
Archl\'efor

Arch. Math. Logic (1988) 27: 149-160 Mathematical
Logic

© Springer-Verlag 1988

Equivalence of Bar Recursors in the Theory
of Functionals of Finite Type

Marc Bezem

Centre for Mathematics and Computer Science, P.O. Box 4079, NL-1009 AB Amsterdam,
The Netherlands

Abstract. The main result of this paper is the equivalence of several definition
schemas of bar recursion occurring in the literature on functionals of finite
type. We present the theory of functionals of finite type, in [T] denoted by
qf-WE-HA'°, which is necessary for giving the equivalence proofs.
Moreover we prove two results on this theory that cannot be found in the
literature, namely the deduction theorem and a derivation of Spector's rule of
extensionality from [S]: if P-+T1 =T2 and Q[X:=T1], then P-+Q[X:=T2],

from the at first sight weaker rule obtained by omitting "P-+".

Chapter 1. Introduction to Language and Theory
of Functionals of Finite Type

§ 1. The Language

1.1. Types are 0 and with a and• also (a)r (often written as a-+r in the literature).
The language for functionals of finite type is quantifier-free, contains the

propositional operators ", v, -+, and --, , variables for each type, constants of
types specified below, and equality = between objects of type 0. For the variables
we use a0, . .• , z0 , A", ... , za for all types a; type superscripts are often omitted. The
constants are (E expresses "of type")

OeO (zero),

$e(O)O (successor),

Ka.rE(a)(•)a (combinator K),

s11,a,tE((e)(a)r)((e)a)(e)r (combinator S),

Ra E (a)((a)(O)a)(O)a (primitive recursor),

Ba, t E (((O)a)O) (((O)a) (O)r) (((a)r) ((O)a) (O)r) ((O)a) (O)• (bar recursor),

for all types Q, a, r; type subscripts are mostly omitted. Confusion of variables and
constants (introduced by omitting super- and subscripts) will be avoided by not
using the letters K, S, R and B for variables.

150 M. Bezem

The set of terms of the theory Tu BR contains all variables and constants and is
closed under the following application: if T1 is a term of type (a)-rand T2 is a term of
type a, then (T1 T2) is a term of type 1:. Thus for application no other symbols than
(and) are needed, since application is denoted by juxtaposition. We further reduce
the notational overhead by taking association to be to the left and by omitting
outer parentheses. We use t resp. Tas syntactical variables for terms of type 0 (t e 0)
resp. terms of type a (Te a). Syntactical identity of terms will be expressed by =.
Numerals are defined by Q=O; n + 1 = $.n. (n is here used as a meta-variable).
Underlining will be omitted when confusion is not likely. Closed terms (or
functionals) are terms not containing variables. We use Fas syntactical variable for
closed terms of type a (Fe a).

Prime formulas are equations between terms of type 0. Formulas are
constructed from prime formulas with the help of the propositional operators. As
syntactical variables for formulas we use P and Q. Substitution, e.g. of a term T for
all occurrences of a variable X in a formula P, will be denoted by P[X: = T].

Confusion of variables with arbitrary terms, numerals, closed terms or
formulas will be avoided by not using t, T, n, F, P and Q for variables.

1.2. Let us sum up the notational conventions introduced above.

0, $, K, S, R, B constants

t, t 1, t2,... terms of type 0

T, T1, T2, •.. terms of arbitrary type a

n, 11, 0, 1, ... numerals

F, F 1, F 2, . • . closed terms

P, Q, Q[y: = t],... formulas

all other lower case letters variables of type 0

all other capitals variables of arbitrary type a.

§ 2. The Theory

2.1. Godels theory Tof primitive recursive functionals is axiomatized as a Hilbert­
type system. Derivations do not depend on assumptions. Axioms and rules of
inference are specified below.

For all terms T1, T2 of type (a 1) •. • (ak)O, let T1 = T2 be a permanent abbreviation
of T1 X"' ... xak = T2 Xa' ... Xak, where X"', ... , xak are distinct variables not occur­
ring in Tt> T2•

Axioms and Rules of T:

Rules and axioms of intuitionistic propositional calculus, e.g. as in [T, 1.1.3].
A substitution rule:

Equivalence of Bar Recursors 151

Equality axioms:

x=x, (x=yl\x=z)-+y=z, x=y-+t[z:::x]=t[z:::y].

Successor axioms:

10=$x, $x=$y-+x=y.

A rule of induction:

if P[x::=O] and P-+P[x::=$x], then P.

The following defining equations for the constants (of all appropriate types):

KXY=X, SXYZ=XZ(YZ), RXYO=X, RXY($z)=Y(RXYz)z.

A rule of extensionality:

if P-+T1 = T2 and Q[X:= T1], then P-+Q[X:= T2]

(provided that the variables that are suppressed in the abbreviation T1 = T2 occur
neither in P, nor in Q).

This completes the description ofT. In the terminology of [T] this theory is one
of the theories called qf- WE - HAw (the extensionality rule may vary a little, see
[T, 1.6.12ff.]).

2.2. Before we can give the defining equations for the constant B, the bar recursor,
we have to make two extra provisions.

Firstly we apply Curry's method from [CF] to define A-abstraction. By
induction on the construction of terms we define AX· X = SKK, AX· T= KT (T
a constant or a variable different from X) and AX· T1 T2 = S(AX · T1) (AX· T2).

Thus for every term T there exists a term AX· T such that (AX· T) Y = T[X: = Y].
Secondly we need some special primitive recursive functionals. Define constant

functionals of type (J by
no =n.;

n«* = K,,un' for all n.

In order to avoid confusion with numerals we shall not omit type superscripts
in denotations of constant functionals. For all types rr there exist primitive
recursive functionals [] and * such that (cf. [L, p. 22])

y<x-+[C]xY= Cy, y~x-+[C]xy=Oa,
and

y=Fx-+(C *xX)y= Cy, y=x-+(C *xX)y= X

are provable in T. Here C is of type (O)rr, X of type (J, and <, ~, =F abbreviate their
codifications in T. Moreover we shall write x+ 1 for $x.

Bar recursion is a principle of definition by recursion on a well-founded tree of
finite sequences of functionals of type (J. Following Spector [S] we use the pair
([C]x, x) to represent the finite sequence (CO, ... , C(x-1)). The defining equations
for B (of all appropriate types) are:

Y[C]x<x-+BYGHCx=G[C]xx,

Y[C]x~x-+BYGHCx=H(AX · BYGH[C *xX]x+ 1(x + 1)) [C]xx.

152 M. Bezem

These defining equations are often referred to by "the schema of bar recursion" or
"the definition schema of B" and are written informally (omitting Y, G, H as
arguments of B) as

BCx= {
G[CJxx if Y[CJx<x,
H(.A.X · B[C *xXJx+ 1(x+ 1))[CJxx else.

Let BRa,t denote the definition schema of Ba,t and let BR"= utBRa,t> BR
= uaBRa. Tu BR is thus simply T with axioms BR added.

§ 3. Remarks on the Theory

3.1. Without excessive effort (see [L, p. 20]) the decidability of prime formulas can
be shown in T and TuBR, i.e.,

f--x=yvx=Fy.

Since Tu BR does only contain propositional operators and no quantifiers, it
follows by formula induction that all formulas are decidable. As a consequence we
could have taken classical instead of intuitionistic propositional logic. However,
we opted for intuitionistic logic, so that TuBR is a member of the family
... - HA"'+ ... described in [T].

Another consequence is that Tu BR can be presented as an equational calculus.
For, the classical truth functions are primitive recursive and can hence be
represented by certain functionals in T. Replacing the propositional connectives
by these functionals changes every formula into an equivalent formula of the
form t=O.

3.2. As stated in Sect. 2, we only consider derivations without assumptions in
TuBR ("f-"). This is considered no restriction, provided that the deduction
theorem holds in case also derivations depending on assumptions are allowed
('Tf-"). However, liberalizing rules of inference from "f-" to 'Tf-" must be done
carefully. Of course the substitution rule (if P, then P[X: = T]) and the induction
rule(if P[x:=:O] and P-+P[x:=$x], then P) only remain correct if X and x do not
occur in any assumption on which the premiss depends. The same applies to the
variables that are suppressed by the abbreviation T1 = T2 in the rule of
extensionality (if P-+T1 = T2 and Q[X:= T1], then P-+Q[X:= T2]). All other rules
are unproblematic.

Now the deduction theorem is proved as usual by induction on the length of
derivations. The only step in this proof that we did not find in the literature,
although not very different from the other steps, is the following. Suppose the last
step in some derivation with assumptions P 0 , P 1, ... , P n is an inference by the rule
of extensionality:

if P-+T1 =T2 and Q[X::=T1], then P-+Q[X:=:T2].

Then the variables suppressed by the abbreviation T1 = T2 do not occur in P, Q, nor
in any assumption on which the premiss depends. By the induction hypothesis
from the proof of the deduction theorem we have

P 1, ..• ,Pnf--P0 -+(P-+T1 =T2), P0 -+Q[X:=:T1].

Equivalence of Bar Recursors 153

Hence by intuitionistic propositional logic

P1, ... ,Pnl-(Po" P)-+T1 = T2 , P0 -+Q[X:= T1].

Since variable X has only a syntactical meaning in Q[X: = T;], it can be renamed.
So we can assume without loss of generality that X does not occur in P 0 • Hence
(Po-+Q)[X:=T;J is identical to P0 -+Q[X:=T;] (i=1,2). Moreover, no variables
occur anywhere they should not, hence by the rule of extensionality we have

P 1, .•• , Pnl-(Po "P)-+(P 0 -+Q[X: = T2]).

By intuitionistic propositional logic we can conclude

3.3. One might ask for the reason of the double use of"P-+" in the extensionality
rule

if P-+T1 =T2 and Q[X:=T1], then P-+Q[X:=:T2].

Taking 0 = 0 for P yields the rule

if T1 = T2 and Q[X:= T1], then Q[X:=: T2].

The reason is simply that the defining equations of the bar recursor are of the form
P-+ T1 = T2 • The rule with "P-+" is used (implicitly) in [S] in the proof of the
soundness of the Dialectica interpretation. Moreover, the part of the proof of the
deduction theorem given above fails for the rule without "P-+". In the literature
we could not find any remark to the effect that the rule with "P-+" can be derived
from the rule without "P-+". We therefore prove the following

Lemma. The rule of extensionality with "P-+" can be derived from the rule of
extensionality without "P-+".

Proof Assume the rule without "P-+". We shall prove the rule with "P-+" with
t1 =0 for P and t =0 for Q. By 3.1 this is sufficient for the rule with "P-+". Suppose
t1 =0-+T1 = T2 and t[X:= T1] =0 have been derived. Define (for i= 1, 2)

T;' = R r;o<a><O>a, with u the type of T;.

Then we have (for i = 1, 2 and x not occurring in T;):

(*) {x=O-+T;'x= T;,
x=!=O-+T;'x=Oa.

From T;'O=T; it follows by extensionality without "P-+" that t[X:=T;J
=t[X:= T;'O]. By the axiom x= y-+t[z:=:x] =t[z:=y] we have ti =0
-+t[X: = T;'O] = t[X: = T;'t 1]. By t 1 =0-+ T1 = T2 (and the decidability oft 1 =0) it
followsfrom(*)that T{t 1 = T:2t 1,andhencewehave, again byextensionalitywithout
"P-+'', t[X:= T{t 1] =t[X:=: T:2t 1]. It follows that

t 1 =0-+t[X:= T2] = t[X: = T;20] =t[X:= T:2t 1]

= t[X:=: T{t 1] =t[X:= T{O] =t[X::= T1] =0. 0

' 4

154 M. Bezem

As a consequence we obtain the deduction theorem for the rule without "P-""
(the disproof of this fact in [T, 1.6.12] is not correct, since x" = y" is an assumption
containing suppressed variables, and as such no legal premiss of the rule of
extensionality). We are indebted to Henk Barendregt for his persistence in urging
us to prove (or disprove) the equivalence of both extensionality rules.

3.4. It is worth noting that pairing is possible in Tu BR. As a consequence we can
reduce the study of simultaneous recursors etc. to the single case.

3.5. We could have taken Jc-abstraction as a primitive, instead of the com­
binatorial version of Sect. 2. Because of the presence of the extensionality rule,
these two versions are equivalent (in the sense of [Ba, 7.3.10]).

Chapter 2. Some Equivalent Bar Recursors

§ 1. Introduction

1.1. Let [X] and [Y] be any of [S, H, Ta, VJ or [BJ. Let B;,, be the bar recursor
occurring in place [X ·] in literature, with defining equations BR;,,. We shall
construct, primitive recursively in B~." for suitable type T1 depending on a and T, a
functional B which satisfies, provably in TuBRv, the defining equations of B;,,, and
vice versa. Hence TuBRx and TuBRY are equivalent.

1.2. Bar recursors can differ in many respects, such as:
(1) permutations of arguments
(2) different representations of finite sequences of functionals
(3) use of A-operator or A-free
(4) number of arguments of G and H.
We consider (1) as trivial and shall only pay attention to differences of the kinds (2),
(3), and (4).

1.3. Though the proofs are presented informally, they can easily be formalized in
Tu BR ("by induction" and "by extensionality" refer to the corresponding rules of
T). The general form of all proofs in this chapter is the following: Assume P-" T1

= Tz by BRY. By induction and extensionality we prove P'~P, T1 = r;, T2 = r;,
and hence P'-'> r; = r;. It follows that BRX holds.

Extensionality will only be used in the form without "P-"" (see Chap. 1, 3.3).

1.4. We shall slightly deviate from the notational conventions introduced in the
previous chapter. Bar recursors that are constants are denoted by B8 , Bv etc.,
whereas B is used to denote a defined bar recursor. Moreover, Y8, GR, HT etc.
abbreviate certain defined terms. We shall often suppress the denotations of the
first three arguments of a bar recursor. This will be indicated by underlining the
denotation of the bar recursor, e.g., 1) abbreviates BYGH.

§ 2. Spector~Howard

2.1. We recall from Chap. 1 Spector's schema of bar recursion:

B'Cx=
s {G[CJxx if Y[CJx<x,

- H(J.X · $ 8[C *xXJx+ 1(x+1))[CJxx else.

Equivalence of Bar Recursors 155

Howard formulates the schema of bar recursion directly in terms of finite
sequences of functionals. Therefore we have to extend language and theory with
types au for finite sequences<·, ... ,·) of functionals of type (J, with variables a"u for
each type au, as well as length functionals lh, concatenation operators *
(addition of one element at the end) and projection operations: a, equals the i-th
component of a. if i < lh a., and O" else. These objects are given their usual
properties by suitable axioms. Let [a]= J,i · a, E (O)(J and Cx
=<CO, ... , C(x-1)) E (Ju for C E (O)a. Note that the extension is definitional,
since finite sequences of functionals can be coded, e.g., by functionals of type (O)(J,
with lh, *, [] and - primitive recursive. Now we are able to formulate Howard's
schema of bar recursion:

(BRH) BHa = {Ga. if Y[a.] <Iha,
- H(J .. X · pH(a. * X))rx else.

2.2. The equivalence of B8 and BH is obtained as follows.
Define B=dYGHCx·BHYGHHH(Cx), with GH=A.ix·G[a.]lhiX and HH

:= ~Za. · HZ[1X]lha.. Then by BRH B satisfies:

{
G8 (Cx)=G[Cx]lh(Cx) if Y[Cx]<lh(Cx),

fJCx= H 8 (2X · f}8 (Cx * X))(Cx) else.

Since lh(Cx)=x, [Cx]=[CJx (provable by induction) and [C*xXJx+ 1(x+1)
= Cx * X, it follows by extensionality that Y[Cx] = Y[CJx and
fl[C*xXJx+ 1(x+1)=fl8 (Cx*X). Hence by the definition of HH and again by
extensionality it follows that

H 8 ()..X · f}H(Cx * X)) (Cx) = H(A.X · fl[C *xXJx+ 1(X + 1)) [CJxx ·

Hence by extensionality B satisfies BR8 :

BCx = {G[CJxx if Y[CJx < x,
- H(A.X · .f}[C *x X]x+ 1(x + 1)) [CJxx else.

For the converse define B :=A. YGHa · B8 YG8H 8 [a.] lhiX, with G8 = A.Cx · G(Cx)
and H 8 =A.ZCx · HZ(Cx). Then by BR8 B satisfies:

{
G8 [[a.J]Ih,Jh1X if Y[[1X]]1ha</h1X,

!}a= H 8(2X · p8 [[a.] *Iha X] 1 + lha(1 + lha.)) [[rx]] 1h)ha else.

Since [[cx]Jiha =[a.] and [a* X] =[[a] *Iha X] 1 +Iha (both provable by induction), it
follows by extensionality that Y[[a]]Iha= Y[a] and

,Q(a * X) = IJ8 [a * X]lh(a. * X) = fl8 [[1X] *Iha X] 1 +lha(l +Iha.)·

Moreover [a.]lha =a., hence by the definition of G8 and H 8 and again by
extensionality it follows that B satisfies BRH:

{
Ga if Y[a J < lhiX,

Ba.=
- H(A.X · fl(a * X))a else.

2.3. In [VJ and [BJ the representation of finite sequences differs from [S]. It turns
out to be useful to show first that B8 and B1, the bar recursor obtained from B8 by
using another representation of finite sequences, are equivalent.

156 M. Bezel

Corresponding to [o:] and [CJx we define primitive recursively { o:} and { C}
such that

y <Iha-+{ o:}y = Cty, y ~ lhcx > 0-+{ et }y = CXihcx- 1 , { <) }y =0"'
and

y<x-+{C}xY= Cy, y~x>O-+{C}xy=C(x-1), { C}oy=O" ·

Let B1 abd Bf be constants with defining equations BR 1 resp. BRf obtained b:
replacing [] by { } in BR8 resp. BRH. The equivalence of B 1 and Bf follow
immediately from 2.2 by replacing everywhere [] by { }. BH and Bf ar
interchangeable with respect to [HJ: Howard only requires [et] to be a functiona
extending ex "in some systematic way (by primitive recursion)".
. We prefer to prove the equivalence of B5 and B1 instead of BH and Bf. Forth

construction of B8 from B1 we can use essentially the same argument as in [BJ. A
pointed out by Howard, the converse can be obtained by an adaptation of thi
argument.

For CE(O)u we define primitive recursively c+ and c- by

c+ =A.x ·(CO+ ... + Cx) and c-o= CO,

c-x=Cx...:...C(x-1) for x>O.

When u=O these definitions are unproblematic, when u=FO the operators _,_ (cut
off subtraction) and + are hereditarily defined: T1 + T2 = A.X · (T1X + T2X)
T1...:... T2 =A.X · (T1X...:... T2X). By induction we have c+ - = C and {C+}; = [CJx·

Define B=:.A.YGHCx·B1Y1G1H 1(C+)x, with Y1:dC· Y(C-), Gi
=:A.Cx·G(C-)x and H 1 =:A.ZCx·H(A.X·Z(Cx+X))(C-)x. Then by BR 1 I.
satisfies:

BCx= lGi{ c+}xx= G({C+};)x if Yi { c+ }x< x
- H 1(A.X ·B1{c+ *xXL+ 1(x+1)){C+}xX

=H(A.X · B1 { c+ *A{ c+}xx + X)}x+ 1(x+ 1)) ({ c+ };)x
otherwise.

Since {c+};.=[CJx it follows by extensionality that Y1{C+}x=Y({C+}_;:
= Y[CJx and Gi{C+}xx= G[C]xx. Since { c+ *x({ c+ }xx+ X)}x+ 1
=([C*xXJx+ 1)+ (provable by induction) and hence by extensionality

8[C *x X]x+ 1(X+ 1)=fl1(([C *xX]x+ 1)+)(x + 1)

=B1{C+*A{C+}xx+X)}x+l (x+1),

it follows again by extensionality that B satisfies BR5 :

BCx= {G[C]xX if Y[CJx<x,
- H(.A.X·8[C*xXJx+ 1(x+1))[CJxx else.

For the converse we would like to apply an argument similar to the one above.
A problem is that we are not allowed to use negative numbers and, as a
consequence,...:... must be cut-off subtraction. But if we could replace-=- by ordinary
subtraction we would have c- + = C and [c-1: = { C}x. So the problem is
overcome if we encode integers as natural numbers, e.g., by interpreting 2x as x and
2x+ 1 as -(x+ 1). Then operations +and - for integers can easily be defined by
primitive recursion. Let also c+ and c- be redefined for integers.

Equivalence of Bar Recursors 157

Define B=.)SGHCx·B8 Y8G8H8(C-)x, with Y8 =.A.C·Y(C+), G8

=..A.Cx · G(C+)xandH8 =.A.ZCx · H(A.X · Z(X -(C+)x))(C+)x.Since[c-J; = {C}x
(provable by induction), we have by extensionality that

and

Since

and

Y8 [C-Jx= Y([c-J;)= Y{ C}x, G8[C-Jxx= G([c-J;)x= G{C}xx

H8(A.X·88 [C- *xXJx+ 1(x+1))[C-Jxx

=H(A.X · 88 [C- *AX -([c-J;)x)]x+ 1(x+ 1))([C-]Jx

= H(A.X · 88 [C- *x(X -{ C}xx)]x+ 1(x + 1)) { C}xX.

({ C *x X}x+ 1)- = [C- *x(X -{ C}xxDx+ 1,

it follows by BR8 and again by extensionality that B satisfies BR 1•

§ 3. Spector-+--'> Tait

For his computational analysis, Tait considers BT only as a combinator, but the
corresponding schema BRT of defining equations is easily read off from the
conversion rules:

Br is different from B8 since G and H appear with fewer arguments. Equivalence
is obtained as follows.

Define B=.A.YGHCx · B8 YG8H8Cx, with G8 =.A.Cx · G and H8 =.A.ZCx ·HZ.
Then B trivially satisfies BRT by BR8 Gust throwing away arguments).

For the converse, define B=A.YGHCx · BTYGHTCx[C]xx, with HT
= A.ZCx · H(A.X · ZX[C *xX]x+ 1(x+ 1))Cx. Then by BRT B satisfies:

BCx= 1G[C]xx if Y[CJx<x
- HT(A.X·8T[C*xX]x+1(x+1))[C]xx

=H(A.X · pT[C *x X]x+ 1(x+ 1) [[CJx *xX]x+ 1(x + 1)) [CJxx
else.

Since [[C *xX]x+ 1 = [[CJx *xX]x+ 1 (provable by induction), it follows by
extensionality that

8[C *x X]x+ i(X+ 1) = 8T[C *xX]x+ 1(X+ 1) [[C *xXJx+ 1Jx+ 1(x+ 1)

= 8T[C *x X]x+ 1(X + 1) [[CJx *xXJx+ 1(X + 1) ·

Hence again by extensionality it follows that B satisfies BR8 :

158 M. Bezem

§ 4. Spector~ Vogel

The equivalence of B5 andB 1 has already been established in Sect. 2. We prefer to
compare BY with B1, since Vogel uses the same representation of finite sequences
as used in BR 1• The schema BRv corresponding to Vogel's conversion rules is:

BVCxU= {G{C*xU}x+1(x+1) if Y{C*xU}x+i~X,
- H(1t{C*xU}x+ 1(x+1)){C*xU}x+ 1(x+1) else.

Equivalence of BY and B1 is obtained as follows.
Define B::AYGHCxU · B1 YGH{C *x U}x+ 1(x+ 1), then by BR 1 B satisfies:

BCxU= if Y{{C*xU}x+1}x+1<x+1, {

G{ { C *x U}x+ 1}x+ 1(x+ 1)

- H(AX · -P1{ { C *x U}x+ 1*x+1X}x+ix+2)) { { C *x U}x+ dx+ 1(X + 1)
otherwise.

By induction we have {{C *x U}x+ 1}x+ 1 = { C *x U}x+ 1. By extensionality we have

.P{ C *x U}x+ 1(x+ 1) =AX· P{ C *x U}x+ 1(x+ 1)X

=AX. P1 { {C *x U}x+ 1*x+1 X}x+2(x+2).

It follows again by extensionality that B satisfies BRv:

BCxU= {G{C*xU}x+1(x+1) if Y{C*xU}x+ 1 ~x,
- H(tl{ C *x U}x+ i(x + 1)) { C *x U}x+ 1(x + 1) else.

For the converse, define B::AYGHCx · BvYGH{ C}x~ 1(x-'-1) (C(x-'-1)). Then
by BRv B satisfies for all x>O:

.PCx= {G{{;}x-1 *x-1 C(x-1)}xx if Y{{C}x-l *x-l C(x-1)}x~x-1,
H(.P {{C}x-1 *x-1 C(x-1)}xx){{C}x-1 *x-1 C(x-1)}xx

else.
Since {{C}.,- 1 *x-l C(x-1)}x={{C*xX}x+dx (provable by induction), we have
by extensionality

pv{{C}x-1 *x-1 C(x-1)}xX=AX·PY{{C}x-1 *x-1 C(x-1)}xxX

=AX· .PY{ { C *xX}x+ 1}xxX =AX· P{ C *x X}x+ 1(x + 1).

Moreover, by induction we have {{C}x-l *x-l C(x-1)}x={C}x. It follows again
by extensionality that B satisfies BR 1 for all x > 0:

BCx= {G{C}xx if Y{C}x<x,
- H(AX·P{C*xX}x+ 1(x+1)){C}xx otherwise.

So if we redefine B for x = 0 by

BYGHCO=H(AX · BYGH{C*0 X} 11) {C} 00

it follows that B satisfies BR 1 for all x.

Equivalence of Bar Recursors

§ 5. Spector~Bezem

In [BJ the following schema BRB is used:

(BRB) BBCx = {GCx
- H(A.X·l;18 {C*x+ 1X}x+2(x+1))Cx

if Y{C}x+1<X,
else.

159

Equivalence of BB and B 1 is obtained as follows. Let 0 * C, for C of type (O)a, be
defined by:

x=0--+(0* C)x=Oa-, x>0--+(0 * C)x=C(x-1).

Define B=A.YGHCx · BBYBGBHB{O* C}x+ 1x, with Y8 :=AC· Y(A.y· C(y+ 1)),
G8 =A.Cx · G(A.y· C(y+ 1))x and H8 :=AZCx· HZ{A.y · C(y+ 1)}xx. Then by BR8 B
satisfies:

BC = {G8 {0*C}x+1X if yB{{O*C}x+1}x+1<X,
- X H8 (A.X·l;18 {{0*C}x+l *x+1X}x+2(x+1)){0*C}x+1X

else.

By induction we can prove {{O*C}x+i}x+ 1={0*C}x+ 1 and {C}x
=A.y · {O * C}x+ 1(y+ 1). Hence it follows by extensionality that

Y8 { {O * C}x+ dx+ 1 = Y(A.y. {O * C}x+ 1(Y+ 1))= Y{ C}x

and

Since also

{O * { C *xX}x+ 1}x+ 2 = { {O * C}x+ I *x+ 1 X}x+2

(provable by induction), we have by extensionality

.8{ C *x X}x+ 1(X + 1)= 88 {0 * { C *xX}x+ 1}x+ i(x+ 1)

=88 {{0*C}x+1 *x+1X}x+2(x+1).

It follows again by extensionality that B satisfies BR 1 :

{ G{C}xx if Y{C}x<x,
BCx-
- - H(A.X · 8{ C*xX}x+ 1(x+ 1)){C}xx else.

For the converse, define B=A.YGHCx·B 1 Y1G1H1C(x+1)C, with Y1
:=A.C· YC+1, G1 =A.DyC·GC(y-'-1) and H 1:..1.ZDyC-H(A.X·ZX{C*yX}y+1)
C(y-=-1).
Then by BR 1 B satisfies:

BCx-1G1 { C}x+ 1(x + 1)C= GCx if Y1 { C}x+ 1<x+1,
- - H 1(A.X·.81{C*x+ 1X}x+2(x+2)){C}x+1(x+1)C

= H(A.X · 8 1 { C *.x+ 1 X}x+2(x +2) {C *x+ 1 X}x+2)Cx
otherwise.

160

By the definition of B we have

Q{ C *x+ 1X}x+2(X+1) =D1 { C *x+ 1X}x+2(x+2) { C *x+ 1 X}x+2 ·

Since Y1 = A.C · Y C + 1 it follows by extensionality that B satisfies BRB:

{ GCx if Y{C}x+i <x,
BCx=
- H(A.X·Q{C*x+ 1 X}x+zCx+1))Cx else.

References

[Ba] Barendregt, H.P.: The lambda calculus. Amsterdam: North-Holland 1984

M. Bezem

[BJ Bezem, M.A.: Strongly majorizable functionals of finite type: a model for bar recursion
containing discontinuous functionals. J. Symb. Logic 50, 652-660 (1985)

[CF] Curry, H.B., Feys, R.: Combinatory logic. Amsterdam: North-Holland 1958
[HJ Howard, W.A.: Functional interpretation of bar induction by bar recursion. Compos.

Math. 20, 107-124 (1968)
[L] Luckhardt, H.: Extensional GOdel functional interpretation. (Leet. Notes Math., vol. 306)

Berlin Heidelberg New York: Springer 1973
[S] Spector, C.: Provably recursive functionals of analysis: a consistency proof of analysis by an

extension of principles formulated in current intuitionistic mathematics. In: Dekker, J.C.E.
(ed.): Proceedings of symposia in pure mathematics V, pp. 1-27. Providence: AMS 1962

[TA] Tait, W.W.: Normal form theorem for bar recursive functions offinite type. In: Proceedings
of the second scandinavian logic symposium, pp. 353-367. Amsterdam: North-Holland
1971

[TJ Troelstra, A.S. (ed.): Metamathematical investigation of intuitionistic arithmetic and
analysis. (Leet. Notes Math., vol. 344) Berlin Heidelberg New York: Springer 1973

[VJ Vogel, H.: Ein starker Normalisationssatz fiir die barrekursiven Funktionale. Arch. Math.
Logik Grundlagenforsch. 18, 81-84 (1976)

Received August 31, 1987

