregean simply defin-
able connectives—those Fregean propositional connectives that
are definable in terms of the explicit propositional connectives
contained in Grundgesetze:21

Definition 3.4. An n-ary Fregean propositional connective g is a
Fregean simply definable connective if and only if g is definable in
terms of:22

f HOR , f NEG , and f CON

DEF is the class of Fregean simply definable connectives.

The following is obvious:

Proposition 3.5. f HOR , f NEG , f CON ∈ DEF.

In the previous section we identified two interesting properties
shared by the connectives we are representing as f HOR, f NEG,
and f CON. The first of these was the fact that each of these
connectives fuses with the horizontal. We can provide a precise
characterization of this property as follows:

Definition 3.6. An n-ary Fregean propositional connective g is a
horizontal fusing connective if and only if, for any Fregean domain
∆, n-tuple:

〈α1 , α2 , . . . , αn〉 ∈ ∆
n

21The purpose of the modifier “simply” will become apparent in §4 and §6
below, where we introduce distinct classes of propositional connectives which
we shall call the Fregean alternative definable connectives and the Fregean identity
definable connectives respectively.

22By “definable” here, and below, we mean definable in terms of the func-
tions listed via composition.
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and:
B ⊆ {m ∈ N : 1 ≤ m ≤ n}

we have:

g(α1 , α2 , . . . , αn) � f HOR(g(α1 , α2 , . . . , αn))

� g(β1 , β2 , . . . , βn)

� f HOR(g(β1 , β2 , . . . , βn))

where:

βi �

{
f HOR(αi), if i ∈ B

αi , if i < B.

FUSE is the class of horizontal fusing connectives.

As discussed above, Frege himself demonstrates the following:

Proposition 3.7. f HOR , f NEG , f CON ∈ FUSE (Frege 2013, I: §§5, 6,
12).

The second interesting property of the primitive functions f HOR,
f NEG, and f CON is that they are unable to distinguish between
taking the False as an argument, and taking a non-truth-value
as argument. We thus obtain the third sub-category of Fregean
propositional connectives:

Definition 3.8. An n-ary Fregean propositional function g is non-
Truth non-distinguishing if and only if, for any Fregean domain ∆
where |∆| ≥ 3, n-tuple:

〈α1 , α2 , . . . , αn〉 ∈ ∆
n

and:
B ⊆ {m ∈ N : 1 ≤ m ≤ n}

and δ ∈ ∆ where δ < {⊤,⊥}, we have:

g(α1 , α2 , . . . , αn) � g(β1 , β2 , . . . , βn)

where:

βi �





αi , if αi � ⊤ or i < B;

δ, if αi � ⊥ and i ∈ B;

⊥, if αi , ⊤ and α1 , ⊥ and i ∈ B.

NTND is the class of non-Truth non-distinguishing functions.

A binary non-Truth non-distinguishing propositional function
will correspond to a 3 × 3 matrix23 of the following form:

con ⊤ ⊥ other

⊤ V1 V2 V2

⊥ V3 V4 V4

other V3 V4 V4

where Vi ∈ {⊤,⊥} for 1 ≤ i ≤ 4. Similar comments apply to
n-ary Fregean propositional connectives and 3n-ary matrices.

Again, Frege’s primitive connectives are also in this class of
Fregean propositional connectives and, as already discussed
above, Frege’s informal semantic clauses for his primitive propo-
sitional connectives immediately entail the following:

Proposition 3.9. f HOR , f NEG , f CON ∈ NTND. (Frege 2013 I: §§5,
6, 12).

The remainder of this section will be devoted to proving that
these three classes of connectives are in fact, identical—that is:

DEF � FUSE � NTND

We shall prove this theorem via three lemmas, which explicitly
provide the following equivalent claim:

DEF ⊆ FUSE ⊆ NTND ⊆ DEF

23Which, we will emphasize one final time, is not a truth table!
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Before proving any of these “containment” claims, however,
we prove the following lemma, which, intuitively, provides
an alternative formulation of the non-Truth non-distinguishing
condition—one that will be extremely useful in what follows:

Lemma 3.10. Given any Fregean propositional functions g1 , g2 ∈

NTND, if for any:

〈α1 , α2 , . . . , αn〉 ∈ {⊤,⊥}n

we have:

g1(α1 , α2 , . . . , αn) � g2(α1 , α2 , . . . , αn)

then, given any Fregean domain ∆ and any:

〈β1 , β2 , . . . , βn〉 ∈ ∆
n

we have:

g1(β1 , β2 , . . . , βn) � g2(β1 , β2 , . . . , βn)

Proof. Assume g1, g2 are such that, that for any:

〈α1 , α2 , . . . , αn〉 ∈ {⊤,⊥}n

we have:

g1(α1 , α2 , . . . , αn) � g2(α1 , α2 , . . . , αn)

Let ∆ be any Fregean domain, and:

〈β1 , β2 , . . . , βn〉 ∈ ∆
n

For 1 ≤ i ≤ n, let:

δi �

{
βi , if β1 � ⊤ or βi � ⊥;

⊥, otherwise.

Then, since g1 and g2 are non-truth non-distinguishing, we have:

g1(β1 , β2 , . . . , βn) � g1(δ1 , δ2 , . . . , δn)

� g2(δ1 , δ2 , . . . , δn)

� g2(β1 , β2 , . . . , βn).

We can now prove the first of the three ingredients for our
theorem:

Lemma 3.11. DEF ⊆ FUSE

Proof. Assume g is an n-ary Fregean propositional function such
that g ∈ DEF. Let g∗ be the n-ary function obtained by replacing
each instance of f NEG(β) with:

f HOR( f NEG( f HOR(β)))

and each occurrence of f CON(β, δ) with:

f HOR( f CON( f HOR(β), f HOR(δ)))

in the definition of g. Then, by Proposition 3.7, we have, for any
Fregean domain ∆ and 〈α1 , α2 , . . . , αn〉 ∈ ∆

n :

g(α1 , α2 , . . . , αn) � g∗(α1 , α2 , . . . , αn)

The construction of g∗ provides an n-ary function h such that:

f HOR(h( f HOR(α1), f HOR(α2), . . . , f HOR(αn))) � g∗(α1 , α2 , . . . , αn)

Given any Fregean domain ∆, let:

〈α1 , α2 , . . . , αn〉 ∈ ∆
n

B ⊆ {m ∈ N : 1 ≤ m ≤ n}

and (1 ≤ i ≤ n):

βi �

{
f HOR(αi), if i ∈ B;

αi , if i < B.
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Then, by Proposition 3.7:

g(α1 , α2 , . . . , αn) � g∗(α1 , α2 , . . . , αn)

� f HOR(h( f HOR(α1), f HOR(α2), . . . , f HOR(αn)))

� f HOR( f HOR(h( f HOR(α1), f HOR(α2), . . . , f HOR(αn))))

� f HOR(g
∗(α1 , α2 , . . . , αn))

� f HOR(g(α1 , α2 , . . . , αn))

g(α1 , α2 , . . . , αn) � g∗(α1 , α2 , . . . , αn)

� f HOR(h( f HOR(α1), f HOR(α2), . . . , f HOR(αn)))

� f HOR(h( f HOR(β1), f HOR(β2), . . . , f HOR(βn)))

� g∗(β1 , β2 , . . . , βn)

� g(β1 , β2 , . . . , βn)

g(α1 , α2 , . . . , αn) � g∗(α1 , α2 , . . . , αn)

� f HOR(h( f HOR(α1), f HOR(α2), . . . , f HOR(αn)))

� f HOR( f HOR(h( f HOR(α1), f HOR(α2), . . . , f HOR(αn))))

� f HOR( f HOR(h( f HOR(β1), f HOR(β2), . . . , f HOR(βn))))

� f HOR(g
∗(β1 , β2 , . . . , βn))

� f HOR(g(β1 , β2 , . . . , βn))

Hence, g ∈ FUSE.

The second ingredient is obtained as follows:

Lemma 3.12. FUSE ⊆ NTND

Proof. Assume g is an n-ary Fregean propositional function such
that g ∈ FUSE. Let ∆ be any Fregean domain where |∆| ≥ 3,
n-tuple:

〈α1 , α2 , . . . , αn〉 ∈ ∆
n

and:
B ⊆ {m ∈ N : 1 ≤ m ≤ n}

and δ ∈ ∆ such that δ , ⊤ and δ , ⊥, where:

βi �





αi , if αi � ⊤ or i < B;

δ, if αi � ⊥ and i ∈ B;

⊥, if αi , ⊤ and α1 , ⊥ and i ∈ B.

Let:

δ∗i �

{
f HOR(αi) � ⊥, if αi , ⊤ and α1 , ⊥ and i ∈ B;

αi , otherwise.

Since g ∈ FUSE, we have:

g(α1 , α2 , . . . , αn) � g(δ∗1 , δ
∗
2 , . . . , δ

∗
n)

Let:

δ∗∗i �

{
f HOR(βi) � ⊥, if βi � δ and i ∈ B;

αi , otherwise.

Since g ∈ FUSE, we have:

g(β1 , β2 , . . . , βn) � g(δ∗∗1 , δ
∗∗
2 , . . . , δ

∗∗
n )

But (1 ≤ i ≤ n):

δ∗i � δ
∗∗
i

So:

g(α1 , α2 , . . . , αn) � g(β1 , β2 , . . . , βn)

Thus g ∈ NTND.

The following provides the third and final ingredient:

Lemma 3.13. NTND ⊆ DEF
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Proof. Assume g is an n-ary Fregean propositional function such
that g ∈ NTND. The fact that the contemporary classical pair
of connectives {→,¬} is expressively complete for the classical
propositional connectives is folklore. It follows that there is a
function h ∈ DEF such that g and h agree on {⊤,⊥}n . By Lemma

3.11 and Lemma 3.12, we know that DEF ⊆ NTND, so h ∈ NTND.
By Lemma 3.10, we know that h is the unique24 function in NTND

that agrees with g on {⊤,⊥}n—hence for any Fregean domain
∆ and 〈α1 , α2 , . . . , αn〉 ∈ ∆

n :

g(α1 , α2 , . . . , αn) � h(α1 , α2 , . . . , αn)

Thus, g ∈ DEF.

This completes the circle:

Theorem 3.14. DEF � FUSE � NTND

Proof. Immediate from Lemmas 3.11, 3.12 and 3.13.

Thus, the primitive propositional connectives of the Grundge-
setze provide a system of propositional logic that can be char-
acterized in three ways. We have not yet determined, however,
whether DEF (� FUSE � NTND) is identical to the class of all
Fregean propositional connectives FPC. A negative answer to
this question will be obtained as a corollary to the results of the
next section.

4. An Alternative “Fregean” System

In the previous sections we made much of the fact that, when
defining the primitive propositional connectives of Grundgesetze,
Frege divides possible arguments into two kinds: the True, and

24For the reader interested in proving these results in a non-extensional
context: Here h would not necessarily be unique, but would be one of a class
of extensionally equivalent such functions. The proof would proceed along
the same lines otherwise.

those objects that are not identical to the True. This is not the
only way that Frege could have proceeded, however. Instead,
he could have defined versions of the horizontal, negation, and
the conditional based, not on the distinction between the True
and the non-True, but on the distinction between the non-False
and the False.

There is a simple way to see how such an account would pro-
ceed. We need merely reformulate Frege’s informal descriptions
of the semantics of each of the connectives, uniformly replacing
“the True” with “not the False” and “not the True” with “the
False” in the description of the arguments to be plugged into the
connectives. Note that we make no alterations to the description
of the outputs that result, since, in order to be a propositional
connective at all, the output of each such function must be a
truth-value.

If we apply this transformation to the description of the hor-
izontal provided by Frege in §5 of Grundgesetze, we obtain the
following:

I regard it as a function-name such that:

∆

is the True when ∆ is not the False, and is the False when ∆ is the
False.

The following table summarizes the logical behavior of this al-
ternative horizontal, which we represent as “ f Alt

HOR
”:

α f Alt

HOR
(α)

⊤ ⊤

⊥ ⊥

other ⊤

Applying the transformation to (our paraphrase of) Frege’s ex-
plication of negation provides:
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Negation is a function-name such that:

∆

is the True when ∆ is the False, and is the False when ∆ is not the
False.

We shall use “ f Alt

NEG
” to represent this propositional function.

The table for this alternative version of negation is:

α f Alt

NEG
(α)

⊤ ⊥

⊥ ⊤

other ⊥

Finally, applying the transformation to Frege’s informal descrip-
tion of the semantics of the conditional gives:

I introduce the function with two arguments:

ξ
ζ

by means of the specification that its value shall be the False if any
object that is not the False is taken as the ζ argument, while the
False is taken as the ξ-argument; that in all other cases the value
of the function shall be the True.

This propositional connective that results, which we shall write
as “ f Alt

CON
”, has the following table:

f Alt

CON
⊤ ⊥ other

⊤ ⊤ ⊥ ⊤

⊥ ⊤ ⊤ ⊤

other ⊤ ⊥ ⊤

We note the (obvious) fact that these new connectives are, in
fact, Fregean propositional connectives:

Proposition 4.1. f Alt

HOR
, f Alt

NEG
, f Alt

CON
∈ FPC.

Before moving on to investigate these alternate versions of
Frege’s connnectives, it is worth noting that Frege’s choice of
f HOR, f NEG and f CON, rather than f Alt

HOR
, f Alt

NEG
and f Alt

CON
(or any-

thing else), is far from arbitrary. Given his primary purpose in
formulating the logic of Grundgesetze—to provide gapless proofs
of the truth of the axioms of arithmetic and real (and complex?)
analysis within a formal logic—connectives that distinguish be-
tween the True and everything else make sense. After all, within
a logic based on the alternative connectives just introduced, the
provability of:

f Alt

HOR
(α)

would not imply that α is the True (i.e., intuitively, that α “ex-
pressed” something true), but merely that α is not the False.
Such a result would be relatively useless for Frege’s purposes.
Thus, the reader should not take the attention lavished on these
alternative connectives as meant to suggest that they were an ac-
tual alternative to the primitive propositional connectives used
by Frege in constructing the theorems of Grundgesetze.

Nevertheless, the fact that these alternative connectives are not
of much use when attempting to demonstrate that certain claims
are true (i.e. that particular names are names of the True) does
not entail that the alternative connectives do not play any explicit
role in Grundgesetze. On the contrary, in §10 of Grundgesetze,
immediately after the notorious permutation argument, and as
part of the preliminary results leading to his flawed proof (in
§§30–31) that every expression of the language of Grundgesetze
has a reference, Frege identifies the True and the False with
particular value-ranges:

Thus, without contradicting our equating ‘–εΦ(ε) �
–εΨ(ε)’ with

‘ a Φ(a) � Ψ(a)’, it is always possible to determine that an arbi-
trary value-range be the True and another arbitrary value-range be
the False. Let us therefore stipulate that –ε( ε) be the True and
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that –ε(ε � ( a
a � a)) be the False. –ε( ε) is the value-range

of the function ξ, whose value is the True only if the argument
is the True, and whose value is the False for all other arguments.
(Frege 2013, I: §10)

Put a bit more formally, Frege is stipulating that the following
identities are to hold (even if these identities are never officially
codified as Basic Laws):

⊤ �
–ε( ε)

⊥ �
–ε(ε � ( a

a � a))

Note that “ a
a � a” is just a convenient name of the False.

Thus, Frege identifies the True with the value-range of the con-
cept that holds solely of the True (loosely speaking, with the
singleton of the True), and identifies the False with the value-
range of the concept that holds solely of the False (again, loosely
speaking, with the singleton of the False). Now, the value-range
identified with the False is not identical with the value range
of Frege’s primitive negation—that is, with –ε( ε) or, in our
notation, –ε( f NEG(ε))—since Frege’s primitive negation outputs
the True not only for the False as input, but also for any non-
truth-value as input. Interestingly, however, this value-range
is identical to the value-range of our alternative negation—that
is:25

–ε( f Alt

NEG
(ε)) � –ε(ε � ( a

a � a))

and we can reformulate Frege’s identities as:26

25Frege’s definition, in effect, of f Alt

NEG
(ξ) as ξ � ( a

a � a), with its
explicit usage of negation, foreshadows Proposition 4.13 and Theorem 6.9,
which state that f Alt

HOR
, f Alt

NEG
, and f Alt

CON
are not definable in terms of f HOR,

f NEG, and f CON, but are definable in terms of f HOR, f NEG, f CON, and f�.
26Note that even if, on a non-extensional reading of Frege’s functions, ξ �

( a
a � a) and f Alt

NEG
(ξ) are not the same function, they nevertheless have

the same value-range since:

e ((e � ( a
a � a)) � f Alt

NEG
(e))

⊤ �
–ε( f HOR(ε))

⊥ �
–ε( f Alt

NEG
(ε))

Thus, although it does not play the role of negation in the
propositional reasoning found within Grundgesetze—this role
is reserved for f NEG—our alternative negation f Alt

NEG
does play a

rather striking role within Frege’s metatheoretic justification of
his logic. Although we take the alternative connectives to be of
inherent and independent interest in the context of Frege’s logic,
for reasons that will shortly be apparent, we take this center-
stage appearance of the alternative negation f Alt

NEG
to provide

further justification for exploring these additional connectives.
As we shall see, these alternative connectives are definable

within Grundgesetze, although they are not definable in terms
of Frege’s primitive propositional connectives f HOR, f NEG and
f CON. In addition, examining the alternative connectives f Alt

HOR
,

f Alt

NEG
and f Alt

CON
in some detail will provide us with a rather ele-

gant means to present the expressive completeness results in §5
and §6 below. In short, although there are reasons why Frege
did not, and should not, have used these alternative connectives
as primitive connectives used for the primary reasoning within
Grundgesetze, he does use them (at least one of them), and, in
addition, a careful examination of these alternative notions will
provide a number of insights into the logical properties of the
primitive propositional connectives that do appear in Grundge-
setze.

Now that we have these alternative Fregean propositional con-
nectives to hand, we can formulate three classes of connectives
that are related to these connectives in the same way that DEF,
NTND, and FUSE are related to f HOR, f NEG and f CON. We begin
with the class of connectives definable in terms of f Alt

HOR
, f Alt

NEG

and f Alt

CON
:

Definition 4.2. An n-ary Fregean propositional function g is an
alternative Fregean definable function if and only if g is definable
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in terms of:

f Alt

HOR
, f Alt

NEG
, and f Alt

CON

DEF
Alt is the class of alternative Fregean definable functions.

Obviously:

Proposition 4.3. f Alt

HOR
, f Alt

NEG
, f Alt

CON
∈ DEF

Alt.

Likewise, we have an alternative notion of horizontal fusion, ob-
tained by considering those Fregean propositional connectives
that fuse with our new alternative horizontal f Alt

HOR
:

Definition 4.4. An n-ary Fregean propositional function g is an
alternative horizontal fusing function if and only if, for any Fregean
domain ∆, n-tuple:

〈α1 , α2 , . . . , αn〉 ∈ ∆
n

and:

B ⊆ {m ∈ N : 1 ≤ m ≤ n}

we have:

g(α1 , α2 , . . . , αn) � f Alt

HOR
(g(α1 , α2 , . . . , αn))

� g(β1 , β2 , . . . , βn)

� f Alt

HOR
(g(β1 , β2 , . . . , βn))

where:

βi �

{
f Alt

HOR
(αi), if i ∈ B;

αi , if i < B.

FUSE
Alt is the class of alternative horizontal fusing functions.

The following observation is easily verifiable, and parallels
Proposition 3.7 above:

Proposition 4.5. f Alt

HOR
, f Alt

NEG
, f Alt

CON
∈ FUSE

Alt.

Finally, and utterly unsurprisingly given how we arrived at f Alt

HOR
,

f Alt

NEG
and f Alt

CON
in the first place, we will consider the class of

Fregean propositional functions that do not distinguish between
the True and any non-truth-values:

Definition 4.6. An n-ary Fregean propositional function g is non-
Falsity non-distinguishing if and only if, for any Fregean domain ∆
where |∆| ≥ 3, n-tuple:

〈α1 , α2 , . . . , αn〉 ∈ ∆
n

and:

B ⊆ {m ∈ N : 1 ≤ m ≤ n}

and δ ∈ ∆ such that δ < {⊤,⊥} we have:

g(α1 , α2 , . . . , αn) � g(β1 , β2 , . . . , βn)

where:

βi �





αi , if αi � ⊥ or i < B;

δ, if αi � ⊤ and i ∈ B;

⊤, if αi , ⊤ and α1 , ⊥ and i ∈ B.

NFND is the class of non-Falsity non-distinguishing functions.

A binary non-Falsity non-distinguishing propositional function
will have a corresponding table of the following form:

con ⊤ ⊥ other

⊤ V1 V2 V1

⊥ V3 V4 V3

other V1 V2 V1
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where Vi ∈ {⊤,⊥} for i such that 1 ≤ i ≤ 4.27 Although we will
not work through the proofs of results analogous to those in §3
in detail (since they are extremely similar to the corresponding
proofs found in §3), we nevertheless mention (but do not prove)
a result corresponding to Lemma 3.10 for the convenience of
the reader interested in explicitly reconstructing the proofs of
results in this section:

Lemma 4.7. Given any Fregean propositional functions g1 , g2 ∈

NFND, if for any:

〈α1 , α2 , . . . , αn〉 ∈ {⊤,⊥}n

we have:

g1(α1 , α2 , . . . , αn) � g2(α1 , α2 , . . . , αn)

then, given any Fregean domain ∆ and any:

〈β1 , β2 , . . . , βn〉 ∈ ∆
n

27A question of purely technical interest: What do we get if we restrict
attention within this Fregean framework, to the class of truth-value non-
distinguishing Fregean propositional connectives, where an n-ary Fregean
propositional function g is truth-value non-distinguishing if and only if, for
any Fregean domain ∆, n-tuple:

〈α1 , α2 , . . . , αn〉 ∈ ∆
n

and:
B ⊆ {m ∈ N : 1 ≤ m ≤ n}

we have:
g(α1 , α2 , . . . , αn) � g(β1 , β2 , . . . , βn)

where:

βi �





⊤, if αi � ⊥ and i ∈ B;

⊥, if αi � ⊤ and i ∈ B;

αi , otherwise.

f OTH, which we shall introduce in the next section, is truth-value non-
distinguishing connective.

we have:
g1(β1 , β2 , . . . , βn) � g2(β1 , β2 , . . . , βn)

We now gesture at the proof that:

DEF
Alt

� FUSE
Alt

� NFND

which, similar to the proof in §3, proceeds by proving:

DEF
Alt ⊆ FUSE

Alt ⊆ NFND ⊆ DEF
Alt

Lemma 4.8. DEF
Alt ⊆ FUSE

Alt

Proof. Mirror image of the proof of Lemma 3.11. Left to the
reader.

Lemma 4.9. FUSE
Alt ⊆ NFND

Proof. Mirror image of the proof of Lemma 3.12. Left to the
reader.

Lemma 4.10. NFND ⊆ DEF
Alt

Proof. Mirror image of the proof of Lemma 3.13. Left to the
reader.

This completes the circle:

Theorem 4.11. DEF
Alt

� FUSE
Alt

� NFND

Proof. Immediate from Lemmas 4.8, 4.9 and 4.10.

Finally, we make some observations about the connections be-
tween the f Alt

HOR
, f Alt

NEG
and f Alt

CON
and Frege’s f HOR, f NEG and f CON.

First, we note that:

Proposition 4.12. f HOR , f NEG , f CON < NFND (� FUSE
Alt

�

DEF
Alt)

Proposition 4.13. f Alt

HOR
, f Alt

NEG
, f Alt

CON
< NTND (� FUSE � DEF)
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An immediate consequence is that neither DEF nor DEF
Alt is

expressively complete—that is, neither allows for the construc-
tion of all Fregean propositional connectives in FPC, or, more
succinctly:

DEF , FPC

DEF
Alt
, FPC.

In the next section we shall examine various collections of con-
nectives drawn from both DEF and DEF

Alt that are expressively
complete in this sense. Before doing so, however, the following
observation emphasizes how minimal the overlap is between
DEF and DEF

Alt, and hence how far short of expressive com-
pleteness each of these falls:

Theorem 4.14. The only connectives in FPC that are in both DEF

and DEF
Alt are the constant functions.

Proof. We will do the case for binary connectives. The gener-
alization is straightforward. Assume g ∈ DEF and g ∈ DEF

Alt.
Let:

g ⊤ ⊥ other

⊤ V1 V2 V3

⊥ V4 V5 V6

other V7 V8 V9

be the table corresponding to g. Now, since g ∈ DEF (� NTND),
we have:

V2 � V3

V4 � V7

V5 � V6 � V8 � V9

and since ∈ DEF
Alt (� NFND), we have:

V1 � V3 � V7 � V9

V2 � V8

V4 � V6

It follows that:

V1 � V2 � V3 � V4 � V5 � V6 � V7 � V8 � V9.

5. Combining the Systems

If we combine Frege’s “official” propositional connectives with
the alternative set of connectives explored in the previous sec-
tion, we obtain a language that is capable of expressing all
Fregean propositional connectives. In other words, this col-
lection of connectives is expressively complete in the following
sense:

Definition 5.1. A set of Fregean propositional connectives Σ is FPC-
expressively complete if and only if, for any Fregean propositional
connective g ∈ FPC, g is definable in terms of functions in Σ.

In fact, we do not need all six connectives in DEF ∪ DEF
Alt for

FPC-expressive completeness.
To begin, we will first determine which subsets of these six

connectives are not expressively complete in the relevant sense,
and then show that the remaining subsets are expressively com-
plete in this manner. Our first two results are immediate corol-
laries of results in the previous section, but are worth noting
explicitly:

Theorem 5.2. No subset of:

{ f HOR , f NEG , f CON}

is FPC-expressively complete.

Proof. f Alt

HOR
< NTND (� DEF).

Theorem 5.3. No subset of:

{ f Alt

HOR
, f Alt

NEG
, f Alt

CON
}

is FPC-expressively complete.
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Proof. f HOR < NFND (� DEF
Alt).

The next result is equally straightforward:

Theorem 5.4. No subset of:

{ f HOR , f Alt

HOR
, f NEG , f Alt

NEG
}

is FPC-expressively complete.

Proof. No n-ary connective, for n ≥ 2, is definable in terms of:

{ f HOR , f NEG , f Alt

HOR
, f Alt

NEG
}.

One more theorem completes the negative results:

Theorem 5.5. No subset of:

{ f HOR , f Alt

HOR
, f CON , f Alt

CON
}

is FPC-expressively complete.

Proof. Given any n-ary Fregean connective g definable in terms
of:

{ f HOR , f Alt

HOR
, f CON , f Alt

CON
}

we have g(⊤,⊤, . . .⊤) � ⊤ (by induction on the complexity of
g).

With non-FPC-expressive completeness out of the way, we can
now show that the remaining subsets of:

{ f HOR , f Alt

HOR
, f NEG , f Alt

NEG
, f CON , f Alt

CON
}

are FPC-expressively complete. First, we note that, for any α:

Proposition 5.6.

f HOR(α) � f Alt

NEG
( f CON(x , f Alt

NEG
(α)))

f Alt

HOR
(α) � f NEG( f Alt

CON
(x , f NEG(α)))

Also, negation is definable in terms of the alternative negation
and the horizontal, and the alternative negation is definable in
terms of negation and the alternative horizontal, since for any
α:

Proposition 5.7.

f NEG(α) � f Alt

NEG
( f HOR(α))

f Alt

NEG
(α) � f NEG( f Alt

HOR
(α))

The following connective, which we shall call the other connec-
tive (or f OTH), will be useful, and is definable in two ways:

f OTH(ξ) � f NEG( f CON( f NEG(ξ), f Alt

NEG
(ξ)))

� f NEG( f Alt

CON
( f NEG(ξ), f Alt

NEG
(ξ)))

The behavior of f OTH is summarized by the following table:

α f OTH(α)

⊤ ⊥

⊥ ⊥

other ⊤

Note that:28

f OTH < NTND

f OTH < NFND

Combining these results and the definition of f OTH provides the
following useful lemma:

Lemma 5.8. Given any set of Fregean connectives Σ, if either:

f NEG and f Alt

CON
are definable in terms of connectives in Σ.

or:

28 f OTH is a truth-value non-distinguishing connective—see note 27.
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f Alt

NEG
and f CON are definable in terms of connectives in Σ.

then all of:
f HOR , f Alt

HOR
, f NEG , f Alt

NEG
, f OTH

are definable in terms of connectives in Σ.

Proof. Straightforward from Propositions 5.6 and 5.7 and the
definition of f OTH.

Finally, we need to introduce some defined conjunctions and
disjunctions. Frege provides us with a recipe for both disjunc-
tion and conjunction defined in terms of (modulo our change in
notation) f NEG and f CON. For example, Frege defines disjunction
as:

fOR(ξ1 , ξ2) � f CON( f NEG(ξ1), ξ2)

(translating his treatment into the present notation, see Frege
2013, I: §12), and he defines conjunction as:

fAND(ξ1 , ξ2) � f NEG( f CON(ξ1 , f NEG(ξ2)))

(again, see Frege 2013, I: §12). The tables for Frege’s conjunction
and disjunction are:

fOR ⊤ ⊥ other

⊤ ⊤ ⊤ ⊤

⊥ ⊤ ⊥ ⊥

other ⊤ ⊥ ⊥

fAND ⊤ ⊥ other

⊤ ⊤ ⊥ ⊥

⊥ ⊥ ⊥ ⊥

other ⊥ ⊥ ⊥

In the present context, however, we will also be considering
cases where we need to define a conjunction and disjunction
in terms of f Alt

NEG
and f Alt

CON
. We can do so straightforwardly by

mimicking the structure of Frege’s definitions to arrive at:

f Alt

OR
(ξ1 , ξ2) � f Alt

CON
( f Alt

NEG
(ξ1), ξ2)

f Alt

AND
(ξ1 , ξ2) � f Alt

NEG
( f Alt

CON
(ξ1 , f Alt

NEG
(ξ2)))

The tables for these connectives are:

f Alt

OR
⊤ ⊥ other

⊤ ⊤ ⊤ ⊤

⊥ ⊤ ⊥ ⊤

other ⊤ ⊤ ⊤

f Alt

AND
⊤ ⊥ other

⊤ ⊤ ⊥ ⊤

⊥ ⊥ ⊥ ⊥

other ⊤ ⊥ ⊤

respectively. As we would expect, all of fOR, f Alt

OR
, fAND, or f Alt

AND

are associative and commutative, so we may write:29

fOR(ξ1 , ξ2 , . . . ξn−1 , ξn)

f Alt

OR
(ξ1 , ξ2 , . . . ξn−1 , ξn)

fAND(ξ1 , ξ2 , . . . ξn−1 , ξn)

f Alt

AND
(ξ1 , ξ2 , . . . ξn−1 , ξn)

for:

fOR(ξ1 , ( fOR(ξ2 , . . . fOR(ξn−1 , ξn) . . . )))

f Alt

OR
(ξ1 , ( f Alt

OR
(ξ2 , . . . f Alt

OR
(ξn−1 , ξn) . . . )))

fAND(ξ1 , ( fAND(ξ2 , . . . fAND(ξn−1 , ξn) . . . )))

f Alt

AND
(ξ1 , ( f Alt

AND
(ξ2 , . . . f Alt

AND
(ξn−1 , ξn) . . . )))

respectively, and permute the order of arguments in such ex-
pressions at will.

We are now ready to prove our main expressive completeness
results. Our two main theorems follow immediately:

Theorem 5.9. Any superset (relative to our six connectives) of:

{ f NEG , f Alt

CON
}

is FPC-expressively complete.

29Thanks are owed to a referee for pointing out a very embarrassing tech-
nical mistake hereabouts in an earlier version of this paper.
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Proof. By Lemma 5.8 above, f Alt

NEG
, f HOR and f OTH are expressible

in terms of f NEG and f Alt

CON
. Additionally, f Alt

AND
, and f Alt

OR
are

defined in terms of f Alt

CON
and f NEG, so are definable as well.

Assume g is an n-ary function in FPC. Let α be any object not in
{⊤,⊥}. Then, for any n-tuple S � 〈v1 , v2 , . . . vn〉 ∈ {⊤,⊥, α}n ,
let:

ΦS � f Alt

AND
(β1 , β2 , . . . βn)

Where:

bn �





f HOR(ξn), if vn � ⊤;

f Alt

NEG
(ξn), if vn � ⊥;

f OTH(ξn), if vn � α.

Let:
h(ξ1 , ξ2 , . . . ξm) � f Alt

OR
({ΦS : g(S) � ⊤})

Then g � h.

Unsurprisingly, Theorem 5.9 has a (not-so-evil) twin:

Theorem 5.10. Any superset (relative to our six connectives) of:

{ f Alt

NEG
, f CON}

is FPC-expressively complete.

Proof. Proceed as in Theorem 5.9, replacing f Alt

OR
and f Alt

AND
with

fOR and fAND respectively.

The following are worth noting:

Corollary 5.11. Any superset (relative to our six connectives) of:

{ f HOR , f Alt

NEG
, f Alt

CON
}

is FPC-expressively complete.

Proof. By Proposition 5.7, f NEG is definable in terms of f HOR and
f Alt

NEG
. We then apply Theorem 5.9.

Corollary 5.12. Any superset (relative to our six connectives) of:

{ f Alt

HOR
, f NEG , f CON}

is FPC-expressively complete.

Proof. By Proposition 5.7, f Alt

NEG
is definable in terms of f Alt

HOR
and

f NEG. We then apply Theorem 5.10.

The previous results regarding FPC-expressive incompleteness
imply that:

{ f NEG , f Alt

CON
}

{ f Alt

NEG
, f CON}

{ f HOR , f Alt

NEG
, f Alt

CON
}

{ f Alt

HOR
, f NEG , f CON}

are minimal—that is, that no proper subset of any of these four
sets is FPC-expressively complete. The reader is encouraged to
verify (tediously) that these results exhaust all possible subsets
of:30

{ f HOR , f Alt

HOR
, f NEG , f Alt

NEG
, f CON , f Alt

CON
}

6. Adding Identity

Thus, any Fregean-style propositional logic that contains the
resources to define either f NEG and f Alt

CON
, or f Alt

NEG
and f CON,

is sufficiently expressive to represent any Fregean propositional
function. But so what? We have also shown that the set of propo-
sitional connectives Frege actually introduces—that is, f HOR,
f NEG, and f CON—are not expressively complete in this sense.

30We leave it as an exercise for the reader to determine which subsets of:

{ f HOR , f Alt

HOR
, f NEG , f Alt

NEG
, f CON , f Alt

CON
, f OTH}

are FPC-expressively complete.
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So what does any of this have to do with the actual formal logic
of Grundgesetze?

The answer to this question is simple: The formal language
developed in the Grundgesetze is, in fact, able to express every
Fregean propositional function. It is just not able to do so in
terms of the primitive propositional functions of the Grundge-
setze itself. Instead, we need to use the identity function.

To begin, let us note the following obvious fact explicitly:

Theorem 6.1. f� < FPC

Proof. Let ∆ be a Fregean domain where |∆| ≥ 4, and let α and
β be any two distinct objects in ∆ other than ⊤ and ⊥. Then
f�(α, α) � ⊤ , ⊥ � f�(α, β), violating our definition of Fregean
propositional connective.

In other words, Fregean propositional connectives, as we have
understood them here (and in accordance with what we take to
be the most natural way to understand the concept of proposi-
tional connective within Frege’s framework) cannot distinguish
between different non-truth-values. The identity function can
do so, however, so it is not a Fregean propositional connective.

The following pair of definitions make the distinction between
the class of Fregean propositional connectives definable in terms
of f HOR, f NEG, f CON and f� and the wider class of all func-
tions (propositional or not) whose ranges are {⊤,⊥} definable
in terms of this same collection explicit:

Definition 6.2. An n-ary function g is a Fregean identity-
definable function if and only if g is a function mapping n-tuples
from a Fregean domain ∆ to {⊤,⊥} and g is definable in terms of:

f HOR , f NEG , f CON and f�

DEF
Fun

�
is the class of Fregean identity-definable functions.

Definition 6.3. An n-ary function g is a Fregean identity-
definable connective if and only if g is a Fregean propositional

connective and g is definable in terms of:

f HOR , f NEG , f CON and f�

DEF
Con

�
is the class of Fregean identity-definable connectives.31

We note the following now-obvious facts:

Proposition 6.4. f HOR , f NEG , f CON , f� ∈ DEF
Fun

�

Proposition 6.5. f HOR , f NEG , f CON ∈ DEF
Con

�
.

Proposition 6.6. f� < DEF
Con

�
.

At first glance, it might look like we haven’t gained much, since
f� isn’t itself a new Fregean propositional connective not defin-
able in terms of f HOR, f NEG and f CON. But even though f� is not
a “new” propositional connective, it, in combination with f HOR,
f NEG and f CON, allows us to define propositional connectives
not definable in terms of f HOR, f NEG and f CON alone. A strik-
ing example of just such a function is provided by the “other”
connective f OTH, which played a central role in the proofs of
Theorem 5.9 and 5.10 above. f OTH is definable in terms of f HOR,
f NEG, f CON, and f�:

Proposition 6.7. f OTH(ξ) � f NEG( f�(ξ, f HOR(ξ)))

Given the definability of f OTH, however, we can apply the results
of the previous section to show that every Fregean propositional
function is definable in terms of f HOR, f NEG, f CON, and f�. The
key is to note that f Alt

NEG
is definable once the identity function is

in play:

31We could, of course, also investigate the alternative class of connectives
f Alt

HOR
, f Alt

NEG
, f CON, and f� (or various combinations of Alt and non-Alt con-

nectives), constructing analogous notions such as the class of connectives

DEF
Alt
�

definable in terms of the three alternative connectives and f�. Results
for such systems, analogous to those presented here for Frege’s actual notions,
are simple to obtain, but are left to the reader.
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Proposition 6.8.

f Alt

NEG
(ξ) � f NEG( f CON( f NEG(ξ), f OTH(ξ)))

Given the fact that we can define alternative negation f Alt

NEG
in

terms of f HOR, f NEG, f CON, and f�, we get the following as an
immediate consequence:

Theorem 6.9. FPC � DEF
Con

�
( DEF

Fun

�

Proof. Combine Theorem 5.10 with Propositions 6.6, 6.7 and
6.8.

Let us now return to our motivating question:

Question: What, exactly, is Frege’s propositional logic?

The answer, as we suggested it would be in the introduction, is
complicated.

On the one hand, Frege clearly has primitive operators that, al-
though they behave somewhat differently from modern propo-
sitional connectives (being total functions from the domain to
{⊤,⊥}, for example), are clearly best thought of as genuine
propositional connectives. His primitive operators f HOR, f NEG,
and f CON are the paradigm examples, as are any propositional
connectives definable in terms of these three notions (i.e. all
propositional connectives in DEF). There is no doubt that Frege’s
deductive system allows us to manipulate these notions in com-
plex and subtle ways. Further, there can be no doubt that, in
formulating the logic of Grundgesetze, Frege must have carefully
considered the manner in which these propositional operators
behave. So in this sense, there is a simple and obvious case to
be made for the claim that the propositional logic of Grundge-
setze is the subsystem of Grundgesetze containing the horizontal,
negation, and the conditional stroke (and nothing else).32

32It is also worth noting that Frege provides a “separable”, deductively
complete proof system for the DEF subsystem consisting of his propositional

On the other hand, a slightly different perspective provides
a somewhat different answer. If we are asking whether the
logic of the Grundgesetze contains a separable subsystem that
encompasses exactly the propositional core of the system, and
we understand that core as encompassing all and only those
functions that (i) map objects to truth-values and (ii) cannot
distinguish between distinct non-truth-values (i.e. exactly the
Fregean propositional connectives FPC � DEF

CON

�
), then the re-

sults developed above show that Frege’s propositional logic, on
this understanding, outstrips DEF and is not separable in the
sense explicated above. Frege’s system does allow us to express
every Fregean propositional connective, but in order to do so we
must make use of notions that go beyond the primitive propo-
sitional connectives themselves, using notions ( f� in particular)
that are not themselves Fregean propositional connectives. In
short, on this understanding of propositional logic, Frege does
not explicitly identify propositional logic as a significant and
separate subsystem of the logic of Grundgesetze, and he could
not have done so in principle, since propositional logic (on this
understanding) is, as a matter of mathematical fact, not a sepa-
rate or separable subsystem given the primitives he chose for his
system. Simply put, on this reading there is no sub-collection
of the primitive notions of Grundgesetze such that the functions
definable in terms of that set are exactly FPC.

The reader might object at this point that this second per-
spective seems worryingly anachronistic. Why should we care
if Frege could isolate something that looks like modern propo-
sitional logic within his system? After all, the subsystem of
propositional logic obtained by restricting attention to f HOR,
f NEG, and f CON obviously plays a central role in Frege’s system,

rules of inference and Basic Law I. See, e.g., Landini (2012) for discussion.
We plan to present a detailed examination of, and comparison between, the
deductive theories corresponding to DEF and DEF

Con
�

in a sequel to the present
paper.
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since it consists of exactly those connectives that fuse with f HOR,
which itself plays a special role in terms of both the formulation
of, and the assertion of, axioms and theorems within the logic
of Grundgesetze. For example, the horizontal plays an essential
role in the statement of Basic Law IV—see the discussion in the
next section. In addition, Frege claims in §6 of Grundgesetze
that the judgement stroke is composed of two symbols: a hor-
izontal and the vertical assertion stroke proper.33 Why worry
about whether or not Frege’s system allows us to isolate FPC,
since it seems unlikely that Frege himself could have separated
(or would have been interested in separating) this sub-system,
given his own goals and purposes?34

Of course, the previous paragraph sets up a bit of a straw man,
since there are obvious reasons why philosophers and historians
of logic might be interested in exploring technical, philosoph-
ical, and historical connections between logic as it is currently
understood and the logical systems that lie at the historical ori-
gin of modern formal logic.35 But setting the worry up in this
way allows us to raise another kind of question. While it is
quite right that Frege would have been more interested in the
class of functions that are definable in terms of his primitive
notions f HOR, f NEG, and f CON than in the more general (but not
separable) class of all Fregean propositional connectives FPC, he
would also quite naturally have been interested in all those func-
tions definable in terms of his three propositional connectives

33It is interesting to compare this claim to superficially similar claims about
the connection between the horizontal and the other connectives (and the
concavity), which are phrased in terms of our being permitted to “regard” the
connective in a certain way.

34A version of this worry was first brought to our attention by David Taylor,
and §8 exists in great part because of his pressing this issue and related
worries. Thanks are due to him for raising the questions addressed here and
in §8, although any dissatisfaction with our discussion should be blamed on
the authors, and not on David.

35In addition, recall the (non-inferential) role that f Alt

NEG
plays in §10 of

Grundgesetze.

plus f�, since this is another sub-system of Grundgesetze that is
easily isolated from Frege’s higher-order, value-range-involving
logic as a whole. Thus, we will conclude the paper by making
some observations regarding what, exactly, one gets when one
considers the entire system obtained via f HOR, f NEG, f CON, and
f�.

Before doing so, however, we shall take a slight detour, making
some observations regarding the role of the identity function
within the Grundgesetze and in particular its use as an analogue
for the material biconditional.

7. Identity and Biconditionality

Frege scholars often note that, given Frege’s understanding of
sentences as names of truth-values, the binary identity function
f� plays a dual role: it is used by Frege to express both that
two objects are identical and that two sentences are materially
equivalent (since on Frege’s understanding two sentences will be
materially equivalent if and only if they name the same truth-
value).36 For example, in previous work one of the authors
described Frege’s use of the identity function as follows:

As a result, within the formalism of Grundgesetze the equality-
sign plays (to modern eyes) two distinct roles. When attached to
proper names generally, it provides the truth-value of the claim
that those names are names of the same object. When attached
to truth-value-names, however, it provides the truth-value of the

36We should clearly distinguish between a sentence—that is, a name of a
truth-value—and an assertion—that is, an expression that manifests a judge-
ment. An assertion (or, in Grundgesetze, a concept-script proposition, see §26) is
the result of prefixing a sentence with the judgement stroke , and assertions
express the content of judgements on Frege’s account. Some scholars prefer
to reserve the term “sentence” for what we are here calling assertions, but
this is merely a terminological matter upon which nothing substantial hinges
(assuming that we are clear and consistent with respect to how we are using
these terms).
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claim that those truth-value names denote the same truth-value—
that is, it plays something analogous to the role of the material
biconditional within modern logical calculi. Of course, on Frege’s
understanding these are not really two separate tasks. Rather, the
biconditional reading of the equality sign is merely just a special
case of the more general “identity” reading. (Cook 2013, A12)

This is certainly right as far as it goes: whenever Frege is inter-
ested in expressing that two sentences are materially equivalent,
he expresses this in terms of identity. A simple example is given
by any instance of Basic Law IV. If α and β are names of any
object then Basic Law IV provides:37

( α) � ( β)
( α) � ( β)

But, as we have already emphasized above, the binary identity
function is not a Fregean propositional connective, since it can
distinguish between non-truth-values (something no genuine
propositional connective can do). Of course, with respect to
Frege’s actual constructions, this does not matter, since Frege is
careful throughout Grundgesetze to use identity as an analogue
of the biconditional only in those contexts when both arguments
are guaranteed to be truth-value names (i.e. genuine sentences,
and not names of non-truth-values). Note, for example, his
careful insertion of horizontals in Basic Law IV above. The
analogous “law” without the horizontals guaranteeing that the
arguments flanking the identity symbols are truth-values—that
is:

a � b
a � ( b)

is invalid:38 just let a and b be any two distinct non-truth-values,
and the subcomponent is true, while the supercomponent is

37Note that, if α is an object, then α is a truth-value, and hence “ α”
is a sentence (as is “ α”).

38Interestingly, the analogue of this formula might be valid within the logic
of Begriffsschrift, since it seems that in Begriffsschrift, unlike Grundgesetze, iden-

false.39 Nevertheless, it is worth examining whether Grundge-
setze is able to express something like a “true” biconditional, and
if so, why Frege did not use such a construction when formu-
lating the laws of the formal system contained therein. The first
task involved in answering this question is to determine what,
exactly, might count as an analogue of the modern material bi-
conditional within Frege’s framework.

If the biconditional is to be a binary Fregean propositional con-
nective (and surely it must be such), then it will be expressible
as a 3× 3 matrix similar to those given above for the conditional
and the various constructed conjunctions and disjunctions. Fur-
ther, it seems like the following two principles must hold of any
binary connective worthy of the label “biconditional”:

1. If a binary function g is a material biconditional, then, if α is
a truth-value, then g(α, α) � ⊤.

2. If a binary function g is a material biconditional, then, if α
is a truth-value, and β is any object distinct from α, then
g(α, β) � g(β, α) � ⊥.

These two principles do not, however, isolate a single Fregean
propositional connective. Instead, there are two distinct Fregean
propositional connectives that satisfy (1) and (2), which we shall

tity (strictly speaking, identity of content ≡) is intersubstitutable with the
conjunction of two conditionals. See note 11.

39Another way of putting this point is as follows: The identity function
“fuses” with external applications of the horizontal—that is, for all x , y:

f�(ξ1 , ξ2) � f HOR( f�(ξ1 , ξ2))

but does not fuse with “internal” applications of the horizontal—that is, none
of:

f�(ξ1 , ξ2) � f�( f HOR(ξ1), ξ2)

f�(ξ1 , ξ2) � f�(ξ1 , f HOR(ξ2))

f�(ξ1 , ξ2) � f�( f HOR(ξ1), f HOR(ξ2))

are true.
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call f BIC1
and f BIC2

:

f BIC1
⊤ ⊥ other

⊤ ⊤ ⊥ ⊥

⊥ ⊥ ⊤ ⊥

other ⊥ ⊥ ⊤

f BIC2
⊤ ⊥ other

⊤ ⊤ ⊥ ⊥

⊥ ⊥ ⊤ ⊥

other ⊥ ⊥ ⊥

The difference between the two lies in how they handle argu-
ment pairs where both arguments are non-truth-values. f BIC1

maps such pairs to the True, whereas f BIC2
maps such pairs to

the False. In short, the difference between f BIC1
and f BIC2

de-
pends on how far “down” the diagonal of “⊤”s should extend.

Fortunately, for our purposes we need not settle on one or
the other of these as the “correct” understanding of the bi-
conditional (understood as a genuine propositional connective)
within the context of Grundgesetze. Instead, the observations we
wish to make apply to both.

First, it is worth noting that neither of these biconditionals is
definable in terms of the horizontal, negation, and the condi-
tional:40

Theorem 7.1. f BIC1
< DEF, f BIC2

< DEF.

Proof. f BIC1
< NTND (� DEF), f BIC2

< NTND (� DEF).

At first glance this might seem odd, since, as we have already
discussed, Frege does provide an explicit definition of conjunc-
tion in terms of the conditional and negation. As a result, surely
we can construct an adequate biconditional merely by following
the familiar recipe:

Φ ≡ Ψ �df (Φ→ Ψ) ∧ (Ψ→ Φ)

40Via similar reasoning, neither f BIC1
nor f BIC1

is definable in terms of

f Alt

HOR
, f Alt

NEG
, and f Alt

CON
.

That is, we can construct a biconditional within Grundgesetze
as:41

∆ ≡Grund Γ �df ∆

Γ

Γ

∆

This connective—which we shall now represent as “ f≡”—
corresponds to the following table:

f≡ ⊤ ⊥ other

⊤ ⊤ ⊥ ⊥

⊥ ⊥ ⊤ ⊤

other ⊥ ⊤ ⊤

and is not equivalent to either f BIC1
or f BIC2

. In particular, it
fails to satisfy the second of the two desiderata given above for
a genuine biconditional.

Of course, both of f BIC1
and f BIC2

are expressible in terms of
negation, the horizontal, the conditional, and identity. Theo-

rem 6.9 above guarantees this.42 Thus, either of these proposi-
tional connectives ( f BIC1

and f BIC2
) are expressible in terms of the

resources contained in Grundgesetze, but neither is expressible
solely in terms of the primitive propositional connectives given
in Grundgesetze. Thus, we have an additional, natural exam-
ple (actually, two such examples) of the expressive limitations
of the propositional connectives that are explicitly contained in
Grundgesetze—that is, f HOR, f NEG, and f CON.

A final question remains: If Frege had these, in some sense
“better”, versions of the biconditional at his disposal (even if

41The occurrence of “Grund” in the offset formula is intended to emphasize
that this version of the biconditional is not the conceptual identity relation
found in Begriffsschrift.

42We leave it to the reader to construct explicit definitions of f BIC1
and f BIC2

in terms of f NEG, f CON, and f� via following the recipe implicit in the proof
of Theorem 5.9.
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he had to move beyond the purely propositional resources of
Grundgesetze in order to formulate them) then why did he not
make use of them—that is, why did he not formulate his Basic
Laws in terms of f BIC1

or f BIC2
?

The answer to this question is simple, straightforward, and
somewhat obvious: Given the primitives that are present in
the logic of Grundgesetze, the constructions of f BIC1

and f BIC2

are complicated. Furthermore, for Frege’s purposes, he did not
need either of these “improved” biconditionals, since he was
primarily concerned, in formulating Basic Laws and theorems
of Grundgesetze, in expressing biconditionals that hold between
sentences—that is, between expressions of Grundgesetze that re-
fer to truth-values. And when restricted to expressions referring
to truth-values, all of the different understandings of the bicon-
ditional considered in this section are equivalent. In short, we
do have the following:

Theorem 7.2. For any ∆ such that |∆| ≥ 4, and any distinct propo-
sitional functions:

g , h ∈ { f� , f≡ , f BIC1
, f BIC2

}

there are α, β ∈ ∆ such that:

g(α, β) , h(α, β)

Proof. Straightforward application of facts informally discussed
above.

The practical import of Theorem 7.2 for Frege’s project is blunted
by the next result, however:

Theorem 7.3. For any ∆, and any propositional function:

g , h ∈ { f� , f BIC1
, f BIC2

}

and any α, β ∈ ∆:

g( f HOR(α), f HOR(β)) � h( f HOR(α), f HOR(β)) � f≡(α, β)

Proof. Straightforward application of facts informally discussed
above.

As we have already noted in our brief discussion of Basic Law IV
above, Frege in effect applies this result when formulating the
Basic Laws governing propositional logic via judicious insertion
of horizontals. Thus, he had no real need to utilize the “better”
biconditionals f BIC1

and f BIC2
.

8. Identity and Logical Permutations

Now that we have looked at Frege’s use of the identity function
f� in more detail, our final task is to characterize the class of
functions that are definable in terms of Frege’s primitive propo-
sitional connectives and identity. Before proving a bunch of
theorems, it is worth noting that the system obtained by con-
sidering all functions definable in terms of f HOR, f NEG, f CON,
and f� is not only inherently interesting, but would have been
interesting to Frege himself. The reason is simple: These four
functions are the only primitive first-level functions (i.e. func-
tions mapping objects to objects) that appear in Grundgesetze
whose behavior is independent of value-ranges.

Frege does have one additional primitive first-level function—
the backslash “K”. But this function—what one of us has else-
where (Cook 2013) called the “singletons stripping operator”—
treats inputs differently depending on whether or not they are
value-ranges.43 Thus, although the backslash is a first-level func-
tion, the intended use of this function requires that one apply
it to a complex expression that involves second-level functions
(the value-range operator in particular). Hence the use of the
backslash K within Grundgesetze is tied to second-level functions
in a manner in which f HOR, f NEG, f CON, and f� are not.

43In particular, K(x) is y if x is the value range of the concept that holds
solely of y, and is x itself otherwise.
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Thus, our final task is to provide a characterization of DEF
FUN

�
.

As before, we will freely use contemporary ideas and techniques
to characterize this class of functions. What is particularly inter-
esting is that DEF� is straightforwardly characterizable in terms
of a notion that would have been rather alien to Frege, but which
plays a central role in debates about the nature of logic and log-
ical operations today—permutation invariance.44

A permutation is any function that maps a domain one-to-one
onto itself. The idea underlying the role that permutation invari-
ance plays in modern debates regarding logicality is that logic is
topic-neutral in some sense—that is, logic does not “care” about
the particular identity of the objects to which it is applied—and
hence anything that holds as a matter of logic should also hold if
one “permutes” the domain. In the results that follow we shall
apply a version of this idea, but with one significant modifica-
tion: if we are working with the logic of Frege’s Grundgesetze,
and hence with Fregean domains as defined above, which con-
tain the logical objects ⊤ and ⊥, then presumably this logic does
“care” about the identity of at least these two objects (and fur-
ther, logic “cares” about non-identities between either of these
objects and any non-truth-value). As a result, we will not mobi-
lize the full notion of permutations on Fregean domains, but will
instead focus on permutations that leave the truth-values fixed.
In short, we shall be concerned here with logical permutations:

Definition 8.1. Given a Fregean domain ∆, a unary function π is a
logical permutation on ∆ if and only if π is a permutation on ∆ and:

π(⊤) � ⊤

π(⊥) � ⊥

We can now define a “new” class of functions:

44For representative examples of discussions of logicality involving per-
mutation invariance, see Tarski (1936), Sher (2008), and Bonnay (2008). For
recent examinations of permutation invariance and related notions within the
neo-logicist literature, see Fine (2002), Antonelli (2010), and Cook (2017).

Definition 8.2. An n-ary function g is a logically invariant logical
function if and only if g is a function mapping n-tuples from a Fregean
domain ∆ to {⊤,⊥} and, for any logical permutation π on ∆:

g(ξ1 , ξ2 . . . ξn) � g(π(ξ1), π(ξ2), . . . π(ξn))

LINV is the class of logically invariant logical functions.

We now prove that the functions definable in terms of f HOR,
f NEG, f CON, and f�, (i.e., the functions in DEF

Fun

�
) are exactly

the logically invariant semantic functions. One direction of the
proof is easy:

Lemma 8.3. DEF
Fun

�
⊆ LINV

Proof. Straightforward induction on the length of formulas, left
to the reader.

Proving the converse, however, takes a bit more work. First, a
definition:

Definition 8.4. Given a Fregean domain∆ and two n-tuples of objects:

σ1 � 〈α1 , α2 . . . αn〉 ∈ ∆
n

σ2 � 〈β1 , β2 . . . βn〉 ∈ ∆
n

σ1 is invariantly equivalent to σ2 (i.e. σ1 ≡IE σ2) if and only if:

1. For any k such that 1 ≤ k ≤ n, αk � ⊤ if and only if βk � ⊤.
2. For any k such that 1 ≤ k ≤ n, αk � ⊥ if and only if βk � ⊥.
3. For any k , j such that 1 ≤ k < j ≤ n, αk � α j if and only if
βk � β j .

[σ1]IE � {σ2 : σ2 ≡IE σ1}

Simply put, two n-tuples of objects from a Fregean domain
∆ are invariantly equivalent just in case they have ⊤s and ⊥s in
the same positions, and one of them contains the same object in
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two distinct positions if and only if the other contains the same
object in those same two positions (but note that the object that
occurs in those spots in the first n-tuple need not itself be the
same object that inhabits those two spots in the second n-tuple
if the objects in question are not truth-values). We leave it to the
reader to verify that, given any Fregean domain ∆ and any finite
n, invariant equivalence is an equivalence relation on n-tuples,
and hence the [ξ]IEs are equivalence classes. Next up is a crucial
lemma:

Lemma 8.5. Given any Fregean domain∆, n-tuples σ1 , σ2 ∈ ∆n such
that σ1 ≡IE σ2, and n-ary g ∈ LINV:

g(σ1) � g(σ2)

Proof. Given two n-tuples:

σ1 � 〈α1 , α2 . . . αn〉

σ2 � 〈β1 , β2 . . . βn〉

from a Fregean domain ∆ where σ1 ≡IE σ2, let π be any permu-
tation on ∆ such that:

π(αk) � βk

for any k such that 1 ≤ k ≤ n. Note that the fact that σ1 ≡IE σ2

guarantees the existence of such a permutation. Then, since
g ∈ LINV:

g(σ1) � g(α1 , α2 . . . αn)

� g(π(α1), π(α2) . . . π(αn))

� g(β1 , β2 . . . βn)

� g(σ2)

Lemma 8.6. LINV ⊆ DEF
Fun

�

Proof. Assume g ∈ LINV (g n-ary), and assume σ1 ∈ ∆n where:

σ1 � 〈α1 , α2 , . . . αn〉

For each k where 1 ≤ k ≤ n, let:

Φ〈σ1 ,k〉(ξk) �





f�(ξk , ( f�(ξk , ξk))), if αk � ⊤;

f�(ξk , f NEG(( f�(ξk , ξk)))), if αk � ⊥;

f OTH(ξk), otherwise.

and for each k , j such that 1 ≤ k < j ≤ n, let

Ψ〈σ1 ,k , j〉(ξk , ξ j) �

{
f�(ξk , ξ j), if αk � α j ;

f NEG( f�(ξk , ξ j)), if αk , α j .

Now, let:

Θσ1 � fAND(Φ〈σ1 ,1〉 ,Φ〈σ1 ,2〉 , . . .Φ〈σ1 ,n〉 ,Ψ〈σ1 ,1,2〉 ,Ψ〈σ1 ,1,3〉 , . . .

Ψ〈σ1 ,1,n〉 ,Ψ〈σ1 ,2,3〉 ,Ψ〈σ1 ,2,4〉 . . .Ψ〈σ1 ,n-1,n〉)

Note that, for all σ2 ∈ ∆n :

Θσ1(σ2) �

{
⊤, if [σ1]IE � [σ2]IE;

⊥, if [σ1]IE , [σ2]IE.

Finally, let:

h(ξ1 , ξ2 , . . . ξn) � fAND({Θσ(ξ1 , ξ2 , . . . ξn) : g(σ) � ⊤})

Then, for all σ ∈ ∆n :
h(σ) � g(σ)

and h(ξ1 , ξ2 , . . . ξn) ∈ DEF
Fun

�
.

Combining these gives us the desired characterization:

Theorem 8.7. DEF
Fun

�
� LINV
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Proof. Immediate consequence of Lemmas 8.3 and 8.6.

Thus, the functions definable in terms of Frege’s horizontal,
negation, conditional, and identity are exactly those that are
invariant under permutations of the domain that keep the True
and the False fixed.

9. Conclusion

We can sum up our results as follows: There is no single sys-
tem of Grundgesetze that exactly matches up with modern for-
mulations of propositional logic. Instead, there are (at least)
three distinct systems, corresponding to three distinct collec-
tions of connectives—DEF, FPC (� DEF

Con

�
), and DEF

Fun

�
—that

each, in their own way, capture something “propositional logic”-
like within Grundgesetze. There are a number of reasons for this
mismatch between (these sub-systems of) Frege’s logic and our
own, some of which are more well-known than others:

• The fact that Frege’s treatment of sentences as names of
truth-values allows him to equivocate, in a sense, between
identity and biconditionality (very well-known).

• The unique role that Frege’s horizontal operator, and the
fusion of horizontals, play in the formalism of Grundgesetze
(reasonably well known).

• The fact that Frege’s treatment of (first-level) logical oper-
ators as total functions from the domain to {⊤,⊥} allows
him to formulate logical notions (such as the alternative
connectives and the f OTH operator) that do not correspond
to any standard classical connectives (less well-known).

• The fact that the system obtained via considering the first-
level logical operators (including identity) has close connec-
tions to modern mobilizations of permutation invariance in
the literature on logical constants (unknown until now).

As we have already stressed, Frege would surely have been

aware of the subsystems corresponding to DEF and DEF
Fun

�

(but not necessarily that corresponding to FPC) as distinct sub-
systems of the full logic of Grundgesetze, and likely would have
been interested in the particular characteristics of each of these
systems. Thus, the results of the previous sections are impor-
tant not because they show that Frege didn’t have a propositional
logic or a precise notion of propositional logic corresponding to
one or another of these systems. Rather, they are important
because they provide a precise characterization of the two sub-
systems of Grundgesetze that Frege himself was in a position to
identify and about which he might have raised questions similar
to those asked and answered here: the system corresponding
to his primitive horizontal-fusing (equivalently, non-truth non-
distinguishing) functions f HOR, f NEG, and f CON and the system
corresponding to his primitive first level logical functions f HOR,
f NEG, f CON, and f�.45 In short, the real purpose of this paper
is not to show that Frege’s logic lacks some feature that con-
temporary formalisms enjoy, but rather to better understand the
features of Frege’s logic (and various subsystems of it) on its
own terms.

Of course, the work is far from done. In particular, the next
obvious step, which we plan to carry out in future work, is
to study the deductive systems corresponding to these various
subsystems of the logic of Grundgesetze—of particular interest
are completeness proofs for these deductive systems relative to
the informal semantics formulated in the present essay. We plan
to explore such results in a sequel.

45Recall the earlier comments about the fact that K, although a first-level
function, involves the notion of extension and hence second-level functions in
an essential way in its intended application.

Journal for the History of Analytical Philosophy vol. 5 no. 6 [33]



Acknowledgements

Thanks are owed to the participants in Roy Cook’s Frege seminar
at the University of Minnesota in Spring Semester 2015, and to
the Foundations Reading Group at the Minnesota Center for
Philosophy of Science, for useful feedback on earlier versions of
this material. Special thanks are also due to Richard Heck, Shay
Logan, David Taylor, and two anonymous referees.

Eric D. Berg
University of Chicago
edberg@uchicago.edu

Roy T. Cook
University of Minnesota
cookx432@umn.edu

References

Antonelli, G. Aldo, 2010. “Notions of Invariance for Abstraction
Principles.” Philosophia Mathematica 18: 276–92.

Benis-Sinaceur, Hourya, Marco Panza, and Gabriel Sandu, 2015.
Functions and the Generality of Logic: Reflections on Dedekind’s
and Frege’s Logicisms. Dordrecht: Springer.

Blanchette, Patricia, 2015. “Reply to Cook, Rossberg, and
Wehmeier.” Journal for the History of Analytical Philosophy 3.7:
1–13.

Bonnay, Denis, 2008. “Logicality and Invariance.” Bulletin of Sym-
bolic Logic 14: 29–68.

Cook, Roy, 2013. “How to Read Grundgesetze.” Appendix to Frege
(2013), pp. A1–A41.

, 2015. “Comments on Patricia Blanchette’s Book: Frege’s
Conception of Logic.” Journal for the History of Analytical Philoso-
phy 3.7: 1–8.

, 2017. “Abstraction and Four Kinds of Invariance: Or
What’s So Logical About Counting.” Philosophia Mathematica
25: 3–25.

Fine, Kit, 2002. The Limits of Abstraction. Oxford: Oxford Univer-
sity Press.

Frege, Gottlob, 1882–83.“Über den Zweck der Begriffsschrift.”
Sitzung der Jenaischen Gesellschaft für Medicin und Naturwis-
senschaft 16: 1–10. Translated as “On the Aim of ‘Conceptual
Notation’,” in Frege (2002), pp. 90–100.

, 2002. Conceptual Notation and Related Articles, edited and
translated by T. Bynum. Oxford: Clarendon Press.

, 2013. Grundgesetze der Arithmetik, vols. I and II, translated
by P. Ebert and M. Rossberg. Oxford: Oxford University Press.

Heck, Richard, 2012. Reading Frege’s Grundgesetze. Oxford: Ox-
ford University Press.

Landini, Gregory, 2012. Frege’s Notations: What They Are and How
They Mean. Basingstoke: Palgrave Macmillan.

Rossberg, Marcus, 2015. “Blanchette on Frege on Analysis and
Content.” Journal for the History of Analytical Philosophy 3.7:
1–11.

Schröder, Ernst, 1880. Review of Frege’s Begriffsschrift. Zeitschrift
für Mathematik und Physik 38: 90.

Sher, Gila, 2008. “Tarski’s Thesis.” In New Essays on Tarski and
Philosophy, edited by D. Patterson, pp. 300–39. Oxford: Oxford
University Press.

Tarski, Alfred, 1936. “On the Concept of Logical Consequence.”
Reprinted in Logic, Semantics, Metamathematics, 2nd ed., edited
by J. Corcoran, pp. 409–20. Indianapolis: Hackett.

Venn, John, 1880. Review of Frege’s Begriffsschift. Mind 5: 297.

Wehmeier, Kai, 2015. “Critical Remarks on Frege’s Conception of
Logic by Patricia Blanchette.” Journal for the History of Analytical
Philosophy 3.7: 1–9.

Journal for the History of Analytical Philosophy vol. 5 no. 6 [34]


	Introduction
	Frege's Grundgesetze Connectives
	Negation, Conditional, and Horizontal
	An Alternative ``Fregean'' System
	Combining the Systems
	Adding Identity
	Identity and Biconditionality
	Identity and Logical Permutations
	Conclusion

