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Abstract

Independently and pursuing different aims, Hrushovski and Srour [3]
and Baudisch and Pillay [1] have introduced two free pseudospaces that
generalize the well know concept of Lachlan’s free pseudoplane. In this
paper we investigate the relationship between these free pseudospaces,
proving in particular, that the pseudospace of Baudisch and Pillay is a
reduct of the pseudospace of Hrushovski and Srour.

Key words: free pseudoplane, free pseudospace, stable theories, equa-
tional theories
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1 Introduction

Already back in 1974 Lachlan [8] introduced the free pseudoplane which is by
now a well studied and well understood model-theoretic object. In particular,
Hrushovski and Pillay [4] showed that 1-based or weakly normal theories do
not contain a type-definable pseudoplane. Hence the free pseudoplane is the
prototype of a stable and not 1-based theory. While the free pseudoplane is a 2-
dimensional object in essence, two generalizations of the pseudoplane in form of
3-dimensional pseudospaces were independently introduced by Hrushovski and
Srour [3] and Baudisch and Pillay [1]. The motivations for the construction
of these pseudospaces differ, but the constructions itself share many common
features.

The free pseudospace of Hrushovski and Srour is a coloured 3-dimensional
pseudospace and was constructed as the first example of a stable and non-
equational theory. Equational theories were introduced by Srour [10, 12–14]
and further developed by Junker, Kraus, and Lascar [5–7]. A parameter-free
formula ϕ(x̄; ȳ) with two sorts of variables x̄ and ȳ is called an equation, if every
infinite conjunction

∧

i∈I ϕ(x̄; āi) of instances of ϕ is equivalent to a conjunction

∗This work was done while at Humboldt University Berlin. Supported in part by DFG
grant KO 1053/5-1.
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∧

i∈I0
ϕ(x̄, āi) with finite I0 ⊆ I.1 A theory is equational, if every formula is

equivalent to a Boolean combination of equations.
By counting the number of types it is easy to see that equational theories

are stable [10]. Thus Srour posed the question whether the class of equational
theories is a proper subclass of the class of stable theories. This question was
answered affirmatively by Hrushovski and Srour with the construction of their
free pseudospace in the unfortunately unpublished manuscript [3]. The result
from [4] mentioned above shows that Lachlan’s pseudoplane is a typical exam-
ple of a stable non-1-based theory. As equational theories provide a natural
generalization of 1-based theories [10], this motivates the approach to search
for a stable non-equational theory in form of a higher-dimensional version of
the pseudoplane.

Independently of [3], Baudisch and Pillay [1] constructed another free pseu-
dospace as an example of a non-CM -trivial stable theory in which no infinite
field is interpretable. This shows that the hierarchy of n-ample theories, devel-
oped by Pillay [9], is strict up to its second level. The first level of this hierarchy
is again formed by non-1-based theories, whereas 2-ample theories correspond
to non-CM -trivial theories. It had already been conjectured in [1] that the
pseudospace of Baudisch and Pillay is a reduct of the coloured pseudospace by
Hrushovski and Srour, but the actual verification turned out to be far from
obvious.

This paper is organized as follows. In Sect. 2 we review the pseudoplane
of Lachlan [8]. We also introduce a coloured version of this pseudoplane which
will serve as an essential ingredient for the analysis of the coloured pseudospace
of Hrushovski and Srour.

In Sects. 3 and 4 we describe the free pseudospaces Σ of Baudisch and
Pillay [1] and Γ of Hrushovski and Srour [3]. Using the standard model of Σ
from [1] we construct a standard model of Γ.

The main results follow in Sect. 5 where we investigate the relationship
between the axiom systems Σ and Γ. We prove that Σ is a reduct of Γ. The
main technical difficulty for this result lies in deriving from Γ the axioms of
Σ which expresses the freeness conditions. We achieve this by analyzing paths
and cycles in models of Γ. As a byproduct we obtain a simplification of the
axiom system Σ.

In the final section we explain the original purpose of Γ as a stable non-
equational theory. In particular, we include a proof for the non-equationality
of Γ which is based on the proof sketch given in the draft [3].

2 The Free Pseudoplane

First we will review the free pseudoplane of Lachlan [8], because it is of funda-
mental importance for the higher dimensional pseudospaces that are the topic

1This definition of equationality stems from [3]. Pillay and Srour [10] give a different
definition where they only consider equations in one free variable x. Whether the two defini-
tions are equivalent is open. In [5] Junker provided a detailed comparison of these different
formalisations of equationality.
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of this paper. The language contains unary predicates B and C for lines and
points, respectively, and a binary incidence relation I between lines and points.
The free pseudoplane is axiomatized by the following axiom set ∆:

∆1: Every element is a point or a line, but not both.

∆2: I ⊆ (B × C) ∪ (C × B) is a symmetric relation between lines and points.

∆3: Every point lies via I on infinitely many lines. Conversely, every line
contains infinitely many points.

∆4: There are no cycles, i.e., there do not exist mutually distinct elements
x0, . . . , xn, n ≥ 2, with I(xi, xi+1), 0 ≤ i ≤ n − 1, and I(xn, x0).

The standard model N0 of ∆ has as its domain the set ω<ω of finite sequences
of natural numbers. The lines of N0 are the sequences of even length, whereas
sequences of odd length are points. The incidence relation I(x, y) holds between
elements x and y, if x is either a direct predecessor or a direct successor of y.
Thus N0 is a countable model of ∆ which, moreover, is connected. It is well
known that ∆ is a complete theory.

The Coloured Pseudoplane

Next we will describe a coloured modification of the free pseudoplane where lines
and points are equipped with colours. This modification is not of independent
interest, but it will serve as an important building block in subsequent sections.
The language is enriched by unary relations Cr, Cw, Br, and Bw for red and
white points and red and white lines, respectively. In addition to the axioms
∆1 to ∆4, the axiom set ∆′ contains the following three axioms regarding the
colours:

∆5: Every line is either red or white, i.e., it fulfills exactly one of the predicates
Br or Bw. The analogous condition holds for points.

∆6: Every point lies on infinitely many white and on infinitely many red lines.

∆7: Every red (resp. white) line b contains exactly one white (resp. red) point,
which is called the exceptional point of b.

Models of ∆′ are called free coloured pseudoplanes. The standard model N ′
0

of the coloured pseudoplane is derived from the standard model N0 of ∆ by
colouring lines and points. Lines are coloured according to

Br(N
′
0) = {b | b ∈ B(N ′

0), bℓ(b) is even}

Bw(N ′
0) = {b | b ∈ B(N ′

0), bℓ(b) is odd} ,

where ℓ(b) denotes the length of the sequence b, and bℓ(b) is its last element. By
this construction every point lies on infinitely many red and white lines.

It remains to colour the points. If the predecessor point c of a line b in
B(N ′

0) has a different colour than b, then c is the exceptional point of b, and all
successors of b are coloured with the colour of b. If, on the other hand, b and c
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are of the same colour, then we can choose the exceptional point freely among
the successors of b. Therefore ∆7 is fulfilled, and hence N ′

0 is a model of ∆′.
It is not hard to directly construct an isomorphism between two countable

connected free coloured pseudoplanes. Therefore ∆′ has only one countable
connected model up to isomorphism.

3 The Free Pseudospace of Baudisch and Pillay

In this section we describe a 3-dimensional analogue of the pseudoplane as
developed by Baudisch and Pillay [1]. In addition to points and lines the pseu-
dospace contains also planes. The language L of this pseudospace consists of
unary predicates A,B,C for planes, lines and points, respectively, and binary
predicates I and J for the incidence relations between planes and lines as well
as between lines and points.

Before we describe the axioms of the pseudospace we need to introduce
some terminology. By A, B, and C we also denote the set of planes, lines, and
points, respectively. We will usually use letters a, a′, ai . . . for planes, b, b′, bi . . .

for lines, and c, c′, ci . . . for points, and we will often refrain from indicating
explicitly the type of an element denoted in this way. For a plane a we define
the sets B(a) = {b ∈ B | J(a, b)} and C(a) = {c ∈ C | c ∈ a}. For a point c the
sets A(c) and B(c) are defined analogously.

Elements d0, . . . , dn form a walk if consecutive elements are incident to each
other. If all elements are pairwise distinct except possibly for d0 and dn, the
walk is called a path. If in addition d0 = dn, the path is also called a cycle. The
length of a path is the number of distinct elements in it. If all elements are
planes or lines, then we speak of an AB-path. BC-paths are defined analogously.

The free pseudospace of [1] is axiomatized by the following axioms:

Σ0: Every element fulfills exactly one of the relations A, B, or C. The relations
J ⊆ (A × B) ∪ (B × A) and I ⊆ (B × C) ∪ (C × B) are symmetric.

Σ1: (A,B, J) is a free pseudoplane.

Σ2: (B(a), C(a), I) is a free pseudoplane for every plane a.

Σ3: The intersection of two planes is either empty, or a point, or a line.

Σ4: Let a be a plane and X = (a, b, . . . , b′, a) be a cycle of length n. Then there
exists a BC -path between b and b′ of length at most n − 1, which only
contains points from X and lines from a.

For the axioms Σ1, . . . ,Σ4 we also consider their dual versions Σ∗
1, . . . ,Σ

∗
4

which are formed by interchanging planes and points (e.g., Σ∗
2 reads: for every

point c, (A(c), B(c), J) is a free pseudoplane). The axiom set Σ of the free pseu-
dospace of Baudisch and Pillay [1] comprises of the axioms Σ0, . . . ,Σ4 together
with their dual versions Σ∗

1, . . . ,Σ
∗
4.

In [1] Baudisch and Pillay construct a particular countable connected model
M0 of Σ which is called the standard model. Further, it is shown that the theory
Σ is complete, ω-stable, and not CM -trivial.
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A Simplified Axiomatization

It is apparent from the axioms Σ that points and planes are completely dual to
each other. Many arguments can therefore be simplified by establishing some
property only for points and lines, which immediately implies this property
for planes and lines as well. In this subsection we will simplify Σ and point
out that it is in fact not necessary to include the point-plane duality in the
axiomatization. It already follows from the first half Σ1, . . . ,Σ4 of the axioms
of Σ.

First, let us introduce a convention which will help to ease the notation.
From the axioms of Σ it is clear that planes and lines are uniquely determined
by the set of its points. This allows us to relax our notation and occasionally
identify planes and lines with the set of its points, i.e., a = C(a) and b = {c |
I(b, c)}. Hence we can use expressions like c ∈ b, b ⊂ a or a ∩ b, which are
considered as abbreviations for the respective formulas involving the incidence
relations I and J .

The next two lemmas are the first steps towards proving the point-plane
duality in Σ.

Lemma 3.1 Every model of Σ0, Σ1, and Σ2 fulfills Σ∗
2.

Proof. Let c be a point. We have to show that (A(c), B(c), J) is a free pseudo-
plane, i.e., we have to check the axioms ∆1 to ∆4. Axioms ∆1 and ∆2 follow
immediately from Σ0.

For ∆3 let a ∈ A(c). By Σ2, (B(a), C(a), I) is a free pseudoplane. Because
c ∈ C(a) there exist infinitely many lines in a that contain c. Therefore every
plane in (A(c), B(c), J) contains infinitely many lines. That every line b lies in
infinitely many planes follows from Σ1, because every plane a ⊃ b also contains
c. Finally, (A(c), B(c), J) does not contain cycles as this is already true for
(A,B, J) by Σ1. Hence also ∆4 is fulfilled. ⊓⊔

Lemma 3.2 Every model of Σ0, Σ∗
1, and Σ3 satisfies Σ∗

3.

Proof. Let c and c′ be two distinct points. If there is none or exactly one plane
containing c and c′, then Σ∗

3 is already fulfilled for c and c′.
Assume therefore that a and a′ are two distinct planes that both contain c

and c′. Then {c, c′} ⊆ a ∩ a′, and by Σ3 there exists a line b such that c, c′ ∈ b

and a∩ a′ = b. By Σ∗
1 this line b is uniquely determined by c and c′. Hence the

planes containing c and c′ are exactly the planes that contain b. ⊓⊔

In the next lemma we notice that also Σ3 follows from the other axioms.

Lemma 3.3 Every model of Σ0, Σ1, Σ∗
1, Σ2, and Σ4 satisfies Σ3.

Proof. Assume that a and a′ are two distinct planes which both contain two dis-
tinct points c and c′. We will first show that both c and c′ lie on a common line b.
By Σ2 we can choose appropriate lines such that X = (a, b1, c, b2, a

′, b3, c
′, b4, a)

forms a cycle. Now, by axiom Σ4 there exists a BC -path Y connecting b1 and
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b4 which contains only points from X and lines from a. There are three possi-
bilities for such a path: either Y = (b1, c, b4), yielding the desired line b = b4,
or Y = (b1, c

′, b4), yielding b = b1, or, finally, Y = (a, b1, c, b, c
′, b4, a) with some

line b fulfilling the claim. Thus we have obtained a line b ⊂ a with c, c′ ∈ b.
As the role of a and a′ can be interchanged, we also get a line b′ ⊂ a′ with

c, c′ ∈ b′. By Σ∗
1 this line is already uniquely determined by c and c′, i.e., b = b′

is a common line of a and a′. By Σ1 the intersection of a and a′ cannot contain
more than one line, and hence Σ3 is fulfilled. ⊓⊔

In the following proposition we provide a simplified axiomatization for Σ.
As it seems more difficult to verify that also Σ∗

4 is derivable from the remaining
axioms, we have to postpone the proof until Sect. 5.

Proposition 3.4 Every model of Σ0, Σ1,Σ
∗
1, Σ2, and Σ4 fulfills all axioms of

Σ.

4 The Coloured Pseudospace of Hrushovski and Srour

This section is devoted to another free pseudospace, introduced by Hrushovski
and Srour [3]. Although this pseudospace is very similar to the pseudospace of
Baudisch and Pillay [1], it also contains a number of additional features. Before
giving the full axiomatization we will provide an informal description.

As in the pseudospace of [1] models consist of points, lines, and planes. As
before there are incidence relations I between points and lines and J between
lines and planes, but additionally there are two direct incidence relations Ir and
Iw between points and planes. Lines are either red or white, indicated by unary
relations Br and Bw. Points have on a given plane also a colour red or white,
indicated by the relations Ir and Iw. The colour of one point can be different
on different planes. Via Ir and Iw planes split into a red and a white section.
A red line b of a plane a contains only points from the red section of a, except
for one white point, the exceptional point of b in a. The same holds for white
lines. Lines and points of a plane therefore form a free coloured pseudoplane.
Finally, there are axioms stating that models are maximally free of cycles.

The language L′ consists of unary relation symbols A,B, Br, Bw, and C for
planes, lines (red and white) and points, and binary relation symbols I, J, Ir,
and Iw for the incidence relations. Therefore L′ extends the language L from
the previous section. The axiom set Γ from [3] contains the following axioms:

Γ0: Every element fulfills exactly one of the relations A, B, or C.
J ⊂ (A×B)∪ (B×A) is a symmetric incidence between planes and lines.
I ⊂ (B×C)∪ (C ×B) is a symmetric incidence between lines and points.

Γ1: The intersection of two lines is either empty or a single point. Every line
contains infinitely many points. The set of lines is nonempty.

Γ2: For every plane a and every point c ∈ a there exist infinitely many lines in
a that contain c.

Γ3: Every line lies in infinitely many planes.
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Γ4: If b1, . . . , bn, n ≥ 2, are pairwise different lines with bi ∩ bi+1 6= ∅, 1 ≤
i ≤ n − 1, then b1 ∩ bn = ∅, or there exists a point c with c ∈ bi for all
i = 1, . . . , n.

Γ5: Planes are nonempty. The intersection of two planes is either empty or a
point or a line.

Γ6: If a1, . . . , an, n ≥ 2, are pairwise distinct planes such that ai ∩ai+1 is a line
for i = 1, . . . , n − 1, then a1 ∩ an = ∅, or a1 ∩ an is a point, or a1, . . . , an

contain a common line.

Γ7: If a1, a2, a3 are three distinct planes such that ai ∩ aj 6= ∅, 1 ≤ i, j ≤ 3,
then a1, a2, a3 contain a common point.

Γ8: If a1, . . . , an, n ≥ 3, are pairwise distinct planes such that ai ∩ ai+1 6= ∅,
1 ≤ i ≤ n − 1, and ai ∩ ai+2 = ∅, 1 ≤ i ≤ n − 2, then a1 ∩ an = ∅.

Γ9: Lines are either red or white, i.e., every line fulfills exactly one of the
relations Br or Bw.

Γ10: Ir, Iw ⊂ (A×C)∪ (C ×A) are the symmetric incidence relations between
planes and their red and white points. Ir ∩ Iw = ∅. The red and white
sections of a plane a are defined as ar = {x | Ir(x, a)} and aw = {x |
Iw(x, a)}, respectively.

Γ11: J(a, b) ↔ ∀x(I(x, b) → Ir(x, a) ∨ Iw(x, a)) holds for all a ∈ A, b ∈ B.

Γ12: For every plane a and every point c ∈ a there are infinitely many red and
infinitely many white lines in a containing c.

Γ13: For every red (resp. white) line b in a plane a there exists exactly one
exceptional point c ∈ aw ∩ b (resp. c ∈ ar ∩ b).

Γ14: For every line b and every point c ∈ b there exist infinitely many planes a

with b ⊂ a, such that c is the exceptional point of b in a.

To obtain consistent notation we slightly modified the description of Γ from
[3] (where other symbols than A,B, Br, Bw, C are used and incidence relations
are not symmetric). We also grouped the axioms in such a way that the first
axioms Γ0 to Γ8 do not refer to the colour relations Br, Bw and Ir, Iw. We
denote the axioms Γ0 to Γ8 by Γ′. Together with the colour axioms Γ9 to Γ14

we obtain the full set Γ. Clearly, every model of Γ is also a model of Γ′.
The notions of walks, paths, and cycles are easily adapted to the language

L′. Because in Γ we also have direct point-plane incidence relations, walks in
models of Γ are not necessarily walks in the sense of Σ.

In contrast to the pseudospace of Baudisch and Pillay the duality between
points and planes is not so apparent from the axioms of Γ. Because of the
colours (points are red or white, and planes do not have colours) full duality is
not even possible. We will, however, show in the next section that the role of
points and planes can be interchanged if colours are omitted.
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First we will show the consistency of Γ by constructing a coloured version
M ′

0 of the standard model M0 of Σ from [1]. The planes and lines form the
free pseudoplane ω<ω, where the set of planes is {η ∈ ω<ω | ℓ(η) is even} and
lines correspond to {η ∈ ω<ω | ℓ(η) is odd}. The incidence J(η, τ) holds, if
η is a direct predecessor or successor of τ . In analogy to Sect. 2, lines are
coloured according to Br(M

′
0) = {b ∈ B(M ′

0) | bℓ(b) is even} and Bw(M ′
0) =

{b ∈ B(M ′
0) | bℓ(b) is odd}. Hence every plane contains infinitely many red

and infinitely many white lines. Planes and lines therefore form a free coloured
pseudoplane, where the colour of planes is neglected.

Now we inductively add points for the planes and define the relations I, Ir,
and Iw. The induction is carried out on the length of a plane a as an element
of ω<ω. The induction hypothesis consists of the following two assertions:

1. For all planes a of length ≤ 2n, points C(a) have been added such that

P (a) = (B(a), C(a), Ia, Bra, Bwa, Ira, Iwa)

is a connected free coloured pseudoplane. Here Ia, Bra, Bwa are the re-
strictions of I, Br, Bw to lines and points from a, and Ira, Iwa are the unary
relations Ir(·, a) and Iw(·, a), respectively, which indicate the colour of a
point in a.

2. Axiom Γ14 is fulfilled for all lines of length at most 2n − 1, i.e., for every
line b ∈ ω<2n and every point c ∈ b there exist infinitely many planes
a ∈ ω≤2n with b ⊂ a, such that c is the exceptional point of b in a.

At the end of this construction the set of all points is formed by the union
⋃

{C(a) | ℓ(a) even}. Let us already remark here that in the construction we
have many choices concerning the distribution of the colours. All these choices,
however, will provide elementarily equivalent models.

In the initial step of the construction we choose C(<>) as a countable set of
points. Colours of B(<>) are already determined by the colouring of (A,B, J)
in such a way that B(<>) contains infinitely many red and white lines. On
B(<>)∪C(<>) we define the relations I<>, Ir<>, Iw<> such that P (<>) is a
countable connected free coloured pseudoplane. In the initial step, the second
part of the induction claim does not apply. Colours of C(<>) in planes of
length two are chosen in the next step of the construction.

For the induction step, assume that the induction hypothesis holds for all
planes of length at most 2n. Let b be a line of length 2n + 1. We will simul-
taneously define P (a) for all planes a of length 2n + 2 which are incident to b.
Let a be one of these planes, i.e., b = a2n+1 is the predecessor line of a. Let
further C0 be the set of points of the line b and let C1 be a countable set of
new elements. We define the points of a as C(a) = C0 ∪ C1. As in the initial
step of the induction, the colours of C0 in planes of length 2n + 2 have not
been determined yet. This will be done below, observing the second part of the
induction hypothesis regarding axiom Γ14.

Now we define Ia, Ira, Iwa on B(a) ∪ C(a) such that P (a) becomes a con-
nected countable free coloured pseudoplane. We do not introduce any new
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points on the line b, i.e., Ia(b, c) holds if and only if c ∈ C0. Colours of points
can be chosen independently in each plane a of length 2n+2. Additionally, the
exceptional point of b is chosen such that for each c ∈ C0 there are infinitely
many planes a of length 2n + 2 such that a2n+1 = b and c is the exceptional
point of b on a. This is possible because C0 is countable and also b contains
countably many successor planes a on which the exceptional point can be chosen
arbitrarily. Hence also the second part of the induction claim is fulfilled.

Finally, the set of all points of M ′
0 is the union of all sets C(a), and the

relations I, Ir, Iw are the unions of the respective relations Ia, Ira, Iwa for all
planes a.

The next theorem is our main result in this section.

Theorem 4.1 M ′
0 is a model of Γ, and hence Γ is consistent.

The theorem is proven by the following remarks and lemmas.
Let M0 be the L-reduct of M ′

0. Then M0 is exactly the standard model of
Σ constructed in [1]. Therefore Σ is valid in M ′

0. It remains to show that also
Γ is fulfilled in M ′

0. To show this we will first derive all axioms of Γ′ from Σ.
As M ′

0 is a model of Σ this implies the validity of Γ′ in M ′
0.

Lemma 4.2 Every model of Σ satisfies Γ0 to Γ6.

Proof. The axioms Γ0 and Σ0 are identical. Axiom Σ∗
1 implies Γ1 and Γ4.

Axiom Γ2 follows from Σ2, and Γ3 follows from Σ1. Finally, Γ5 and Γ6 follow
from Σ1 and Σ3. ⊓⊔

Deriving Γ7 and Γ8 from Σ requires some extra arguments.

Lemma 4.3 Every model of Σ satisfies Γ7.

Proof. Let a1, a2, a3 be distinct planes and let c1, c2, c3 be points such that
c1 ∈ a2∩a3, c2 ∈ a1∩a3, c3 ∈ a1∩a2. We have to show the existence of a point
c ∈ a1 ∩ a2 ∩ a3. If c1 ∈ a1, then c = c1 is such a point. Likewise, if c2 ∈ a2 or
c3 ∈ a3. Assume now that

ci 6∈ ai for i = 1, . . . , 3. (1)

We will derive a contradiction. By assumption c1, c2, and c3 are pairwise dis-
tinct. Hence there exists a cycle

(a1, b3, c3, b
′
3, a2, b1, c1, b

′
1, a3, b2, c2, b

′
2, a1)

with pairwise distinct lines b1, b2, b3, b
′
1, b

′
2, b

′
3. Choosing such lines is possible

by (1) and because (B(ai), C(ai), I) is a free pseudoplane. By Σ4 there exists a
BC -path X between b3 and b′2, containing only lines from a1 and points from
{c1, c2, c3}. The point c1 cannot occur in X because c1 6∈ a1. Hence we have
either

(a) X = (b3, c3, b
′
2) or

(b) X = (b3, c2, b
′
2) or

(c) X = (b3, c3, b
′, c2, b

′
2) with b′ ⊂ a1.
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In every case there exists a line b′′1 ⊂ a1 containing both c2 and c3, namely in
(a) b′′1 = b′2, in (b) b′′1 = b3 and in (c) b′′1 = b′. Analogously, using c2 6∈ a2 and
c3 6∈ a3 we get lines b′′2 ⊂ a2 and b′′3 ⊂ a3 with c1, c3 ∈ b′′2 and c1, c2 ∈ b′′3. By (1)
the lines b′′1, b

′′
2, and b′′3 are pairwise distinct. Hence there exists a cycle of lines

and points
(b′′1, c3, b

′′
2, c1, b

′′
3, c2, b

′′
1) ,

contradicting Σ∗
1. ⊓⊔

Lemma 4.4 Every model of Σ satisfies Γ8.

Proof. Let a1, . . . , an, n ≥ 3, be distinct planes with ci ∈ ai ∩ ai+1, 1 ≤ i < n,
and ai ∩ ai+2 = ∅, 1 ≤ i < n − 1. We have to prove a1 ∩ an = ∅. We will show
this by induction on n. The base case n = 3 is clear. Let n > 3 and assume
that Γ8 is valid for all 3 ≤ k < n. By hypothesis we have

ai ∩ aj = ∅ for 1 ≤ i < j ≤ n with i + 1 6= j and (i, j) 6= (1, n). (2)

Assume now, that there exists a point cn ∈ a1 ∩ an. We will construct a
contradiction, similarly as in the previous lemma. By (2) and the assumption
there exists a cycle

(a1, b, c1, b
′, a2, . . . , an, b′′, cn, b′′′, a1) .

Applying Σ4 yields a path X between b and b′′′, containing only lines from a1

and points from {c1, . . . , cn}. By (2), the points c2, . . . , cn−1 cannot appear in
X. Hence we have X = (b, c1, b

′′′), or X = (b, cn, b′′′), or X = (b, c1, b1, cn, b′′′)
with b1 ⊂ a1. In each case there exists a line b1, containing the points c1 and
cn. Analogously, (2) yields lines b2, . . . , bn with ci−1 ∈ bi and ci ∈ bi, 2 ≤ i ≤ n.
By (2) all lines b1, . . . , bn are distinct. Hence there is a cycle

(b1, c1, b2, c2, . . . , bn, cn, b1) ,

contradicting axiom Σ∗
1. ⊓⊔

Finally, the colour axioms in Γ follow directly from the construction of M ′
0:

Lemma 4.5 M ′
0 satisfies the axioms Γ9 to Γ14.

5 The Relationship between the Two Pseudospaces

The aim of this section is to prove Theorem 5.5: Σ and Γ′ are equivalent.
Already in the last section we have shown that the axioms Γ′ are derivable
from Σ. Now we will prove that the axioms of Γ′ also imply all axioms from Σ.
We will first derive Σ4 from Γ′, which requires the following lemma.

Lemma 5.1 Let M |= Γ′ and let X = (a, b, c0, a1, c1, . . . , cn−1, an, cn, b′, a) be

a cycle in M consisting of planes a = a0, a1, . . . , an, lines b, b′, and points

c0, . . . , cn. Then there exists a BC-path Y = (b, c′0, b
′
1, c

′
1, . . . , c

′
m−1, b

′
m, c′m, b′)

such that {c′0, . . . , c
′
m} ⊆ {c0, . . . , cn} and c′i ∈ a, 0 ≤ i ≤ m. Additionally, we

have b′i ⊂ a, 1 ≤ i ≤ m.
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Proof. The last sentence follows from the first part of the lemma. Namely, if
a′i 6= a is a plane with b′i ⊂ a′i, then c′i−1, c

′
i ∈ a′i ∩ a, and hence b′i = a′i ∩ a. The

first part of the lemma is shown by induction on n.
Base cases. For n = 0 we have X = (a, b, c0, b

′, a), and the claim is true.
For n = 1 we have X = (a, b, c0, a1, c1, b

′, a), i.e., c0, c1 ∈ a∩ a1. Then there
exists a line b′′ = a∩a1, and hence there is the walk (b, c0, b

′′, c1, b
′). If b = b′′ or

b′′ = b′, then the walk can be shortened. In the following we will not explicitly
mention, if a walk can be shortened in such a way.

For n = 2 we have X = (a, b, c0, a1, c1, a2, c2, b
′, a). By Γ7 there exists a

point c ∈ a ∩ a1 ∩ a2. We will distinguish four cases.
Case 1. c = c0, i.e., in particular c 6= c2. Then there exists b′′ = a ∩ a2

such that c0, c2 ∈ b′′. Therefore the desired path Y is obtained from the walk
(b, c0, b

′′, c2, b
′).

Case 2. c = c1, hence c 6= c0 and c 6= c2. Then there exist lines b′′ = a ∩ a1

and b′′′ = a ∩ a2 such that c0, c1 ∈ b′′ and c1, c2 ∈ b′′′. Therefore we have the
walk (b, c0, b

′′, c1, b
′′′, c2, b

′).
Case 3. c = c2. Like case 1.
Case 4. c 6= c0, c 6= c1, and c 6= c2. Then we have lines b0 = a ∩ a1,

b1 = a1 ∩ a2, and b2 = a2 ∩ a, i.e., there exists the walk (a, b0, a1, b1, a2, b2, a).
Because a, a1, a2 are pairwise distinct, they contain a common line b′′ by Γ6,
which is identical with b0, b1, and b2 by Γ5, i.e., b′′ = b0 = b1 = b2. Therefore
we get the walk (b, c0, b0, c2, b

′).
Induction step. Let the claim be true for k < n, n ≥ 3. If there exists an

index i, 1 ≤ i ≤ n−1 such that ci ∈ a, then we choose b′′ ⊂ a with ci ∈ b′′. Hence
we have the paths (a, b, c0, . . . , ai, ci, b

′′, a) and (a, b′′, ci, ai+1, . . . , an, cn, b′, a).
By induction hypothesis there exist BC -paths connecting b and b′′ as well as
b′′ and b′, that only use points from {c0, . . . , cn} lying in a. We obtain the
desired BC -path between b and b′ by concatenation. We can therefore make
the following

Assumption 1 ci 6∈ a for 1 ≤ i ≤ n − 1.

If there exist i and j such that 0 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j, j−1 and ci ∈ aj ,
then we can shorten the path X to X ′ = (a, b, c0, . . . , ai, ci, aj , cj , . . . , b

′, a) if
i < j−1, and to X ′ = (a, b, c0, . . . , cj−1, aj , ci, ai+1, . . . , b

′, a) if i > j. In this case
the induction hypothesis for X ′ yields the claim. In addition to Assumption 1
we therefore make

Assumption 2 ci 6∈ aj for 0 ≤ i ≤ n, 1 ≤ j ≤ n, i 6= j, j − 1.

Finally, if c0 and cn are on a common line b′′, then we directly get the path
Y from (b, c0, b

′′, cn, b′). We therefore also assume

Assumption 3 c0 and cn do not lie on a common line.

From Assumptions 1 to 3 we will derive a contradiction, hence for any
given X at least one of these assumptions does not hold, and thus the claim is
proved. By Γ8 there exists some j, 0 ≤ j ≤ n − 2 such that aj ∩ aj+2 6= ∅. Let
c ∈ aj ∩ aj+2. For this situation we will prove the following claim.
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Claim 1 If there exists a point c ∈ aj ∩ aj+2 with 0 ≤ j ≤ n − 2, then there

exists a BC-path Y ′ which connects b and b′ and does not use any points except

c0, cn, and c. Further, c appears in Y ′, and we have c 6= c0, c 6= cn, and c ∈ a.

Proof of Claim 1. To prove the first sentence we will distinguish two cases.
Case 1. j = 0, i.e., c ∈ a ∩ a2. Then there exists b′′ ⊂ a such that c ∈ b′′.

Hence we get cycles (a, b, c0, a1, c1, a2, c, b
′′, a) and (a, b′′, c, a2, . . . , an, cn, b′, a).

Applying the induction hypothesis twice yields BC -paths between b and b′′ as
well as between b′′ and b′. By Assumption 1 these paths only contain points
from {c0, cn, c}. By concatenation we get a BC -path connecting b and b′.

Case 2. 1 ≤ j ≤ n − 2. Then we have a cycle (a, b, . . . , aj , c, aj+2, . . . , b
′, a),

and by induction hypothesis and Assumption 1 we get a BC -path that contains
only the points c0, cn, c.

Thus the path Y ′ only uses the points c0, cn, and c. The point c is in-
cluded in Y ′ because all choices for Y ′ omitting c, i.e., (b, c0, b

′), (b, cn, b′), and
(b, c0, b

′′, cn, b′) contradict Assumption 3. Thus the only possible configurations
for Y ′ are (b, c, b′), (b, c, b′′, cn, b′), and (b, c0, b

′′, c, b′′′, cn, b′), in which case c 6= c0

and c 6= cn follow by Assumption 3 and because Y ′ is a path. Hence c appears
in Y ′, and therefore we get c ∈ a by induction hypothesis. ⊓⊔

As argued before, axiom Γ8 assures the existence of an index j, 0 ≤ j ≤ n−2
such that aj and aj+2 contain a common point c. Applying Claim 1 to this point
we obtain a BC -path between b and b′, using the point c and possibly also c0

and cn. We will call this path Y1. In the next claim we prove that c is contained
in all planes ai.

Claim 2 For all 1 ≤ i ≤ n we have c ∈ ai.

Proof of Claim 2. We will prove inductively the following claim: if c ∈ ai and
c ∈ aj , 0 ≤ i < j ≤ n + 1 (with a0 = an+1 = a), then c ∈ ak for all i ≤ k ≤ j.
The proof proceeds by induction on l = j − i.

Base case. For l = 1 there is nothing to show. Let l = 2, i.e., c ∈ ai ∩ ai+2.
By Γ7 we have ai ∩ ai+1 ∩ ai+2 6= ∅. Let c′ ∈ ai ∩ ai+1 ∩ ai+2. Claim 1 for
c′ yields a BC -path Y2 between b and b′, that contains c′ and possibly also c0

and cn. As (B,C, I) is a free pseudoplane, BC -paths are unique, and therefore
Y1 = Y2 and in particular c = c′. Hence c ∈ ai+1.

Induction step. Let l ≥ 3 and let the claim be true for all k < l. Then
we have the situation (ai, ci, . . . , ci+l−1, ai+l, c, ai). By Γ8 there exists an index
m such that i ≤ m ≤ i + l − 2 and am ∩ am+2 6= ∅. Let c′ ∈ am ∩ am+2. As
before, applying Claim 1 to c′ we get a BC -path Y2 between b and b′, using only
the points c0, cn, and c′. Then we have Y1 = Y2 and hence c = c′. Therefore
c ∈ ai∩am+1∩ai+l and the induction hypothesis yields c ∈ ai+k, 0 ≤ k ≤ l. ⊓⊔

By Claim 1 we have c ∈ a and by Assumption 1 c 6= ci, 1 ≤ i ≤ n − 1.
Together with Claim 1 we get c 6= ci, 0 ≤ i ≤ n. By Claim 2 this means
c, ci ∈ ai ∩ ai+1, 0 ≤ i ≤ n. Thus by Γ5 there exist lines bi = ai ∩ ai+1 such
that c, ci ∈ bi, 0 ≤ i ≤ n. The lines b0, . . . , bn−1 are pairwise distinct, because
if bi = bj , 0 ≤ i < j ≤ n − 1, then ci ∈ bi = bj = aj ∩ aj+1 in contradiction to
Assumption 2. By the same argument the lines b1, . . . , bn are pairwise distinct.
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Additionally, Assumption 3 yields b0 6= bn, hence all of b0, . . . , bn are pairwise
distinct. Therefore we get an AB -cycle (a, b0, a1, b1, . . . , bn−1, an, bn, a) in con-
tradiction to Γ6. Hence Assumptions 1 to 3 cannot hold simultaneously, and
the proof is complete. ⊓⊔

This enables us to prove the validity of Σ4 in Γ.

Lemma 5.2 Every model of Γ′ satisfies Σ4.

Proof. Let X = (a, b, . . . , b′, a) be an ABC -cycle. We have to construct a BC -
path Y connecting b and b′ and consisting only of points from X which are in
a. To apply the previous lemma we transform X to a cycle X ′ that contains
no lines except b and b′. To achieve this we apply the following steps a) to c)
to the inner part b, . . . , b′ of X:

a) Every walk of the form a1, b1, c1 is replaced by a1, c1. Similarly, every
walk c1, b1, a1 is shortened to c1, a1.

b) Every walk c1, b1, c2 is substituted by c1, a1, c2, where the plane a1 contains
the line b1 and does not occur in X.

c) Finally, every walk of the form a1, b1, a2 is changed to a1, c1, a2 with an
arbitrary point c1 from b1 that does not occur in X.

After these steps have been performed on X we apply the following rule:

d) If the cycle X obtained after the steps a) to c) starts with a, b, a1, then we
choose some point c0 from b, not contained in X, and replace a, b, a1 by
a, b, c0, a1. Similarly, if X ends with an, b′, a, then we insert a new point
cn ∈ b′, obtaining an, cn, b′, a.

The cycle X ′ thus obtained has the form X ′ = (a, b, c0, a1, c1, . . . , an, cn, b′, a)
and contains only planes, the lines b and b′, and all points from X as well as
new points inserted by the rules c) and d). Applying Lemma 5.1 to X ′ yields
a BC -path Y between b and b′ with points from X ′ and lines from a. The new
points introduced by the rules c) and d) can be chosen arbitrarily from infinitely
many possibilities. Therefore, as BC -paths are unique, these new points cannot
appear in Y . Hence the path Y is in accordance with the requirements from
axiom Σ4. ⊓⊔

It remains to derive axiom Σ∗
4 from Γ. This requires a similar result as

Lemma 5.1, but with a considerably simpler proof.

Lemma 5.3 In a model of Γ′ let X = (c, b, a0, c0, . . . , cn−1, an, b′, c) be a cy-

cle consisting of planes a0, . . . , an, lines b, b′, and points c0, . . . , cn−1. Then

there exists an AB-path Y = (b, a′0, b
′
0, . . . , b

′
m−1, a

′
m, b′) with {a′0, . . . , a

′
m} ⊆

{a0, . . . , an} and c ∈ a′i, 0 ≤ i ≤ m. Additionally, we have c ∈ b′i, 0 ≤ i ≤ m−1.

Proof. The last assertion c ∈ b′i follows from c ∈ a′i ∩ a′i+1 = b′i. We will show
the first part of the claim by induction on n.

Base case. For n = 0 we have X = (c, b, a0, b
′, c), and the claim holds.
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For n = 1 we have X = (c, b, a0, c0, a1, b
′, c). Because c, c0 ∈ a0 ∩ a1 there is

a line b0 = a0 ∩ a1, and hence we get the walk (b, a0, b0, a1, b
′).

For n = 2 we have X = (c, b, a0, c0, a1, c1, a2, b
′, c). By Γ7 there exists a

point c′ ∈ a0 ∩ a1 ∩ a2. We will distinguish four cases.
Case 1. c′ = c0. Then c0 ∈ a2, and there exists the cycle (c, b, a0, c0, a2, b

′, c).
We can therefore continue as in the case n = 1.

Case 2. The case c′ = c1 is analogous to case 1.
Case 3. c′ = c, and therefore in particular c′ 6= c0 and c′ 6= c1. Then there

exist lines b0 = a0∩a1 and b1 = a1∩a2, yielding the path (b, a0, b0, a1, b1, a2, b
′).

Case 4. c′ 6= c, c′ 6= c0, and c′ 6= c1. Then there exist lines b0 = a0 ∩ a1,
b1 = a1 ∩ a2, and b2 = a2 ∩ a0, i.e., we have the walk (a0, b0, a1, b1, a2, b2, a0).
From this we infer b0 = b1 = b2 (cf. the resp. part of the proof of Lemma 5.1),
and thus we obtain the path (b, a0, b0, a2, b

′).
Induction step. Let the claim be true for k < n, n ≥ 3. By Γ8 there exists

an index i, 0 ≤ i ≤ n − 2 such that ai ∩ ai+2 6= ∅. Let c′ ∈ ai ∩ ai+2. Applying
the induction hypothesis to (c, b, a0, . . . , ci−1, ai, c

′, ai+2, ci+2, . . . , an, b′, c) yields
the desired AB -path Y . ⊓⊔

Lemma 5.4 Every model of Γ′ satisfies Σ∗
4.

Proof. Let X = (c, b, . . . , b′, c) be an ABC -cycle. We search for an AB -path
between b and b′ with planes from X that contain c. We transform X to a circle
X ′ that does not contain lines others than b, b′ by applying the dual procedure
of the proof of Lemma 5.2. Applying Lemma 5.3 to X ′ yields an AB -path
Y between b and b′ with planes from X ′ and lines containing c. The planes
inserted in the construction of X ′ cannot appear in Y , because AB -paths are
unique, and for the new planes there exist infinitely many different choices.
Therefore Y meets the requirements of Σ∗

4. ⊓⊔

These preparations enable us to characterize the relationship between Σ and
Γ as follows:

Theorem 5.5 Σ and Γ′ are equivalent.

Proof. In the last section we have already shown Σ |= Γ′.
Concerning the converse Γ′ |= Σ, axiom Σ0 is identical to Γ0. To derive

Σ1, Σ∗
1, and Σ2 from Γ′ we have to check the axioms ∆ for the respective pseu-

doplanes. Axioms ∆1 and ∆2 defining the incidence relations are apparently
fulfilled. ∆3 is easily checked to follow from Γ1, Γ2, and Γ3. For ∆4 we have
to verify the absence of cycles. AB -cycles do not exist by Γ5 and Γ6. By Γ1

and Γ4 there are also no BC -cycles. Clearly, then there are also no cycles in
the pseudoplanes mentioned in Σ2.

Σ3 is equivalent to Γ5. By Lemmas 3.1 and 3.2 the axioms Σ∗
2 and Σ∗

3 hold
in Γ′. Finally, Σ4 and Σ∗

4 were proved in Lemmas 5.2 and 5.4. ⊓⊔

Corollary 5.6 Σ is the L-reduct of Γ, i.e., if M is an L′-structure such that

M |= Γ, then M |L is a model of Σ.
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This corollary also clarifies the duality between points and lines in models
of Γ, namely, if the colours are removed, then points and planes can be inter-
changed. In fact, this duality is a very natural concept, that does not even
have to be required axiomatically. We have already formulated this observation
before as Proposition 3.4, but now we can give the full proof.

Proof of Proposition 3.4. Let M be an L-structure satisfying Σ0, Σ1, Σ
∗
1, Σ2,

and Σ4. By Lemmas 3.1, 3.2, and 3.3, M also satisfies Σ∗
2, Σ3, and Σ∗

3. In the
proof of Σ |= Γ′ we only used the above mentioned axioms of Σ. In particular,
the proofs of Lemmas 4.3 and 4.4 do not involve Σ∗

4. Therefore M |= Γ′, and
with Theorem 5.5 we get M |= Σ. ⊓⊔

6 On the Non-Equationality of Γ

Baudisch and Pillay proved in [1] that the pseudospace Σ is a complete and ω-
stable theory. Once we know that Σ is a reduct of Γ, the same line of arguments
can be also used to show the completeness and ω-stability of Γ. This involves
in particular exploring the fine structure of sufficiently saturated models of Γ
and a detailed type analysis together with the computation of Morley ranks. In
comparison to [1], however, the details are somewhat more tedious due to the
richer language of Γ (a complete analysis was carried out in [2]). We will omit
this altogether and proceed to explain the original purpose of Γ as an example
of a stable and non-equational theory.

Computing Morley ranks in Γ it turns out that, as in Σ, the Morley rank
of a plane a is ω. However, in contrast to Σ, where we have MD(a) = 1, the
Morley degree of a increases to 2 in Γ, owing to the fact that a splits into
a white and a red section. For these we get MR(ar) = MR(aw) = ω and
MD(ar) = MD(aw) = 1. We collect all these facts in the following list. For
the proof we refer to [3] and [2]. For the rest of this section we work in a big
saturated model of Γ.

Fact 6.1

1. Γ is complete and ω-stable.

2. The set of points of a line b is indiscernible over b. Similarly, for every

plane a, every two points from the red section ar of a are conjugate over

a.

3. For each plane a, MR(ar) = ω and MD(ar) = 1.

Building on this analysis, the next result from [3] is the key lemma for
showing the non-equationality of Γ. In fact, it is the only place in the whole
argument where equations come into play.

Lemma 6.2 (Hrushovski, Srour [3]) Let ϕ(x, ȳ) be an equation and let d̄ be

parameters corresponding to the variables ȳ. Let further D be the realization set

of the instance ϕ(x, d̄). Then for every line b and every plane a the following

holds:
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1. If b is almost in D, i.e., all points of b except finitely many are in D, then

already all points of b are in D.

2. If MR(ar \ D) < ω, then a ⊆ D.

Proof. For the first item let us assume that there exists a point c ∈ b \ D, and
let c′ be an arbitrary point from b. By Fact 6.1 points are indiscernible over
lines, i.e., there exists an automorphism f mapping c to c′ and fixing b. We will
denote f(D) by Dc′ . Because c 6∈ D we also have c′ 6∈ Dc′ . As b is almost in D

and is fixed by f , the line b is also almost in Dc′ . Varying the point c′ we get
⋂

c′∈b Dc′ = ∅, because c′ 6∈ Dc′ . The sets Dc′ are all defined by instances of the
equation ϕ, hence there exist points c1, . . . , cn from b such that

n
⋂

i=1

Dci
=

⋂

c′∈b

Dc′ = ∅ .

But by assumption b is almost in Dci
for 1 ≤ i ≤ n and therefore also almost

in
⋂n

i=1 Dci
, which gives a contradiction.

For part 2 we first prove ar ⊆ D by a similar argument as in part 1. Assume
that there exists a point c ∈ ar \ D, and let c′ ∈ ar be arbitrary. By Fact 6.1
there exists an automorphism f such that f(c) = c′ and f(a) = a. Let again
Dc′ denote f(D). By c 6∈ D we get c′ 6∈ Dc′ . As f also fixes the red section ar

we have f(ar \ D) = ar \ Dc′ . Morley ranks are preserved by automorphisms,
hence MR(ar \Dc′) is finite. As all the sets Dc′ are defined by instances of the
equation ϕ, there exist points c1, . . . , cn such that

⋂n
i=1 Dci

=
⋂

c′∈ar
Dc′ = ∅.

Therefore
⋃n

i=1 ar\Dci
= ar. But MR(ar\Dci

) < ω, contradicting MR(ar) = ω.
This shows ar ⊆ D.

It remains to show aw ⊆ D. For this let c ∈ aw. There exists a red line b in
a that contains c, i.e., c is the exceptional point of b in a. Then b is contained
almost in ar, hence also almost in D. By part 1 we conclude that the whole
line b lies in D, hence in particular c ∈ D. ⊓⊔

This lemma enables us to give the proof of the main theorem of [3] stating
the non-equationality of the pseudospace Γ. More concretely, the theorem also
exhibits a non-equational formula: Ir(x; y) defining the red section of the plane
specified by the parameter y. Before giving the precise argument, let us provide
a more intuitive explanation why Ir(x; y) is no equation. Let ai, i ∈ ω, be
pairwise distinct planes which intersect in a common line b. Moreover, assume
that b is red, but the exceptional point ci of b is different on all planes ai. Then
⋂

i∈ω(ai)r = b \ {ci | i ∈ ω}. It is clear that the intersection
⋂

i∈ω(ai)r is not
equal to a finite sub-intersection. Hence Ir(x; y) is no equation.

Of course, to prove non-equationality of Γ we need to show that Ir(x; y) is
not even equivalent to a Boolean combination of equations. This is done in the
proof of the following theorem.

Theorem 6.3 (Hrushovski, Srour [3]) Γ is not equational. More precisely,

the formula Ir(x; y), defining the red section of a plane, is not equivalent to a

Boolean combination of equations.
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Proof. We fix a big saturated model M of Γ and denote by ϕM the realization
set of a formula ϕ in M . Let now a be a plane and assume that its red section
ar can be defined by a Boolean combination of equations

ar =





n
∨

i=1





ni
∧

j=1

ψij ∧

n′

i
∧

j=1

¬ψ′
ij









M

,

where ψij and ψ′
ij are instances of equations ϕij and ϕ′

ij . Finite conjunctions
and finite disjunctions of equations are again equations (cf. [5]). Using the

abbreviations ϕi =
∧ni

j=1 ϕij and ϕ′
i =

∨n′

i

j=1 ϕ′
ij we can therefore write ar as

ar =

(

n
∨

i=1

ψi ∧ ¬ψ′
i

)M

where ψi and ψ′
i are instances of the equations ϕi and ϕ′

i.
Because MR(ar) = ω, there exists an index j, 1 ≤ j ≤ n, such that MR((ψj∧

¬ψ′
j)

M ) = ω. Let Y = (ψj ∧ ¬ψ′
j)

M . From MD(ar) = 1 and MR(ar) =
MR(Y ) = ω we conclude MR(ar \ Y ) < ω.

Because ar \ ψM
j ⊆ ar \ Y , we get MR(ar \ ψM

j ) ≤ MR(ar \ Y ), hence in

particular MR(ar \ψM
j ) is finite. Part 2 of Lemma 6.2 then yields a ⊆ ψM

j . As

Y ⊆ ar, this implies aw ⊆ ψ′
j
M . As in the proof of part 2 of Lemma 6.2 this

extends to a ⊆ ψ′
j
M . Namely, if c ∈ ar, then there exists a white line b in a

such that c is the exceptional point of b in a. As b is almost in ψ′
j
M we get by

part 1 of Lemma 6.2 b ⊆ ψ′
j
M and hence c ∈ ψ′

j
M . Now we have Y ⊆ ar and

a ⊆ ψ′
j
M which implies Y = ∅. But this means MR(ar) = MR(ar \ Y ) < ω in

contradiction to MR(ar) = ω. ⊓⊔

The free pseudospace Γ was constructed as a first example of a stable and
non-equational theory. Recently, Sela [11] has shown that also non-abelian
free groups are stable non-equational. Already Hrushovski and Srour remark
in [3] that, although Γ is not equational, it is almost equational, a weakening
of equationality where the forking relation is controlled by equations (cf. [6]).
It remains as an open problem to construct a theory that is simple (or even
stable) but not almost equational.
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