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Abstract

We investigate proof theoretic properties of logical systems via algebraic methods.
We introduce a calculus for deriving multiple-conclusion rules and show that it is
a Hilbert style counterpart of hypersequent calculi. Using step-algebras we develop
a criterion establishing the bounded proof property and finite model property for
these systems. Finally, we show how this criterion can be applied to universal classes
axiomatized by certain canonical rules, thus recovering and extending known results
from both semantically and proof-theoretically inspired modal literature.
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1 Introduction

In this paper we continue the proof theoretic investigations of modal logic via al-
gebraic methods which started in [4,5]. In [4,5] the bounded proof property (the
bpp), which is a kind of analytic subformula property, was introduced as a mea-
surement of robustness of proof systems. An algebraic criterion was developed
in [4, 5] establishing whether a modal system axiomatized by standard rules
possesses the bpp. Here we extend this research in two directions. First, we
investigate more expressive proof systems axiomatized by multiple-conclusion
rules for which we develop equivalent systems via hypersequent calculi and
prove for them an algebraic criterion for the bpp. Second, for a large class of
logics (stable logics) we systematically design proof systems that have the bpp
(see Section 5). Thus, we are at a position to not only check whether a system
is robust, but also to design robust proof systems, by finding appropriate rules.

1 Partially supported by the Rustaveli Foundation of Georgia grant FR/489/5-105/11.
2 Supported by the PRIN 2010-2011 project “Logical Methods for Information Management”
funded by the Italian Ministry of Education, University and Research (MIUR).
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Multiple-conclusion rules recently gained attention in the modal logic lit-
erature (see e.g., [3, 16, 18]), because they constitute an essential tool for in-
vestigating classes of algebras beyond varieties and because canonical formulae
axiomatizations can be nicely developed within this framework. On the other
hand and from a completely different research perspective, the proof-theoretic
oriented community realized that standard sequent formalisms are insufficient
to handle complex logics and moved to more expressive hypersequent calculi
(compare for instance the simplicity of communication rules used for the logics
of linear frames developed in [1] with the more complex systems needed for cut
elimination in the traditional context [10,14]).

In this paper we connect multiple-conclusion rules and hypersequent calculi.
To our best knowledge, no explicit calculus for multiple-conclusion rules has
been proposed so far. Note that for semantic investigations such as [3, 16], it
is in fact sufficient to specify abstractly the properties that a rule system (seen
just as a set of rules) should satisfy. On the other hand, a specific calculus for
multiple-conclusion rules is needed if we want to make a close comparison with
the hypersequent approach. This calculus will play the role of a Hilbert calculus
for hyperformulae, i.e., for the syntactic components of a hypersequent. We
will introduce such a calculus and investigate it using the techniques developed
in [4, 5]. These techniques, based on semantic analysis of ‘step’ structures,
have been shown to be rather effective in establishing the bpp. Our long-term
proposal is to apply these techniques to obtain the bpp and the finite model
property (the fmp), thus also decidability, for logics axiomatized by canonical
formulae. In this paper, we report a first success in this direction, already
covering the bpp and fmp for a continuum of logics, including some of those
recently analyzed in [19] via the hypersequent approach.

Proofs of the results from Section 2 will be deferred to the appendix. Proofs
of the results from Sections 3 and 4 (requiring routine adjustments from the
corresponding proofs in [4, 5]) are included only in the Technical Report [6].

2 A calculus for derived multiple-conclusion rules

Modal formulae are built from propositional variables x, y, . . . by using the
Booleans (¬,∧,∨,→, 0, 1) and modal operators (3,2). For simplicity, we take
¬, ∧, 3 as primitive connectives, the remaining ones being defined in the cus-
tomary way (in particular, 2 is defined as ¬3¬). We shall also use parameters
a, b, . . . instead of variables whenever we want to stress that uniform substitu-
tion does not apply to them. Underlined letters stand for tuples of unspecified
length and formed by distinct elements, thus for instance, we may use x for a
tuple such as x1, . . . , xn. When we write φ(x) we want to stress that φ contains
at most the variables x (and no parameters) and similarly when we write φ(a)
we want to stress that φ contains at most the parameters a (and no variables).
The same convention applies to sets of formulae: if Γ is a set of formulae and
we write Γ(a), we mean that all formulae in Γ are of the kind φ(a), etc. We
may occasionally replace variables with parameters in a formula: for this, we
use the following self-explanatory notation. For a formula φ(x) we write φ(a)
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to mean that φ(a) is obtained from φ(x) by replacing x = x1, . . . , xn (simul-
taneously and respectively) by a = a1, . . . , an. The modal complexity (or the
modal degree) of a formula φ counts the maximum number of nested modal
operators in φ (the precise definition is by an obvious induction).

We recall some background on modal algebras, see e.g., [8, Sec. 5.2] or [9,
Sec. 7.6] for more details. A modal algebra A = (A,3) is a Boolean algebra
A endowed with a unary operator 3 satisfying 3(x ∨ y) = 3x ∨ 3y,30 = 0.
Notice that, here and elsewhere, we use the same name for a connective and
the corresponding operator in modal algebras (thus, for instance, 0 is zero, ∨
is join, etc.). In this way, propositional formulae can be identified with terms
in the first order language of modal algebras.

From the semantic side, we have the notion of a frame. A frame F = (W,R)
is a set W endowed with a binary relation R. The dual of a frame F = (W,R)
is the modal algebra F∗ = (℘(W ),3R), where ℘(W ) is the powerset Boolean
algebra and 3R is the semilattice morphism associated with R. The latter is
defined as follows: for S ⊆ W , we have 3R(S) = {w ∈ W | R(w) ∩ S 6= ∅}
(here R(w) denotes {v ∈ W | (w, v) ∈ R}). It should be noticed that there
is a real duality (in the categorical sense) between modal algebras and frames
only if we restrict to finite modal algebras and finite frames. If we want a
full duality working for arbitrary modal algebras, we must introduce some
topological structures on our frames (see, e.g., [8, Sec. 5.5], [9, Sec. 7.5], [17, Ch.
4] or [20]). For the purposes of this paper, however, the duality between finite
frames and finite modal algebras will suffice.

2.1 Multiple-conclusion rules

Normal modal logics are an adequate formalism to describe equational classes
of modal algebras. However, in this paper we are interested in more general
classes. A class of modal algebras is said to be:

(i) a variety iff it is the class of models of a set of equations, i.e., of sentences
of the kind ∀x

∧n
i=1 φi(x) = 1, where the φi are modal formulae (aka terms

in the first order language of modal algebras);

(ii) a quasi-variety iff it is the the class of models of a set of implications of
equations, i.e., of sentences of the kind ∀x (

∧n
i=1 φi(x) = 1 → ψ(x) = 1),

where φ1, . . . , φn, ψ are modal formulae;

(iii) a universal class iff it is the class of models of a set of clauses, i.e., of sen-
tences of the kind ∀x (

∧n
i=1 φi(x) = 1→

∨m
j=1 ψj(x) = 1), where φ1, . . . , φn,

ψ1, . . . , ψm are modal formulae.

In order to describe universal classes within a propositional modal lan-
guage, we shall use multiple-conclusion rules. A multiple-conclusion rule (or
just a rule) is a pair of finite sets of formulae 〈Γ, S〉. If Γ = {γ1, . . . , γn}, S =
{δ1, . . . , δm}, we write the rule 〈Γ, S〉 as Γ/S or as

γ1, . . . , γn
δ1 | · · · | δm

(R)
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The formulae Γ = {γ1, . . . .γn} are said to be the premises of the rule (R) and
the formulae S = {δ1, . . . , δm} are said to be the conclusions of the rule (R).
The multiple-conclusion rule (R) is said to be an inference rule or a single-
conclusion rule iff m = 1, i.e., iff it has a single conclusion. A modal algebra
A = (A,3) validates the multiple-conclusion rule (R) iff it is a model of the
clause ∀x (

∧n
i=1 φi(x) = 1 →

∨m
j=1 ψj(x) = 1). A frame F = (W,R) validates

(R) iff its dual algebra F∗ does.
We recall the notion of a rule system from [16]:

Definition 2.1 A set of multiple-conclusion rules K is said to be a rule system
iff it satisfies the following conditions for every formula φ and for every finite
sets of formulae Γ,Γ′, S, S′:

(i) φ/φ ∈ K;

(ii) if Γ/S, φ ∈ K and Γ, φ/S ∈ K, then Γ/S ∈ K;

(iii) if Γ/S ∈ K then Γ,Γ′/S, S′ ∈ K;

(iv) if Γ/S ∈ K then for every substitution σ, we have that Γσ/Sσ ∈ K.

Above we used obvious conventions about set-theoretic union of finite sets
of formulae (e.g., Γ, φ stands for Γ∪{φ}, moreover Γ,Γ′ stands for Γ∪Γ′, etc.).
In addition, we used Γσ to denote the set resulting from the application of σ
to all members of Γ.

Definition 2.2 A (normal) modal rule system is a rule system containing clas-
sical tautologies and the distribution schema 2(α1 → α2)→ (2α1 → 2α2) (as
single-conclusion 0-premises rules) as well as necessitation (α/2α) and modus
ponens (α, α→ β/β) rules.

We say that a set of rules K entails or derives a rule Γ/S (written K `
Γ/S) iff Γ/S belongs to the smallest modal rule system [K] containing K. The
following algebraic completeness theorem is proved in [16] (but follows also
from our results below):

Theorem 2.3 Let K be a set of multiple-conclusion rules. Then K ` Γ/S iff
every modal algebra validating all rules in K validates also Γ/S.

2.2 Hyperformulae and hyperproofs

We now design a calculus for recognizing syntactically the relation K ` Γ/S.
We shall actually give two equivalent versions of such a calculus, the latter to be
seen just as a Hilbert-style analogue of the well-known hypersequent calculi [1].

A hyperformula is a finite set of propositional formulae written in the form

α1 | · · · | αn. (1)

We use letters S, S1, S
′, . . . for hyperformulae; the notation S | S′ means set

union and S | α and α | S stand for S | {α} and {α} | S, respectively.

Definition 2.4 Let Γ be a set of propositional modal formulae and let K be
a set of multiple-conclusion rules. A K-hyperproof (or a K-derivation or just
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a derivation) under assumptions Γ is a finite list of hyperformulae S1, . . . , Sn

such that each Si in it matches one of the following requirements:

(i) Si is of the kind α | S, where α ∈ Γ or α is a tautology or α is an instance
of the distribution schema;

(ii) Si is obtained from hyperformulae preceding it by applying a rule from K
or the necessitation rule or the modus ponens rule.

We write Γ `K S to mean that there is a K-derivation ending with S.

An important remark is in order for (ii): when we say that Si is obtained
by applying an inference rule, we include uniform substitution and weakening
in the application of the rule. Thus, if the rule is

γ1, . . . , γn
δ1 | · · · | δm

(R)

when we say that Si is obtained from (R), we mean that there are a hyperfor-
mula S and a substitution σ such that Si is of the kind S | δ1σ | · · · | δmσ and
that there are j1, . . . , jn < i such that Sj1 is of the kind S | γ1σ, and . . . and
Sjn is of the kind S | γnσ (of course, this applies also to the case n = 0, i.e., to
zero-premisses rules).

Theorem 2.5 Let K be a set of multiple-conclusion rules. Then Γ `K S iff
the multiple-conclusion rule Γ/S is valid in every modal algebra validating K.

Corollary 2.6 Let K be a set of multiple-conclusion rules. For each multiple-
conclusion rule Γ/S, we have K ` Γ/S iff Γ `K S.

Notice that Theorem 2.3 follows from Corollary 2.6 and Theorem 2.5.

2.3 Hypersequent syntax

A sequent is a pair of finite sets of formulae written as Γ⇒ ∆ and a hyperse-
quent is a finite set of sequents written as

Γ1 ⇒ ∆1 | · · · | Γn ⇒ ∆n. (2)

In this paper, we are investigating proof theoretic facts that only depends on
the modal degree of formulae and on the modal degree of formulae occurring
within proofs, thus we view a sequent Γ ⇒ ∆ as the formula

∧
Γ →

∨
∆ and

a hypersequent (2) as the hyperformula∧
Γ1 →

∨
∆1 | · · · |

∧
Γn →

∨
∆n. (3)

Still, there is an important difference between hyperproofs according to Defini-
tion 2.4 and hypersequent calculi e.g., in [1]: once translated into our formalism,
the difference is in the possibility of using rules having hyperformulae (and not
just formulae) as premises. We show here that this difference is immaterial be-
cause we can translate these more general rules and proofs into our formalism.
The translation is effective, does not increase the modal degree of formulae
involved in the proofs, but might be harmful for complexity.
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We first introduce the definitions needed to make the comparison. A hy-
perrule is a n ∗ 1-tuple of hyperformulae, written as S1, . . . , Sk/S. If H is a
set of hyperrules, Γ is a set of hyperformulae and S is a hyperformula, we say
that S is provable from Γ in H, written Γ H S iff there exists a finite list of
hyperformulae S1, . . . , Sn (called a derivation) such that each Si in it matches
one of the following requirements:

(i) Si is a hyperformula containing a member of Γ, or a tautology, or a formula
of the form 2(α1 → α2)→ (2α1 → 2α2);

(ii) Si is obtained from hyperformulae preceding it by applying modus ponens
rule α, α→ β/β, necessitation rule α/2α, or a hyperrule from H.

Again, ‘to apply a rule S1, . . . , Sk/S to get Si’ means that there is a substitution
σ such that Si is of the kind S̃ | Sσ and that there are j1, . . . , jn < i such that
Sj1 is of the kind S̃ | S1σ and . . . and Sjk is of the kind S̃ | Skσ. 3

Proposition 2.7 Let H be a finite set of hyperrules. Then it is possible to
produce a set of rules K such that for all Γ, S̃ we have Γ H S̃ iff Γ `K S̃.

Proof. (Sketch, see the appendix for full details) Consider a hyperrule
S1, . . . , Sk/S from H: to obtain K, we simply replace it with the set of rules
γ(S1), . . . , γ(Sn)/S, varying γ among the functions that pick one formula from
each Si, for each i = 1, . . . , n. 2

Next we give a few examples. In order to make a more direct link with
the current literature, we will use the hypersequent syntax (Gentzen standard
sequent rules for classical logic, as well as external structural rules will be
always implicitly assumed below). Since in this paper we are interested only
in investigating modal degrees of formulae and proofs, in most cases the meta-
variables Γ,∆, . . . occurring in the sequent notation below can be replaced
by single formulae (hence the rules in Examples 2.8-2.9 can be seen as single
rules, 4 not as schemata standing for infinitely many rules).

Example 2.8 An adequate calculus for S4 comprises the following two rules
(taken from [15])

2Γ⇒A1 | · · · | 2Γ⇒An

Γ′,2Γ⇒∆,2A1, · · · ,2An
(⇒2)

2A,A,Γ⇒∆

2A,Γ⇒∆
(T )

where, if Γ = {φ1, . . . , φn}, then 2Γ stands for {2φ1, . . . ,2φn}.

3 This notion of a derivation avoids the introduction of side components (in the sense of [1])
when specifying rules: in fact, the side component S is introduced directly when applying
the rule.
4 This is not the case for Example 2.10 because 2∆ on the right of ⇒ cannot be replaced
by a single formula.
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Example 2.9 Let us now consider the universal class of prime S4.3 algebras:
these are the modal algebras validating the above rules and satisfying in addi-
tion the clause

∀x ∀y (2x ≤ 2y or 2y ≤ 2x).

To axiomatize this class, we can add to the above rules the further rule

Γ̃,2Γ,2Γ′⇒∆ Γ̃′,2Γ′,2Γ⇒∆′

Γ̃,2Γ⇒∆ | Γ̃′,2Γ′⇒∆′
(Dich)

taken from [15]. Rule (Dich) is nothing but a variant of the communication
rule introduced in [1].

Example 2.10 For prime S5 algebras, we can add to S4-rules the following
rule taken from [1]

2Γ,Γ′⇒2∆,∆′

2Γ⇒2∆ | Γ′⇒∆′
(S5)

3 Bounded proofs and step frames

From now on, we shall make exclusive reference to the calculus explained in
Definition 2.4. We call a modal calculus (or simply a calculus) a set of multiple-
conclusion rules where only formulae of modal degree at most one occur. 5

When we write Γ `nK S we mean that there is a K-hyperproof under as-
sumptions Γ (see Definition 2.4) in which only formulae of modal complexity
at most n occur. We are mostly interested in the semantic characterization of
the following property:

Definition 3.1 We say that a calculus K has the bounded proof property (the
bpp, for short) iff for every hyperformula S of modal complexity at most n and
for every Γ containing only formulae of modal complexity at most n, we have

Γ `K S ⇒ Γ `nK S.

A remarkable consequence of the bpp is explained in the following:

Proposition 3.2 If a modal calculus K consisting of finitely many rules enjoys
the bpp, then the relation Γ `K S (as well as the derivability of rules in K, see
Corollary 2.6) is decidable.

Proof. Since K has the bpp, it is sufficient to prove that Γ `nK S is decidable,
where n is as in Definition 3.1. We show the decidability of the relation Γ `nK S,
by bounding the set of formulae that may occur as components ψ1, . . . , ψm of a
hyperformula ψ1 | · · · | ψm included in a derivation witnessing Γ `nK S. Notice

5 This property can be assumed without loss of generality, by applying the transformation
suggested in [4] (that transformation does not increase the modal degree of proofs). In [4]
another property is assumed on rules (namely that variables occurring in them have occur-
rences inside a modal operator). This property was assumed there to simplify the definition
of evaluation in step algebras, but in the present more general context it can have unclear
side effects, so we prefer not to assume it anymore.
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first that we can freely suppose that only the variables X occurring in Γ, S
appear in such a derivation. This is because extra variables can be uniformly
replaced by, say, 0.

Let us say that φ is equivalent to ψ (written φ ≈ ψ) iff φ↔ ψ is provable in
the minimum normal modal system (i.e., by using tautologies, modus ponens
and necessitation). Notice that the relation ≈ is decidable and that, whenever
φ ≈ ψ holds, the replacement rule

φ

ψ
(Repl)

is derivable in K. In fact, (Repl) can be simulated by a derivation having
modal degree at most n in case the modal degrees of φ, ψ are at most n. In
addition, it is well-known (e.g., from the theory of normal forms [12]) that
there are finitely many ≈-equivalence classes of the formulae φ having at most
degree n and built up from the finite set of propositional variables X. We can
effectively fix a representative for each of these classes. Let Cn be the set of
such representatives.

A canonical substitution σ for a rule R ∈ K is a substitution σ associating
with a variable x a formula σ(x) in Cn ∪Cn−1 in such a way that the formulae
occurring as components of hyperformulae from Rσ are of complexity at most n.
Thus, recalling that rules have complexity one, σ(x) must be in Cn−1 if x has an
occurrence in R inside a modal operator and σ(x) must be in Cn, otherwise. A
canonical instance of R ∈ K is an instance Rσ of R via a canonical substitution
σ. Notice that there are only finitely many canonical instances.

We let Θ be the set of formulae which either occur in Γ∪ S or are in Cn or
occur in a canonical instance of a rule in K. Again, Θ is finite and has modal
complexity at most n.

By induction, we transform a derivation π from K in which formulae of
degree at most n occur into a derivation π′ in which only members of Θ occur.
When building π′, we make use also of the replacement rule (Repl) introduced
above.

The construction of π′ is easy for the base case of derivations of length 1.
Let us consider the inductive case of a derivation π ending with the application
of a rule R from K (we include also the case in which R is modus ponens
or necessitation). For simplicity, let R have a single premise, i.e., R is φ/T .
Suppose that, in π, the rule is used to infer Tσ | S̃ from φσ | S̃. In π′ we
derive by induction ψ | S̃′, where the formulae in ψ | S̃′ belongs to Θ and
are equivalent to the formulae in φσ | S̃. Let σ′ be a canonical substitution
such that σ(x) is equivalent to σ′(x) for every variable x occurring in R. Then
φσ is equivalent to φσ′ and the formulae in Tσ are equivalent to the formulae
in Tσ′, respectively. By the replacement rule, we can infer φσ′ | S̃′ in π′

(because φ′σ ≈ φσ ≈ ψ). Then we infer Tσ′ | S̃′ via the rule R. The latter
is a hyperformula whose components are all in Θ and are equivalent to the
components of the hyperformula Tσ | S̃ inferred by π.

Thus, checking whether Γ `nK S holds is reduced to checking whether there
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is a derivation using formulas from a finite set Θ. Note also that we can
assume that a given hyperformula occurs at most once in a derivation (because
occurrences following the first one can be removed). The result follows. 2

The following proposition shows that we can limit our consideration to
formulae of complexity 1 when checking the bpp.

Proposition 3.3 A calculus K has the bounded proof property iff for every
hyperformula S of modal complexity at most 1 and for every Γ containing only
formulae of modal complexity at most 1, we have Γ `K S ⇒ Γ `1K S.

In the following, we shall adopt the equivalent formulation of the bpp sug-
gested by the above proposition. We shall call finite sets Γ of formulae of modal
complexity at most 1, finite presentations. It is useful to use parameters (see
Section 2) to name the variables occurring in a finite presentation Γ: this is
because in a K-hyperproof under assumptions Γ, the formulae in Γ are intro-
duced in the derivation as they are (no substitution applies to them), whereas
substitutions are applied to rules in K. Thus, we write Γ(a) to emphasize that
at most the parameters a occur in Γ and Γ(a) `K S(a) to emphasize that the
tuple a includes all parameters occurring in both Γ, S.

3.1 Conservative one-step algebras and one-step frames

We first recall the definition of one-step modal algebras and one-step frames
from [11] and [7], and define conservative one-step modal algebras and one-step
frames.

Definition 3.4 A one-step modal algebra is a quadruple A = (A0, A1, i0,30),
where A0, A1 are Boolean algebras, i0 : A0 → A1 is a Boolean morphism, and
30 : A0 → A1 is a semilattice morphism (i.e., it preserves only 0,∨). The
algebras A0, A1 are called the source and the target Boolean algebras of the
one-step modal algebra A. We say that A is conservative iff i0 is injective and
the union of the images i0(A0) ∪3(A0) generates A1 as a Boolean algebra.

From the dual semantic point of view we have the following:

Definition 3.5 A one-step frame is a quadruple S = (W1,W0, f, R), where
W0,W1 are sets, f : W1 → W0 is a map and R ⊆ W1 × W0 is a relation
between W1 and W0. We say that S is conservative iff f is surjective and the
following condition is satisfied for all w1, w2 ∈W1:

f(w1) = f(w2) & R(w1) = R(w2) ⇒ w1 = w2. (4)

Similarly to the case of Kripke frames, above we used the notation R(w1)
to mean the set {v ∈ W0 | (w1, v) ∈ R} (and similarly for R(w2)). The dual
of a finite one-step frame S = (W1,W0, f, R) is the one-step modal algebra
S∗ = (℘(W0), ℘(W1), f∗,3R), where f∗ is the inverse image operation and 3R

is the semilattice morphism associated with R. The latter is defined as follows:
for S ⊆ W0, we have 3R(S) = {w ∈ W1 | R(w) ∩ S 6= ∅}. Conservativity also
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carries over from one-step frames to one-step modal algebras (see [4] for a proof
of the following proposition):

Proposition 3.6 A finite one-step frame S is conservative iff its dual one-step
modal algebra S∗ is conservative.

To complete our list of definitions, let us observe that a one-step modal
algebra A = (A0, A1, i0,30) in which we have A0 = A1 and i0 = id is nothing
but a modal algebra. Similarly, a one-step frame S = (W1,W0, f, R) where we
have W0 = W1 and f = id is just a frame. For clarity, we shall sometimes
call modal algebras and frames standard or plain modal algebras and frames,
respectively.

3.2 Inference validation in step algebras

We spell out what it means for a one-step modal algebra and a one-step frame to
validate a modal calculus K and a finite presentation Γ (the definition requires
little modifications with respect to [4, 5] because we do not restrict to reduced
rules).

Let us fix two finite sets of variables x = x1, . . . , xn, y = y1, . . . , ym and a
finite set of parameters a = a1, . . . , am (either x, y or a can be empty). An a-
augmented one-step modal algebra A = (A0, A1, i0,30, a) is a one-step modal
algebra together with displayed elements a = a1, . . . , am ∈ A0 (these elements
will interpret parameters).

Given an a-augmented one-step modal algebra as above, an A-valuation is a
map associating with each variable xi ∈ x an element v(xi) ∈ A0 and with each
variable yj ∈ y an element v(yj) ∈ A1. For every formula φ(x) of complexity

0, we define φv0 ∈ A0 as follows:

xv0i = v(xi) (for every variable xi ∈ x); av0i = ai (ai ∈ a);

(φ1 ∗ φ2)v0 = φv01 ∗ φv02 (∗ = ∧,∨); (¬φ)v0 = ¬(φv0).

For every ψ(x, y) of complexity at most 1 in which the y do not have occurrences

within the scope of a modal operator, ψv1 ∈ A1 is defined as follows:

xv1i = i0(v(xi)) (for every variable xi ∈ x); av1i = i0(ai) (ai ∈ a);

yv1j = v(yj) (for every variable yj ∈ y); (3φ(x))v1 = 3(φv0);

(ψ1 ∗ ψ2)v1 = ψv1
1 ∗ ψv1

2 (∗ = ∧,∨); (¬ψ)v1 = ¬(ψv1).

It is immediate to see by induction that for every formula φ(x) of complexity
0 (in which the y do not occur), we have φv1 = i0(φv0).

Definition 3.7 Suppose that the formulae δ1(x, y), . . . , δk(x, y),
γ1(x, y), . . . , γl(x, y) have modal degree at most one and that the variables y
are the variables not occurring in them inside the scope of a modal operator.
We say that a one-step modal algebra A validates the multiple-conclusion rule

γ1, . . . , γn
δ1 | · · · | δm

(R)
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iff for every A-valuation v, we have that if (φv11 = 1 and · · · and φv1m = 1),
then (γv11 = 1 or · · · or γv1n = 1). We say that A validates a modal calculus K
(written A |= K) iff A validates all inferences from K.

Notice that it might well be that K1 and K2 are equivalent (in the sense
that rules from K1 are derivable in K2 and vice versa), but that only one of
them is validated by a given A. This phenomenon, however, cannot happen in
case A is standard (i.e., it is a modal algebra).

For formulae φ(a) where the variables x, y do not occur, the valuation v is

not relevant. Thus, in such cases, we may write φa0, φa1 instead of φv0, φv1,
respectively, to stress the fact that the augmentation a is the essential part
of the definition. We write A |= φ(a) for φa1 = 1 and A |= S(a) iff there is
a φ ∈ S such that A |= φ. We say that A validates the presentation Γ (in
symbols, A |= Γ(a)) iff we have that A |= φ(a) for all φ(a) ∈ Γ.

The notion of an S-valuation for a one-step frame S is the expected one,
namely v is an S-valuation iff it is an S∗-valuation. In the same way the other
notions introduced above (augmentation, φv0, φv1, validation of a presentation,
of an inference, of an axiomatic system) can be extended by duality to one-step
frames.

Example 3.8 For the systems S4,S4.3,S5, it can be shown (by applying the
‘step’ variant of modal correspondence theory [4, 5]) that a conservative one-
step frame S = (W1,W0, f, R)

- validates the rules of Example 2.8 iff it is step-transitive and step-reflexive,
where the latter means f ⊆ R and the former means R ⊆ f◦ ≥R (here ◦ is
relation composition and w1 ≥R w2 is defined to be R(w1) ⊇ R(w2));

- validates the rules of Example 2.9 iff it is step-transitive, step-reflexive
and step-linear, where the latter means ∀w1, w2 ∈ W1 (R(w1) ⊆
R(w2) or R(w2) ⊆ R(w1));

- validates the rules of Example 2.10 iff we have R(w) = W0 for all w ∈W1.

We can specialize our notions to standard modal algebras and frames. An
a-augmentation in a modal algebra A = (A,3) is a tuple a of elements from
the support of A, matching the length of a. For frames F = (W,R), we dually
take a tuple from ℘(W ), i.e., a tuple of subsets. Given such a-augmentation,
we can define A |= Γ(a) and F |= Γ(a) for a presentation Γ(a), just specializing
the above definitions (standard modal algebras and frames are special one-step
modal algebras and frames). Notice that F |= Γ(a) is global validity in terms
of the Kripke forcing from the modal logic literature, see e.g., [17, Sec. 3.1].

Proposition 3.9 Let A = (A,B, i,3, a) be an augmented conservative one-
step modal algebra that validates the modal calculus K and the presentation
Γ(a). Then, for every hyperformula S(a), we have that Γ `1K S implies A |= S.

4 Semantic characterizations of the bpp and the fmp

In this section we first introduce the morphisms of one-step modal algebras and
one-step frames.
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Definition 4.1 An embedding between one-step modal algebras A = (A0, A1,
i0,30) and A′ = (A′0, A

′
1, i
′
0,3

′
0) is a pair of injective Boolean morphisms h :

A0 → A′0, k : A1 → A′1 such that

k ◦ i0 = i′0 ◦ h and k ◦30 = 3′0 ◦ h . (5)

A0 A′0

A1 A′1
k

i′0

h

i0

A0 A′0

A1 A′1
k

3′0

h

30

Notice that, when A′ is standard (i.e. A′1 = A′0 = and i′0 = id), h must be
k ◦ i0 and (5) reduces to

k ◦30 = 3′0 ◦ k ◦ i0. (6)

For frames we have the dual definition. In the definition below, we use ◦
to denote relational composition: for R1 ⊆ X × Y and R2 ⊆ Y × Z, we have
R2 ◦ R1 := {(x, z) ∈ X × Z | ∃y ∈ Y ((x, y) ∈ R1 & (y, z) ∈ R2)}. Notice
that the relational composition applies also when one or both of R1, R2 is a
function.

Definition 4.2 A p-morphism between step frames F ′ = (W ′1,W
′
0, f
′, R′) and

F = (W1,W0, f, R) is a pair of surjective maps µ : W ′1 → W1, ν : W ′0 → W0

such that

f ◦ µ = ν ◦ f ′ and R ◦ µ = ν ◦R′. (7)

W ′1 W1

W ′0 W0
ν

f

µ

f ′
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W ′1 W1

W ′0 W0
ν

R

µ

R′

Notice that, when F ′ is standard (i.e., W ′1 = W ′0 and f ′ = id), ν must be
f ◦ µ and (7) reduces to

R ◦ µ = f ◦ µ ◦R′. (8)

The following definitions introduce the semantic notions needed for our
characterization of the bpp.

Definition 4.3 Let A0 = (A0, A1, i0,30) be a one-step modal algebra. A
one-step extension of A0 is a one-step modal algebra A1 = (A1, A2, i1,31)
satisfying i1 ◦30 = 31 ◦ i0. Dually, a one-step extension of the one-step frame
S0 = (W1,W0, f0, R0) is a one-step frame S1 = (W2,W1, f1, R1) satisfying
R0 ◦ f1 = f0 ◦R1.

Definition 4.4 A class of one-step modal algebras has the extension property
iff every conservative one-step modal algebra A0 = (A0, A1, i0,30) in the class
has an extension A1 = (A1, A2, i1,31) such that i1 is injective and A1 is also in
the class. A class of one-step modal frames has the extension property iff every
conservative one-step frame S0 = (W1,W0, f0, R0) in the class has an extension
S1 = (W2,W1, f1, R1) such that f1 is surjective and S1 is also in the class.

Theorem 4.5 A modal calculus K has the bpp iff the class of finite one-step
modal algebras (equivalently, the class of finite one-step frames) validating K
has the extension property.

The characterization of the bpp from Theorem 4.5 may not be easy to
handle, because in practical cases one would like to avoid managing one-step
extensions and would prefer to work with standard frames instead. This is
possible, if we combine the bpp with the finite model property.

Definition 4.6 A modal calculus K has the (global) finite model property, the
fmp for short, if for every tuple a of parameters, for every finite set of formulae
Γ(a) and for every hyperformula S(a) we have Γ 6`K S iff there exists a finite
a-augmented modal algebra A such that A |= K, A |= Γ(a) and A 6|= S(a)
(equivalently, iff there exists a finite a-augmented Kripke frame F such that
F |= K, F |= Γ(a) and F 6|= S(a)).

We are ready for a characterization result:

Theorem 4.7 A modal calculus K has both the bpp and the fmp iff every finite
conservative one-step frame validating K is a p-morphic image of a finite frame
validating K (equivalently, iff every finite conservative one-step modal algebra
validating K has an embedding into a finite modal algebra validating K).
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Example 4.8 Theorem 4.7 applies to all Examples 2.8-2.10. The construction
is the same in all cases and it is rather straightforward: given a finite conserva-
tive step frame S = (W1,W0, f, R) validating the rules of the calculus, we can
define F′ = (W ′, R′) and µ so that condition (8) is satisfied as follows:

W ′ := W, µ := id, w1R
′w2 :⇔ R(w1) ⊇ R(w2).

5 Modal stable rules

Canonical formulae for transitive modal logics and intuitionistic logic were in-
troduced by Zakharyaschev (see [9] for an overview) who proved that all tran-
sitive modal logics and all intermediate logics are axiomatizable by canonical
formulae. Jeřábek [16] defined canonical rules, which are multiple-conclusion
rules generalizing canonical formulas. Jeřábek used these rules for an alterna-
tive proof of decidability of admissible rules for intuitionistic logic and transitive
modal logics K4, S4, S4.3, etc. However, there are non-transitive modal logics
not axiomatizable by canonical formulae and rules. [3] defines stable canoni-
cal rules, which differ from Zakharyaschev’s canonical formulae and Jeřábek’s
canonical rules and proves that every modal logic (including non-transitive
ones) is axiomatizable by these rules. In this section we will concentrate on
logics axiomatizable by a special subclass of stable canonical rules.

Subframe logics are the logics whose frames are closed under taking sub-
frames. Transitive subframe logics are axiomatizable by a special subclass of
canonical formulae called subframe formulae, see, e.g., [9]. A similar restriction
to stable canonical rules gives a class of stable logics. But stable logics are not
necessarily transitive. Logics in this class are exactly the logics that are closed
under relation-preserving (following [3] we will call such maps stable 6 ) onto
maps. Transitive subframe logics and stable logics enjoy the fmp. Transitive
subframe logics enjoy the fmp because they admit selective filtration, and sta-
ble logics enjoy the fmp because they admit the standard filtration (see [3] for
the details).

In this section we show that all stable logics admit an axiomatization that
has the bounded proof property. As we will see below, stable canonical rules
will not produce an axiomatization that has the bpp. However, we will mod-
ify these rules so that the obtained rules do possess the bpp. This provides
a systematic method of producing infinitely many proof calculi that are good
(enjoying the bpp) from the proof-theoretic point of view. We remark that
Lahav [19] also considers a class of modal logics whose Kripke frames satisfy
special first-order conditions. He introduces hypersequent calculi for these log-
ics and proves that these calculi admit cut elimination. It is easy to see that
the non-transitive logics studied in [19] are stable logics – their frame classes
are closed under stable onto maps. Thus, the class of logics we investigate
in this section extends the class of logics studied in [19] in the non-transitive

6 In [13] these maps are called continuos.
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case. 7 Note, however, that [19] studies cut elimination, whereas we work with
the bpp only. Now, if cut elimination gives the subformula property as a by-
product, the bpp follows trivially. The converse is not true: we might have the
bpp without the subformula property. 8 However, it should be noticed that
the bpp is a strong evidence about the proof-theoretic robustness of a system
and supplies a loose notion of analiticity which is sufficient for decidability and
which can hold for a wide class of calculi, including cases where the design of
cut-eliminating systems looks very problematic.

We start by recalling the definition of modal stable rules. Let F = (F,RF )
be a finite frame. For every a ∈ F we introduce a new propositional variable
xa. The modal stable rule of F is∨n

i=1 xai
,

∧
i6=j ¬(xai

∧ xaj
),

∧n
i=1(xai

→ 2
∨

b∈RF (ai)
xb)

¬xa1
| · · · | ¬xan

(rF)

where we suppose that F = {a1, . . . , an}.
A stable embedding of a modal algebra A = (A,3) into a modal algebra

B = (B,3) is an injective Boolean morphism µ : A → B such that we have
3µ(x) ≤ µ(3x) for all x ∈ A. For a frame F we denote by F∗ its dual modal
algebra and for an algebra A we denote by A∗ the descriptive frame dual to A.
Recall that a map f : W → W ′ between standard frames (W,R) and (W ′, R′)
is called stable if for each x, y ∈W we have xRy implies f(x)R′f(y).

The following proposition is proved in [3].

Proposition 5.1 Let A = (A,3) be a modal algebra. Then

(i) A does not validate (rF) iff there is a stable embedding of F∗ into A.

(ii) A does not validate (rF) iff there is a surjective stable map from A∗ onto
F.

Our aim is to show that all modal calculi axiomatized by rules of the kind
(rF) have the bounded proof property. Rules (rF), however, are not good for
the bpp, see the counterexample below. We replace rules (rF) by modified
versions.

For each a ∈ F we just add an extra propositional variable ra and define
the new rule (r+F ) by 9

∨n
i=1 xai

,
∧

i 6=j ¬(xai
∧ xaj

),
∧n

i=1(xai
→ 2rai

),
∧n

i=1(rai
→

∨
b∈RF (ai)

xb)

¬xa1
| · · · | ¬xan

7 The transitive logic K4 is not stable. The investigation of the bounded proof property of
stable logics over K4 is a topic for future research.
8 For example, we show that all stable logics have the bpp. This class contains a continuum
of logics [2,3]. Whether all these logics admit natural calculi with cut elimination is an open
question.
9 For uniformity, we prefer all the ra to have at least one occurrence located inside a
modal operator in the rule (r+F ). In order to obtain this, one might add premisses such as

2(ra ∨ ¬ra).
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Lemma 5.2 Rules (r+F ) and (rF) are inter-derivable.

Proof. On the one hand, (rF) can be obtained from (r+F ) by applying the
substitution rai 7→

∨
b∈RF (ai)

xb. On the other hand, we apply necessitation

and distribution to the premise
∧n

i=1(rai
→

∨
b∈R(ai)

xb) and then transitivity

of implication to obtain
∧n

i=1(xai
→ 2

∨
b∈RF (ai)

xb). 2

Notice that the above fragment of a derivation, when plugged into a hyper-
proof, may increase the modal degree (if the substitution used to apply the rule
(rF) replaces the xb with formulae of, say, modal degree 1, we obtain formulae
of modal degree 2 when we use (rF) to simulate (r+F )). This is why (r+F ) is
preferable to (rF) from the point of view of the modal complexity analysis of
proofs.

Theorem 5.3 A modal calculus comprising only rules of the kind (r+F ) enjoys
the bpp and fmp.

Proof. We use Theorem 4.7. Let S = (W1,W0, f, R) be a finite conservative
one-step frame validating (r+F ). Consider the standard frame (W1, R̃) where R̃
is defined by

wR̃w′ iff wRf(w′) (9)

(i.e. we have R̃ = fo◦R, where fo is the converse of f , seen as a relation). This
is a finite Kripke frame having S as a p-morphic image. In fact, (8) is satisfied
by taking µ := id because f ◦ R̃ = f ◦ fo ◦ R = R, (we used that f ◦ fo = id,
which holds by the surjectivity of f).

We now show that (W1, R̃) validates (rF) (recall that (r+F ) is equivalent
to it in standard frames because the two rules are inter-derivable): to this
aim, we prove that if there is a surjective R-preserving map µ from (W1, R̃)
onto F = (F,RF ), then S does not validate (r+F ), contrary to the hypothesis.
Suppose there is such a µ. Define now a valuation v by taking v(xa) = {w |
µ(w) = a} ⊆W1 and

v(ra) = {v ∈W0 | ∀w (f(w) = v ⇒ aRFµ(w))}.

The definition is well defined because the variables having at least an occurrence
inside a modal operator are precisely the ra’s, so these variables are evaluated
as subsets of W0 and the other ones as subsets of W1. Thus v evaluates to 1
the formulae

∨n
i=1 xai

and
∧

i 6=j ¬(xai
∧ xaj

), whereas ¬xa1
, . . . ,¬xan

are not
evaluated to 1 (because µ is surjective). It remains to check that for every
a ∈ F , we have (i) xv1a ⊆ 2 rv1a and (ii) rv1a ⊆ (

∨
b∈RF (a) xb)

v1. Now (i) holds

by (9) and because µ is stable: if w ∈ xv1a and wRv then v ∈ rv1a because if
f(w′) = v then wR̃w′ and consequently a = µ(w)RFµ(w′). To prove (ii), pick
w ∈ f∗(ra); we have in particular aRFµ(w), thus w ∈ (

∨
b∈RF (a) xb)

v1. 2

From Lemma 5.2, we immediately obtain the following result from [3]:

Corollary 5.4 A modal calculus comprising only rules of the kind (rF) enjoys
the finite model property.



70 Multiple-conclusion Rules, Hypersequents Syntax and Step Frames

The following counter-example shows that we really need to replace (rF) by
(r+F ) to obtain the bpp.

Example 5.5 Consider the two element reflexive chain

F := b 	−→	 a

The rule (rF) simplifies to

xa → 2xa
xa | ¬xa

This rule is validated in a step frame S = (W1,W0, f, R) iff for every proper
subset a ⊆ W0 (i.e., for every subset different from ∅,W0) there is w ∈ W1

such that f(w) ∈ a and R(w) 6⊆ a. In a standard frame (W,S) this means that
every pair of elements of W are connected via an S-path (to see this, consider
as a the set of points which are reachable in n ≥ 0 steps by any given point
and show that such an a must be total). It is not difficult to check that putting
W1 := {w1, w2},W0 := {v}, f(w1) := f(w2) := v,R(w1) := {v}, R(w2) := ∅,
we obtain a finite conservative one-step frame that validates (rF) but cannot
be a p-morphic image of a standard frame validating it (because in the latter
there cannot be terminal points and any pre-image of w2 along a p-morphism
must be such by (8)). Since the fmp holds for the modal calculus axiomatized
by the rule (rF) according to Corollary 5.4, it is clear that it is the bpp that
fails for it (failure of the bpp can also be directly checked by using Theorem 4.5
instead of Theorem 4.7 and Corollary 5.4).
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Appendix

For the proof of the algebraic completeness Theorem 2.5, we need a couple of
lemmas:

Lemma .6 Weakening is admissible: we have Γ `K S ⇒ Γ `K S | S′, for
every S′.

Proof. Trivial by induction on the length of derivation. 2

Lemma .7 Let Γ be a set of formulae, α a formula, S a hyperformula and
K a set of multiple-conclusion rules. If Γ ∪ {α} `K S and Γ `K α | S, then
Γ `K S.

Proof. Assume Γ `K α | S. Using weakening, by induction on proof length,
it is easy to see that Γ ∪ {α} `K S̃ implies Γ `K S | S̃ for every S̃. The claim
now follows because S | S is equal to S (hyperformulae are defined as sets of
formulae). 2

Theorem 2.5 Let K be a set of multiple-conclusion rules. Then Γ `K S iff
the multiple-conclusion rule Γ/S is valid in every modal algebra validating K.

Proof. One direction is trivial. For the other direction, let us suppose that
Γ `K S does not hold. By Zorn’s lemma, pick Γ̃ to be a maximal set of
formulae containing Γ such that Γ̃ 6`K S. We claim that for every hyperformula
α1 | · · · | αn

Γ̃ `K α1 | · · · | αn | S ⇒ ∃i Γ̃ `K αi. (.1)

In fact, if this does not hold, by the maximality of Γ̃, we have both that
Γ̃ `K α1 | · · · | αn | S and that Γ̃ ∪ {α1} `K S. By the above lemma, this
implies Γ̃ `K α2 | · · · | αn | S. Repeating the argument n-times, we obtain
Γ̃ `K S, contradiction.

Now notice that Lemma .7 and the maximality of Γ̃ imply that if Γ̃ `K α,
then α ∈ Γ̃ and 2α ∈ Γ̃ (the latter is because necessitation rule is mentioned
in condition (ii) of Definition (2.4)). In addition, Γ̃ contains Γ and is disjoint
from S, by condition (i) of Definition (2.4). Thus, if we put

α1 ≈ α2 ⇔ α1 ↔ α2 ∈ Γ̃

we can introduce on the set of equivalence classes a modal algebra structure
A = (A,3). Since Γ is included in Γ̃ and is disjoint from S, A does not validate
Γ/S. By the claim (.1) and condition (ii) of Definition (2.4), it is evident that
A validates all rules from K. 2

Corollary 2.6 Let K be a set of multiple-conclusion rules. For each multiple-
conclusion rule Γ/∆, we have K ` Γ/∆ iff Γ `K ∆.

Proof. If is sufficient to observe that (I) if Γ `K ∆, then Γ/∆ belongs to every
modal rule system K containing K and that (II) {Γ/∆ | Γ `K ∆} is a modal
rule system extending K.
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Claim (II) is immediate from Lemmas .6, .7.
Claim (I) is by induction on the length of the K-hyperproof witnessing

Γ `K ∆: for instance, if the K-hyperproof ends with an application of the ne-
cessitation rule according to Definition 2.4(ii), then from Γ/α, S ∈ K (this holds
by induction hypothesis) and from the fact that the necessitation rule belongs
to every modal rule system, from conditions (iii) and (ii) of Definition 2.1, we
obtain Γ/2α, S ∈ K. 10 2

We now fill the missing details for the proof of Proposition 2.7:

Proposition 2.7 Let H be a finite set of hyperrules. Then it is possible to
produce a set of rules K such that for all Γ, S̃ we have Γ H S̃ iff Γ `K S̃.

Proof. Consider a hyperrule S1, . . . , Sk/S from H: to obtain K, we simply re-
place it with the set of rules γ(S1), . . . , γ(Sn)/S, varying γ among the functions
that pick one formula from each Si, for each i = 1, . . . , n.

The right-to-left claim of the proposition is immediate by weakening. To
show the left-to-right direction, we use the argument below. Suppose H ′ is
obtained from H by replacing the hyperrule S1, . . . , Sn/S with the pair of rules

S′1, S2, . . . , Sn/S, S′′1 , S2, . . . , Sn/S (.2)

where we suppose that S′1, S
′′
1 are both not empty and such that S1 = S′1 ∪S′′1 .

We claim that we have Γ H S iff Γ H′ S (clearly, the statement of the
proposition follows from an iterated application of this claim). Again that
Γ H S̃ ⇐ Γ H′ S̃ holds is trivial by weakening. Now suppose that we
have Γ H S̃. In the derivation witnessing this, there will possibly be lines
labelled by S1σ | T, . . . , Snσ | T justifying a line labelled Sσ | T via the
use of the hyperrule S1, . . . , Sn/S. The derivation can be corrected so to use
the rules (.2) instead (iterated corrections will eliminate any use of the rule
S1, . . . , Sn/S). We first produce (by weakening) derivations of S2σ | S′′1σ | T
and · · · and Snσ | S′′1σ | T . These hyperformulae, combined with S′1σ | S′′1σ | T
yield a derivation of S′′1σ | Sσ | T by applying the first hyperrule from (.2).
By weakening again, we produce now derivations of S2σ | Sσ | T and · · · and
Snσ | Sσ | T . These hyperformulae, combined with S′′1σ | Sσ | T yields a
derivation of Sσ | Sσ | T by applying the second hyperrule from (.2) and we
are done because Sσ | Sσ | T is equal to Sσ | T (hyperformulae are sets, not
multisets). 2

10 Notice that we added S to α because, according to the remark following Definition 2.4,
when we apply the necessitation rule α/2α, then we deduce 2α | S from a proof line con-
taining the hyperformula α | S.
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