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Research on human–robot interaction has often ignored the human cognitive 
changes that might occur when humans and robots work together to solve prob-
lems. Facilitating human–robot collaboration will require understanding how 
the collaboration functions system-wide. We present detailed examples drawn 
from a study of children and an autonomous rover, and examine how children’s 
beliefs can guide the way they interact with and learn about the robot. Our data 
suggest that better collaboration might require that robots be designed to maxi-
mize their relationship potential with specific users.
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The cognitive sciences have a long history of studying human tool use. Investiga-
tions have focused on the way experts engage with the tools in their work envi-
ronment (Hutchins, 1995), or the way students engage with tools in a learning 
environment (Van Lehn et al., 2005), to name but a few. While specific interaction 
goals may differ, the general purpose of the tool remains the same in each situa-
tion: to augment the users’ cognitive experience. Research has generally focused 
on the cognitive changes that accompany tool use. 

Robots, particularly those designed for the personal service sector, often sup-
port users both cognitively and physically, but most evaluations of human–robot 
systems fail to investigate the cognitive changes that accompany robot interactions 
(Stubbs, Bernstein, Crowley & Nourbakhsh, 2006). The difficulty of identifying 
appropriate cognitive markers for successful human–robot interactions may be 
one reason why this rarely occurs. 

In their paper entitled, “What is a human? — Toward psychological bench-
marks in the field of human–robot interaction,” Kahn et al. (2006, 2007) suggest 
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a potential solution. These authors argue that appropriate cognitive markers for 
successful human–robot interactions are those that indicate the human user is 
responding to the robot in humanlike ways. Kahn et al. have identified nine po-
tential benchmarks “that capture conceptually fundamental aspects of human life” 
(2006, p. 365), and would thus indicate that the user is thinking about the robot 
as humanlike and responding in kind. The benchmarks are autonomy, imitation, 
intrinsic moral value, moral accountability, privacy, reciprocity, conventionality, 
creativity, and authenticity of relation. These benchmarks are psychological in the 
sense that they measure what the human believes about the robot instead of the 
robot’s technical capabilities. 

The idea of employing benchmarks to measure users’ psychological beliefs 
about a robot represents an important step forward in the study of human–robot 
interaction. Psychological benchmarks bring the “human” back into focus by em-
phasizing the extent to which the human’s beliefs impact successful collaboration. 
However, we can ask whether the benchmarks previously described represent the 
only, or even the most appropriate, beliefs to bring into focus. What should a hu-
man believe about a robot to work with it more effectively? 

We take a developmental perspective on this question. Our perspective is de-
velopmental in two senses. First, using examples from a study of child–robot in-
teraction, we point out that users, even those who are novice in an absolute sense, 
already hold established and complex beliefs about robots. These beliefs can guide 
how the human interacts with robots and may need to be changed if they encour-
age non-adaptive behavior. Belief change is a developmental process in which old 
and new knowledge often struggle against each other before the new beliefs can 
take hold. Which brings us to the second sense in which our perspective is devel-
opmental. Although we present snapshots of initial child–robot encounters, we 
argue that the key to long-term successful interaction hinges on describing, under-
standing, and eventually designing to support the way that human beliefs about 
robots change in the context of ongoing collaborative relationships. 

Humanlike robots vs. robots that work with humans

What is the best way to seed successful human–robot interactions? One way is 
to create robots with human characteristics. The idea of creating humanlike ma-
chines presents a fantastic but extremely difficult challenge to robotics. Part of 
the challenge lies in simply identifying those characteristics that capture funda-
mental humanness. MacDorman and Cowley (2006) point out that some of the 
characteristics previously identified as “fundamentally human” may reflect a set of 
culturally-specific moral values rather than a universal human code. This objec-
tion underscores the difficulty of identifying benchmarks that capture the essence 
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of all human beings regardless of their socio-cultural context. Stated another way, 
“there is no such thing as a generic human being that can be used in a standardized 
benchmark” (MacDorman & Cowley, p. 379). 

We would also argue that human likeness is not a pre-requisite for a success-
ful human–robot relationship. While there is certainly evidence suggesting that 
people have successful interactions with humanoid robots (Kanda, Hirano, Ea-
ton & Ishiguro, 2004; Minato, Shimada, Ishiguro & Itakura, 2004), some of these 
research paradigms exclude nonhumanoid controls, so it is difficult to conclude 
that the humanness of the robot was essential to the successful interaction. But 
perhaps the best evidence comes from the numerous successful social robots that 
neither resemble nor imitate people (Fong, Nourbakhsh & Dautenhahn, 2002); for 
example, the robotic seal Paro has been successful in increasing social and physi-
ological functioning in the elderly (Wada & Shibata, 2006). Other examples in-
clude the robotic dog AIBO (Kahn, Freier, Friedman, Severson & Feldman, 2004) 
and even the Roomba robotic vacuum cleaner (Forlizzi & DiSalvo, 2006). There 
is certainly variation in the types of relationships users can have with these tech-
nologies. The vacuum robot, for example, was sometimes viewed as a worker with 
household responsibilities, while the robot dog was seen as a playmate and com-
panion. However, in each case, users developed beliefs appropriate to the robot’s 
perceived role.

As these examples indicate, people are able to engage with intelligent tools that 
do not exhibit human characteristics. With experience people can communicate 
with technology in distinctly nonhuman ways. As creators of intelligent tutoring 
systems have recently learned, attempts to make technology more humanlike are 
not always necessary or successful. 

Intelligent tutoring systems (ITS) are artificial intelligence (AI) systems that 
construct cognitive models of students working in scaffolded problem-solving 
environments. The tutors monitor student progress and make instructional sug-
gestions based on their diagnosis of the mismatch between the student’s current 
model and the optimal instructional model. First generation tutors taught using 
a static instructional model. Second generation tutors added student modeling 
that guided instruction based on student performance. It was believed that third 
generation tutors, which would use spoken natural language to interact with stu-
dents, would make the systems more powerful because they would go beyond the 
limits of human–computer interaction and bring the tutors into the realm of hu-
man–human tutoring. The construction of third generation tutors was a massive 
technological enterprise and one that largely failed to produce improvements in 
student learning outcomes (e.g., Litman et al., 2005). 

As the ITS example shows, increasing parity between human–human inter-
actions and human–technology interactions does not necessarily result in more 
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efficient or successful systems. The positive impact of ITS was largely because of 
the task analysis and the front-end research that worked out instructional path-
ways for different content areas and then made the programs responsive to user 
input (see, for example, Van Lehn et al., 2005). In effect, intelligent tutoring sys-
tems are efficient learning environments because both the human and machine 
put in the effort required to build a working relationship and achieve a common, 
narrowly defined goal. 

In the ITS example above, the addition of a humanlike characteristic, spoken 
natural language, failed to enhance the human–technology relationship. Rather, it 
was the efforts of both the user and the technology to move towards a common 
understanding of how to work together that made the relationship valuable. A po-
tentially fruitful role of psychological benchmarks is in measuring that movement 
towards successful collaboration. We call this concept relationship potential, which 
describes the likelihood that the human and robot will build a successful collab-
orative relationship. A successful relationship will require the human to develop 
a set of beliefs about the robot that aid collaboration and will require the robot to 
clearly communicate capabilities relevant to the collaboration. 

The importance of autonomy for collaborative success 

As we think about the ways in which humans and robots can profitably work to-
gether, it may be useful to consider some of the findings that have emerged from 
the human–human collaboration literature. For example, Barron (2000) suggests 
that characteristics such as mutuality of exchanges, joint attention, and shared 
task goals are common to successful collaborative groups. Good collaboration is 
not just about doing more work faster. In studies of real world scientific projects, 
the most productive and sustained collaborations happen among scientists who 
realize they have to collaborate to solve certain problems (Schunn, Crowley, & 
Okada, 2005). The unique skills and perspectives of the different collaborators is 
what enables the successful solution. Human collaborations have a high relation-
ship potential when people share the same goals but have unique roles, when they 
can learn how to communicate effectively about the problem and solution spaces, 
when they come to respect and trust their collaborator’s responses, and when they 
begin to enjoy spending time working with their partners. In other words, good 
collaborations develop from increasingly coordinated and sophisticated exchang-
es between autonomous agents. The collaborators maintain their autonomy, but 
have become a shared system of action. Understanding why they are successful is 
not about reducing their joint work to the contributions of each. It is about under-
standing how they respond and change as a system. 
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Sebastian Thrun has argued, “human–robot interaction cannot be studied 
without consideration of a robot’s degree of autonomy, because it is a determin-
ing factor with regards to the tasks a robot can perform, and the level at which 
the interaction takes place” (2004, p. 14). Kahn et al. (2007) have suggested that 
autonomy is an important benchmark for predicting the success of human–robot 
collaborations, in the sense that a human comes to believe a robot is an autono-
mous social actor. These ways of discussing autonomy presuppose that autonomy 
is either a technical or psychological characteristic of the robot. Guided by the hu-
man–human collaboration literature, we argue for a broader notion of autonomy 
that characterizes the human–robot system and focuses analysis on both the roles 
and abilities of the individual actors and the negotiation that occurs when they are 
working together. Others have evaluated human–robot collaborations at this sys-
tem-wide level (see Fong, Nourbakhsh, & Dautenhahn, 2002), and we agree with 
the approach. If we are going to treat humans and robots as legitimate collabora-
tors, they deserve to be evaluated as a collaborative unit.

An example may help to further exemplify the approach. In their work on 
human users engaging with Roomba in their homes, Forlizzi and DiSalvo (2006; 
DiSalvo, 2006) describe several users who rearrange the furniture in particular 
rooms to allow the Roomba to clean as efficiently as possible. For example, one 
user happily arranged the furniture to create a barrier around a particularly dirty 
area so that the Roomba could clean that area with maximum efficiency. The point 
here is not that the Roomba could be an efficient cleaner by itself, but that the 
human user and the Roomba could work together to maximize the capacity of 
the system. It is of limited use for the user to think of the Roomba as a truly au-
tonomous actor. Rather, it is more helpful for the user to understand the robot’s 
autonomous capabilities well enough to use those capabilities to their maximum 
potential, thus increasing the relationship potential of the system.

In this paper we begin to develop the idea of relationship potential by exam-
ining snapshots of initial encounters between children and an autonomous ro-
bot. These data will describe how children begin to build a relationship with the 
robot through their explorations and shared experiences. We propose that such 
explorations help the user understand what kind of relationship is possible with a 
particular robot and the type of relationship the user should have with the robot 
for the human–robot system to accomplish its goals. Our examples focus primar-
ily on the children’s beliefs about the robot and how they responded to its actions. 
In the discussion, we focus on the complementary question of how robots might 
be designed to encourage more effective responses from their potential human 
collaborators. 
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Method

Sixty children between the ages of 4 and 7 were invited to interact with the per-
sonal exploration rover (PER) at a children’s museum. (The PER was located in 
a quiet room.) These children were initially recruited to participate in a study of 
their beliefs about intelligence and technology (see Bernstein & Crowley, under 
review). Afterwards, all but one child accepted our invitation to interact with the 
PER. These additional data, which are not reported in the prior article, allow us to 
explore (1) how children gain information about a robot’s autonomous capabilities 
and (2) how their beliefs shape their behavior towards the robot. In this paper, we 
frame this exploration around the issue of psychological benchmarks. 

Children’s interactions with the PER were structured only by the goal they 
were given — to get the PER to move to a rock on the opposite side of the room. 
There was no control interface available. Rather, they were encouraged to interact 
with the rover in any way they wanted to accomplish the goal. 

The PER was initially designed as part of a museum exhibit to teach the public 
about the Mars exploration rover missions and therefore bears a physical resem-
blance to the MER (see Figure 1). The PER’s camera and infrared rangefinder are 
mounted on a pan-tilt head, which stands several inches above the main body of 
the robot. For this study, the PER was run in an obstacle avoidance mode. After 

Figure 1. The Personal Exploration Rover.
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sensing an obstacle, the PER would stop and turn its head to scan its immediate 
environment for an unobstructed path. Once it found one, it would turn and move 
in that direction. If there was no clear path, the PER would stop. During forward 
motion, the PER’s head moved back and forth to simulate searching behavior. The 
PER’s camera provided a continuous video feed to a nearby laptop, which was vis-
ible to children. See Nourbaksh et al. (2006) for additional technical details.

Selecting examples

The three examples included here are intended to provide descriptive information 
about children’s explorations with a novel robot. They illustrate how children drew 
conclusions about the PER’s capabilities. The examples exhibit some of the most 
common strategies employed by children interacting with the PER: initiating fol-
lowing-finding behavior (e.g., whistling, clapping hands, or standing in front of the 
rock), providing directions (pointing to the rock or waving to the robot), talking 
to the robot, and blocking the robot to trigger obstacle avoidance. These examples 
are illustrative rather than representative of the data as a whole. In addition, these 
interactions were brief and partially dictated by the robot’s capabilities, so it would 
be inappropriate to generalize from them to all child–robot interactions.

The example write-ups draw on video data of children interacting with the 
PER, and information from a parent survey of each child’s prior experience with 
robotic technologies. 

Interactions with the PER

Elizabeth

Elizabeth,1 6 years 11 months, had frequently been exposed to robotic technolo-
gies. There were a number of robotic artifacts in her house, including a Robo-
sapien, a toy dog, and some remote-control toys. The family also learned about 
robots through museum exhibits and books. While Elizabeth was interacting with 
the PER, her father reminisced about the time they made the Robosapien pet the 
robotic dog, causing the dog to spin. 

Elizabeth believes some robots and computers can have feelings: “sometimes 
when I put like a disk in, it could feel, feel the brain of the computer.” Her father 
then explained, the family had an old computer that frequently broke down. When 
it acted up, Elizabeth’s father would tell her it was “not happy.” When asked wheth-
er she thought that every computer could feel emotions, she responded, “just the 
one that we have… maybe a couple of them.”
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Elizabeth begins exploring the PER by lying down in front of it to take a closer look. 
After about 40 seconds, the experimenter asks her if she could get the PER to go to the 
rock. Elizabeth remains on the floor watching the PER. The experimenter then asks 
her what would happen if she stood in front of the PER. She gets up to try, but jumps 
in front of the PER so quickly that its IR sensor doesn’t register her. The PER comes so 
close to hitting her that she steps away and says, “It’s gonna crash me.” Immediately 
after she steps away, the PER stops. Her father points out that the PER has stopped, 
and she repeats his observation. As the PER turns its head to seek a clear path, Eliza-
beth points out that it is moving again. Her father reinforces the goal of getting the 
PER to the rock. In response, Elizabeth briefly gets down on the floor behind the PER, 
and then runs to stand in front of it. 

She successfully blocks the forward motion of the PER, and then follows the PER 
around in a circle to block its path as it turns. Just before it stops, she starts sidestep-
ping away and says, “see if it follows me.” As luck would have it, the PER starts mov-
ing in her general direction. She continues to sidestep towards the rock, repeating that 
it’s following her. She stops at the rock, and waits for the PER there.

After a short period of time, she moves back to the PER to coax it to the rock by 
getting in front of it and taking baby steps while saying “come here”; however, the PER 
has turned to move in the opposite direction. She gets back down on the floor with the 
PER and starts to gently touch its fake solar panels. 

She gets back up to try again. She walks over to the rock, but instead of follow-
ing her, the PER rolls in the opposite direction. She tells it to “stay,” but it doesn’t 
listen. Then she bends down next to the robot and says, “I’m not sure how it’s pro-
grammed.” 

Elizabeth’s brother joins the interaction after 3 minutes and 40 seconds.

Elizabeth’s exploration of the PER takes her on a circuitous route. She starts out 
curious about the robot, and then becomes slightly wary of it when it almost runs 
into her. With her father’s encouragement, she reengages it. Elizabeth does not 
start out believing the PER can follow her, but she spends some time experiment-
ing. Although the confirmatory feedback she receives from the robot is false (it is 
not following her), it is enough to temporarily validate her belief that the robot has 
the capacity to follow her. Elizabeth persists in using this strategy to control the 
robot until it is clear that it is not working. Elizabeth also tried talking to the PER 
at two points during her interaction, but the robot did not respond to either of her 
verbal requests. 

Throughout this interaction, Elizabeth repeatedly explores the robot’s capa-
bilities and then crafts strategies for interacting with the robot based on her beliefs 
about those capabilities. Her strategies for engaging the robot are not unlike those 
a child might try with a reluctant pet: she walks in front of the robot, calls it, gently 
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touches it, and then checks whether it will follow her. It seems that Elizabeth’s 
knowledge of animal behavior is seeping into this interaction, and when she does 
not know what else to do, she tries an animal-based strategy. 

Jake

Jake, 6 years 2 months, had relatively high exposure to robotic technology at home. 
His toy collection included toys such as Bionicles and Lego Technic, as well as 
robot videos and remote-control cars. Jake came to the museum with his parents 
and his younger sister. 

Jake and his sister stand patiently in the middle of the room waiting for the PER to 
start up. Once it begins moving, the experimenter asks Jake whether he can get the 
PER to go to the rock. Jake’s first move is to wave towards the rock. He then leans 
towards the PER with his arms outstretched to corral it. Next to him, his sister is 
imitating his movement. 

Jake’s corralling motion causes the PER to stop its forward movement, and even-
tually turn away from the rock. In response, Jake points to the rock using vigorous, 
whole-arm movements. As the robot continues to turn, these movements give way to 
more targeted finger pointing near the PER’s head. Jake’s sister is imitating Jake’s mo-
tion of pointing towards the rock, and although she gets closer to the PER’s head than 
Jake, her actions do not trigger the robot’s sensor. Jake eventually comes around to the 
side of the PER that is farthest from the rock and once again tries to corral it while it 
is turning. Soon the PER stops turning and resumes forward motion. Jake then steps 
out of the range of the camera for approximately four seconds, and the PER stops its 
forward motion, presumably because its IR sensor was triggered. 

As the PER begins to turn again, Jake and his sister both use their fingers to point 
towards the rock. After a second or two, Jake again tries to corral the PER while telling 
it to “keep going” and then “stop, stop!” Jake jumps to the other side of the PER just 
as it is finishing its turn and resuming forward motion. However, the PER is angled 
slightly away from the rock, so Jake jumps in front of it to tell it to “turn, turn” while 
waving his hands in front of the PER’s head. After a few waves he holds his hands 
steady long enough to trigger the PER’s sensor, causing it to stop and turn again. As 
the PER looks around, Jake backs away and stands with his hands outstretched, as if 
waiting to see what the PER will do. As the PER begins to turn, Jake steps out of its 
path, and encourages it to “go, go!” while waving it towards the rock. He then bends 
down and raises his hands next to the PER’s head, as if forming a barrier to stop it 
from turning too far. The PER stops its turn and heads straight for the rock. Jake 
stands back and puts a hand on his sister to stop her from moving. The PER arrives 
at the rock after approximately two minutes. 
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Jake had a set of reasonable, if not completely accurate, strategies for working with 
the PER. His main strategy of corralling seemed successful because of two unin-
tended effects: First, the hand gestures associated with corralling often triggered 
the PER’s IR sensor, causing a change in direction. Also, because Jake was corral-
ling the PER towards the rock, he sometimes stood on the side of the PER farthest 
from the rock, blocking the undesirable direction. However, there were also times 
when his corralling movements actually moved the PER away from the rock. 

It is not clear from Jake’s interactions that he understood exactly how to trig-
ger the PER’s sensor. Both he and his sister continued to point and wave the PER 
towards the rock, even though the PER does not respond to either of these actions. 
Jake also spoke to the PER occasionally, but it is not clear he believed he could 
control the PER verbally, because gestures accompanied all his speech.

Jake’s strategies worked well enough to guide the PER in the short term. He 
observed the robot’s behavior and continued to do what he thought would control 
the PER. His overall demeanor, including the fact that his often wild gestures be-
came more precise as his hands got closer to the robot, indicated that Jake may be 
able to collaborate successfully with robots. However, his inaccurate model of the 
robot’s capabilities could be a real problem for long-term collaboration. Pointing 
when close to the PER’s head is counterproductive because it can trigger the IR 
sensor at inopportune moments. An accurate model of the PER’s sensor capabili-
ties is the best way to ensure repeated successful collaborations. 

Emma

Emma, 7 years 11 months, was visiting the museum with her mother. Emma has 
few robotic resources at home. However, she has visited museum exhibits about 
robots, and she built robots while attending an invention and electronics summer 
camp. 

Emma begins her interaction with the PER by leaning down and quickly putting her 
hand in front of its head. However, her action is so quick that it fails to trigger the 
PER’s IR sensor, and the PER makes no response. She asks the experimenter if the 
PER can turn. The experimenter responds that it can, and instructs her to hold her 
hand in front of the PER for a little longer to trigger a response. Emma kneels down 
and holds her hand in front of the PER’s head until it starts to turn. She moves her 
hand away, and exclaims, “hey, cool!”

The experimenter then introduces the goal of getting the robot to the rock on the 
opposite side of the room. Emma comments that the PER is already heading in that 
direction, and she kneels down next to the robot as it turns. She holds her hand off 
to the side of the robot’s head, perhaps to prevent it from overshooting the rock. She 
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moves her hand away once the robot starts rolling forward and gives a small wave 
in the direction of the rock. The PER moves forward in the general direction of the 
rock, but Emma becomes concerned it might hit a nearby chair. She gets down on the 
floor and puts her hand next to the PER’s head and then slightly in front of it, but 
does not hold her hand there long enough to trigger the IR sensor. Her action has 
failed to deter the PER, and she exclaims, “stop it!” as the PER nears the chair. The 
experimenter moves the chair out of the way, which causes the PER to stop, turn and 
head away from the rock. 

Once the robot begins moving away from the rock, Emma returns to it. She kneels 
down on the floor next to the robot, and this time holds her hand in front of the PER’s 
head until she has blocked its forward progress. Emma stands up as the PER begins 
to turn. The experimenter comments that she just saw a picture of Emma’s hand on 
the laptop. Her mother repeats the comment by saying, “if you put your hand in front 
of its little sensor again, you can see your hand on the computer,” but Emma is pre-
occupied with the robot approaching the rock. The PER arrives at the rock shortly 
thereafter, approximately two minutes after the interaction started.

The experimenter asks Emma if she would like to send the PER somewhere else, 
and Emma responds by saying, “let’s see if it can go to my mommy.” But as the PER 
approaches her mother, Emma runs over to the robot to block it with her hands, com-
menting that she didn’t want the robot to run into her mother. Her mother responds 
by saying, “I think that’s what that little face is all about, so it doesn’t run into things.” 
The PER is now moving towards the chair. Emma’s mother reaches over to block 
the PER with her hand, and then tries to block it again as it turns. Emma gives her 
mother the instruction to “wait till it stops,” and then kneels down next to the robot 
to block it with her own hand. As the robot’s head turns, Emma laughs and says, “It 
doesn’t know where it wants.” 

The experimenter again comments that the laptop is displaying pictures of objects, 
such as the rock. Emma briefly walks over to the computer screen, then walks back to 
the middle of the room and says, “I wonder if it will come towards me,” but the rover 
is turning away from her. She kneels down and puts her hand in front of the robot to 
block it. As she steps away, the robot begins to move towards her. Emma comments, 
“hey, it’s coming towards me,” but then she steps away to let the robot “go straight.” 

The experimenter engages Emma in conversation by asking if she thought the ro-
bot would ever bump into anything. Emma replies, “it probably could have bumped 
into that chair [with skinny legs]… but not solid things like walls or ceilings. It 
wouldn’t bump into a chair like this [points to thick armchair], it’s too solid.” When 
asked why that would make a difference, Emma replied, “because this is solid, it 
could definitely see it.” Emma spends the remainder of her encounter watching the 
robot, blocking it with her hands, and predicting its next destination. The interaction 
ends after nine minutes.
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Emma’s explorations of the PER’s capabilities yield useful information. After some 
instruction, Emma learns that she must leave her hand in front of the PER for a 
certain amount of time to trigger a response. Following this realization, she spends 
the remainder of the interaction further exploring the limits of the PER. At nu-
merous points she makes astute and correct observations about the PER, such 
as her comment that the robot would not bump into “solid things” but could get 
tripped up by thin chair legs. Her instruction to her mother to wait until the robot 
stops turning was also a good observation: The PER does not accept any sensor 
input while it is turning towards the unobstructed path, but most children fail to 
notice this feature and continue to block the robot while it is turning.

Unlike Elizabeth, Emma never adopts a biological model of the PER. She does 
not assume that it can hear or follow her. Instead, she treats the PER as mechani-
cal and spends most of the time exploring and speculating about its capabilities. 
Emma did not have humanlike robots in her house; her experience with robots 
was based on building them at camp. However, it is difficult to know exactly how 
her prior experiences contributed to her interaction style. 

Of the three children, Emma was the most successful at collaborating with the 
PER mainly because she was able to figure out the limits of the PER’s autonomy 
and tailor her behavior to complement the robot’s abilities. The information she 
gathered about the PER came from a number of sources, including her mother, the 
experimenter, and her own observations. Her ability to use different resources to 
determine the most effective pattern of engagement could have implications for a 
possible long-term relationship. If given regular opportunities to interact with the 
robot, one could imagine a successful collaboration developing.

Discussion

What are the factors that lead to successful human–robot interactions? As our 
three examples demonstrate, a human user’s beliefs about a robot impact the suc-
cess of the human–robot system. Elizabeth believed the PER would follow her lead, 
which led her to initiate several unsuccessful following-finding episodes. Jake was 
mostly successful in his collaboration with the PER, although his strategies, which 
were based on an inaccurate model of the robot’s capabilities, occasionally worked 
against him. Emma understood what she needed to do to trigger a response from 
the PER and altered her behavior accordingly, for example, by holding her hand in 
front of the sensor for a longer period of time. 

Earlier in the paper we asked which user beliefs were most likely to predict 
collaborative success and suggested that accurate beliefs about a robot’s autono-
mous capabilities were important. The examples support our hypothesis that an 
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accurate understanding would strongly affect interaction success. Jake is notewor-
thy for his strategies, which were workable in the short-term but based upon in-
correct assumptions. However, we suggest that his strategies may not be reliable 
in the long-term.

Human beliefs about robots come from a number of different sources. The 
form of the robot is one important source (Kiesler & Goetz, 2002; Woods, Dauten-
hahn & Schulz, 2004), but the user’s experience with robots (Bernstein & Crowley, 
under review) and unrelated needs have also been shown to influence ideas about 
robots (Turkle, Taggart, Kidd & Daste, 2006; Turkle, 2007). Given this combina-
tion of influences, we should expect that individuals come to an interaction with 
a unique set of beliefs about robots, some of which may be resistant to change. 
Emma’s experience at electronics and invention camp may have provided her with 
knowledge about robots that she was able to apply to the PER. It is possible that 
certain types of experience are more useful than others in providing generalizable 
models of robots. This would be an interesting question to follow up. But the larger 
point is that no user will come to an interaction without beliefs about how they 
might best negotiate with their robot partner. This is why we believe that the robot 
has a role to play in helping the user learn about its capabilities. 

A well-designed robot that can facilitate accurate beliefs about its capabili-
ties will go a long way towards improving its relationship potential. To further 
this goal, we propose three design guidelines: diagnostic transparency, predictive 
transparency, and simplicity. 

First, a robot should be designed to increase diagnostic transparency (Nour-
bakhsh, 2000). This means that a user who is unfamiliar with the technological lay-
out of the robot should be able to infer why the robot is not behaving as desired. 
For example, it is easy for museum employees to determine when the PER’s bat-
teries are running low because it arches its head straight up, which it never does 
otherwise. Diagnostic transparency allows users to accurately establish behavioral 
causality simply by observing the robot. If we expect users to engage in productive 
relationships with robots, we must give them a means of interpreting the robot’s be-
havior. One way to ensure that humans correctly assign causality is to have the robot 
respond in a time-sensitive manner. Human responses are rapid, so having a robot 
respond quickly may help the user determine cause and effect relationships. 

Related to the notion of diagnostic transparency is that of predictive trans-
parency, or the ability of the user to infer what the robot would do under novel 
conditions. In other words, does the user have an accurate enough mental model 
of the robot to predict its behavior? This type of transparency allows users to plan 
scenarios that maximize the autonomy of the human–robot system. For example, 
the Roomba user who arranged the furniture around a particularly dirty area used 
his knowledge of the Roomba’s behavior to enhance the system’s output; he knew 
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that if he provided the Roomba with boundaries, it would continue to vacuum 
the spot he wished to keep clean. Predictive transparency is more likely when the 
robot’s behavior can be easily linked to a causal stimulus (i.e., it has high diag-
nostic transparency). For example, after briefly playing fetch with AIBO, a user 
can assume AIBO will try to retrieve the ball next time it is thrown. Although the 
cause and effect relationship is also supported by a metaphor in this case (people 
expect a dog to fetch a thrown object), diagnostic transparency will generally aid 
predictive transparency.

Finally, we note that both diagnostic and predictive transparency are en-
hanced by keeping robot designs as simple as possible, while maintaining the de-
sired functionality. It takes a user longer to create an accurate model of a complex 
technology than a simple one. Although there are numerous instances of users 
mastering complex technologies, the complexity should be necessary to the pur-
pose of the robot. A simple robot is more likely to facilitate transparency than a 
complex one. 

Kahn et al. (2007) suggest the development of psychological benchmarks that 
focus on the robot’s ability to elicit the kinds of responses that people typically 
make with other people. They assume that implementing humanlike character-
istics is a gateway to more effective human–robot interaction, because humans 
are most comfortable with humanlike agents. We have argued for a new approach 
that focuses attention on the human–robot interaction rather than the human and 
robot as individual agents. We have introduced the notion of relationship potential 
as a way to understand the success of human–robot collaborations. The chance of 
success is much higher if the relationship itself functions with high autonomy and, 
if autonomy is to be used as a benchmark, it should be measured system-wide. Our 
approach suggests building robots that help users form accurate mental models of 
a robot’s capabilities by increasing the transparency of the causes underlying their 
actions (Stubbs, Bernstein, Crowley & Nourbakhsh, 2005). 

Before concluding, we pause to consider how our findings might general-
ize given their focus on children. Children may be less advanced than adults in 
how they think about and understand robots. However, we have found little evi-
dence to support this. Research comparing children’s and adults’ beliefs about ro-
bots has sometimes found similarities between the two groups. Van Duuren and 
Scaife (1996; Scaife & Van Duuren, 1995) found that adults and children over age 
7 showed similar patterns of responses when asked about characteristics of robots 
such as the presence of a brain or their ability to perform brain-related tasks. We 
also know from educational research that children are capable of thinking and 
learning about complex robotics concepts, such as autonomy (Nourbakhsh et al., 
2005, Nourbakhsh et al., 2006). Some researchers have even suggested that chil-
dren are more flexible in their thinking about technology, because they have grown 
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up with it (Turkle, 1984, 1999, 2007). We would further argue that consideration 
of children is relevant to a broader benchmark discussion because children are an 
active robotics user group. If psychological benchmarks are not meant to include 
a significant segment of the user population, it would be good to be explicit about 
those boundaries early in the development of the concept.

Will better collaboration come from humanlike robots or robots who like 
humans? In the same way that dogs have been bred to be working companions 
who respond to training and provoke emotional responses from their trainers, 
can robots be built so that their human partners want to invest time, emotion, 
and energy in learning how to build a working relationship? While we have sug-
gested a number of robot features that we believe will enhance the likelihood of 
productive and long-lasting human–robot relationships, verifying the importance 
of these features will require long-term studies on both human–robot interaction 
and the cognitive changes experienced by human users. Such studies will likely 
require interdisciplinary collaboration, with teams from the learning sciences and 
robotics challenging each other to rethink how we benchmark and design for hu-
man–robot collaboration.
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