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We consider static and dynamic approaches to the specification of probability distributions on graphs, consistent
with desired statistical properties such as degree distributions, for use in modeling biological networks. In the
static approach we develop analytical approximations to the Hamiltonian and partition functions. In the
dynamic approach, we use a stochastic parameterized grammar to construct an evolutionary tree in which the

nodes represent elements such as genes or cells and the links represent inheritance relations between the nodes.
The grammar then constructs a network based on the feature vectors of the nodes in the tree. © 2006 Wiley

Periodicals, Inc. Complexity 11: 57-63, 2006
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1. INTRODUCTION: STATIC OR EQUILIBRIUM MODELS
here has been a great deal of interest in the structure of
different kinds of networks over the past few years.
Some of these networks like the Internet, the World

Wide Web, social networks, and scientific citation networks

are manmade, whereas others such as metabolic networks,

protein interaction networks, and gene regulatory networks
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are the products of evolution [1]. Despite their different
origins, many of these networks share interesting structural
features. If N(k) is the number of nodes of degree k (with k
immediate neighbors) and N is the number of nodes in the
network, then P(k) = N(k)/N represents the fraction of
nodes of degree k and is the probability distribution corre-
sponding to the degree distribution of the network. For
many real networks, the degree distribution scales as a
power law or P(k) ~ k¥ where 2 < y < 3. There has been a
lot of research related to developing models of network
growth that produce such power-law networks [2-7].
There have also been some attempts to use the methods
of statistical mechanics to study the properties of real and
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artificially generated networks. In [8], the authors use the
ideas of Gibbs free energy, graph Hamiltonians, and parti-
tion functions to develop an alternative model of network
analysis. This powerful approach allows one to estimate
various parameters of the network (the average degree, for
example) by taking appropriate derivatives of the partition
function. It also allows one to reformulate the basic prop-
erties of networks in a seemingly unrelated setting that
promises to offer further insights into the structure of real
networks. In Sections 2-4 we will use some tools from
statistical mechanics to propose an alternative approach to
constructing networks with desired degree distributions.
The basic idea here is to use a generalized energy function
to apply constraints on the structure of a network. Instead
of proposing a specific dynamic model of network forma-
tion, we use the energy formalism to estimate a static set of
fugacity (a measure of attractiveness or popularity of a node
in the network) values which can be used to generate the
network using a simple sampling procedure. The fugacity of
anode is directly proportional to the likelihood that an edge
in the network is connected to the node. In Sections 5-8 we
use stochastic parameterized grammars to construct evolu-
tionary trees based on grammar rules that offer a very
general and flexible approach to specifying tree structure.
We then construct graphs or networks from the evolution-
ary trees based on the features of the nodes and some
similarity measure. The feature vectors and similarity mea-
sures can be chosen in a variety of ways and this could
provide a useful approach to modeling complex biological
networks.

2. STATISTICAL MECHANICS

Using the idea of a Boltzmann distribution defined on the
adjacency matrix of a network G, we can define an energy
function

Edegree(G) = E :u‘iGij + Ef(E Gij)r (1)
ij i i

where G is a symmetric adjacency matrix. The values of u;
and the functional form of f are chosen to generate net-
works with desired properties associated with the degree
distribution represented in the adjacency matrix G. The
partition function associated with this energy is

Z(FL) — E e—EfMi(E/ Gij)—2i fiZ) Gij)’ 2)
G

where (2) can be rewritten as an integral in the form

Z(@:%Jdm..-d}w{ﬂ

i
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which is equivalent to
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In order to simplify the integral in (4), we introduce the
function ¢ which is related to fas a Laplace transform in
exponential form

eﬂ“—f dve "W, (5)
0

This allows us to rewrite (4) as

i

Z(M)_%fdxl---dAN{H

8()\:‘_ Z Gij) eEi“iAi} 1_[ f dvie*w)\rdﬁw), (6)
Y 0

i

which is equivalent to

ﬂm—ZJdu~mNH

) A — E Gij eEi;LiMJ dvie*l/i)\i*(b(l/i) (7)
J 0

Rearranging terms we get

Z(p) = E fx dv,- - .Jx vaf di,- - J dy n

8( )\i _ E Gl]) e*ﬁ, wiki—2i Vi)\i*EidJ(V,), (8)
j

which allows us to change variables back and write (8) as
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Z(H) _ 2 f dl/l' . j dVNefl'pn(Ej Gi))—2i vi(Zj Gij)*Ei(b(Vi).
0 0

G
(9
We now use the change of variables

z;=e M c,=e ", Zp=Cy = (10)

o % N
Z(z) = z f dv,- - J dvy H (cizp)¥ Gie 2ot (11)

G Yo 0 i=1

Using the relation
e = J dec ¢ (o), (12)
1

Equation (10) can be rewritten as

1 1 N N
Z(z)zzf dcl...f 2, 6
G 0 0 i=1 i=1

dey Y, (cz)™% Y w(c)

(13)
1 1 N
Z(z) = Z J' dey- - f dey H (ciz) "
¢ Jy o i=1
N
H (ciciziz) H Y(c). (14)

1=i=j=N i=1

Note that (14) allows one to use a direct sampling method to
estimate the energy function from the relation

P(z) = f J’ dzldzz

3. SIMULATIONS: STATIC MODELS
In this section we try to use the formalism outlined above to
generate networks with desired degree distributions. In the
case when the desired degree distribution is a power law, we
can use the Laplace transform pair

1 + z12 >l//(zl)llf(zz) (15)

Lv¥le ] =T(k)(A + a)F (16)

in combination with the relationship in (5) to give

slope = -2.1743 dlope = -3.0273
. a=0.k=2 . a=0,k=3
10 10
10’
w0k 10°
10° 10’ 10° 10' 10
slope = -3.8492 slope = -4.68
a=0. k=4 a=0.k=5
o 10"
) 10°
0
10’ .
o™ . B
107
107" - L 10 -
10 10 10 10 10 10
Fix k; vary a.
é(v) = av — (k— 1logv — fir) = klog(A + a)
—log(I'(k)). (17)
Further, using the relation in (12), we obtain
¥(c) = ¢ (—log oF L. (18)

We now use the relation in (15) to estimate P(z) for
various values of a and k of interest from the study of real
world networks. For many real networks P(k) ~ k¥ where
2 < y < 3. We use the function ¢(c) and the formula in (15)
to generate a set of P(z) values which we plot on the log-log
scale. In Figure 1, we fix a = 0 and vary k to obtain four
different simulations for P(z) when N = 100. The resulting
power-law distributions (plotted on the log-log scale) have
exponentially decaying tails and this may be due to finite-
size effects. Note that the scaling exponent in the power law
matches the predicted values very well.

4. DISCUSSION: STATIC MODELS

In [8], Newman suggested a class of Boltzmann distribu-
tions that could take into account higher order correlations
between the degrees of related nodes. There has been more
recent interest in approaches of this sort in [9]. Quite a
variety of algebraic forms have been suggested for such
additional terms, with highly variable cost of simulation on
fixed architecture machinery as a function of graph sparsity
and other statistics. We have shown above how one family
of objective function terms (1) can be represented in terms
of another family that requires less graph communication
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(9), at the cost of introducing new variables at each node i,
in order to enforce a desired degree distribution. This ob-
servation raises the question: what is a minimal set of terms
in the energy function E, that can represent other energy
functions which depend on any desired set of statistics of
the network topology, i.e., into which such terms can be
mapped by adding or removing node variables? This would
be a form of universality for such energy functions on
graphs. Our suggestion for such a universal energy function
is the “Equilibrium Graph Automation,” with node label
vectors X; of the form

E(% G) = C, >, Fi(%) + C, >, GyFy(%; X))

i ij

+C D GyGyi+ Gy Y, GGGy (19)

ij ijk

The X; node state vectors can be used to transmit fixed-
length messages (C, term) and to implement other sparse
graph interactions of sufficiently low cost. The G, and C;
terms are of sufficient generality to encompass the degree
and sparseness constraint of (9), for example. The final C;
term of the sum above involving 2. G;G;G,; makes a
contribution to the energy from any loop that begins at i
and passes through jand kto end at i again. By analogy with
e-mail, one can imagine the information being passed along
this loop as the e-mail addresses in a forwarded e-mail from
i to j, and enables k to send information back to both j
(under term G,) and k (under term C;), but no further in one
interaction. More generally, changes to the F, and F, func-
tions, and to the dimension of the parameter vector X, in
the very local interaction expression above may allow one to
emulate the effect of a wide variety of other energy function
terms such as

> Il e,

{ir. . .in} ab

(20)

which favors or disfavors particular network motifs with 0/1
valued adjacency matrix g,,. But emulating (20) in terms of
(19) is an open question.

As a step towards Equilibrium Graph Automata imple-
mentations of message-passing protocols, consider the “wa-
terfall” energy function

T

1 €
Ew(x, y, G) = 9 E (™ — £)* + 2 E Gj E

ia i 7=0

re2m E Mha)(x(im) _ y;_ln))z
ab

A 1
+ 2! E W(Tub)(x(iarﬂ) _ y;ln))z. 21)
ab

Clearly this falls within the form of the G, and C, terms
of the EGA energy. We assume other O(e®) EGA terms (such
as those studied above) ensure a roughly constant fan-in 2;
Gy and fan-out 3; G for G at each site i. For small e and very
low temperatures, probability is concentrated on low-en-
ergy states that satisfy the following T-round protocol of

communications between sites i and j:

B axi™ =~ 0 & x\™ ~ ¢

Ejh Gij Mba) x(im)

(b7) (br) o 240 TG i
BT =0T = m ey, wny 0= TET
S 10 Gy Wby
(b1) (ar+1) o Tt W T JT =
aEW/By] 0& Xi (2, Gij)(Ea Mah)) 0 T
=T,

in which the weight matrices W?* and W* act as codes for
linearly superimposed messages sent back and forth at each
step, starting with the fixed initial messages ¢&;. Although the
graph G influences the messages x; and y; the reverse is not
true for E;, because of the small parameter e. Finally if we
replace G by G in the expression for E,,, then we find the
“clocked objective function” [10]

1
Es—phase(xv % G) = E E (xE'aD) - Ei)z

.
+EEFﬂmmawﬂ#2wmwwﬂ

=0 ij

1
+ E 2 GEJ—)[ &1 E Mba)(x(iaf) _ y](_bT>)z
ij ab

7

“Mzwwwﬁw”@m

ab

This permits two-way interaction between the coded mes-
sages x} and the graph G, again at low temperature. How-
ever, this formulation is not itself in the form of an Equilib-
rium Graph Automation because of the extra index on G.
Instead it is equivalent to a nonequilibrium dynamical sys-
tem with 7 playing the role of time.

9. INTRODUCTION: DYNAMIC MODELS

There is a great deal of interest in formulating probabilistic
models of complex dynamical systems. There is a basic
distinction in the description of these time-varying systems
between those with static and dynamic structure. From the
graph theory point of view, the distinction corresponds to
that between dynamics of variables related by a fixed graph,
and dynamics that governs a varying graph connectivity
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structure as well as the values of variables defined on its
nodes. Examples in scientific modeling include the produc-
tion of particular molecules as a result of chemical reac-
tions, and their dynamic association into loosely bound
multimolecular complexes or their enclosure within com-
partments. An example from cell biology is the birth and
death of cells [11] and their spatially contingent mechanical
and signaling relations within a developing organism (mor-
phogenesis) [13]. In these systems, there is a need to dy-
namically evolve the topology of the network (cells are born
and they grow and divide and modify their neighborhood
connections as a result of division) and to update the fea-
tures of the nodes (states of cells or genes) [11]. Dynamic-
structure systems are more difficult to model and infer than
are systems with static structure. The existence of domain
objects, and their relationships, vary over time; typically this
means that mathematical equations expressing such mod-
els change over time or take a more elaborate form than do
static-structure systems. In addition, variable-structure sys-
tems can grow infinitely large, though intrinsic resource
constraints can be included to prevent this from occurring.
In this paper, we consider a simple stochastic parameterized
grammar (SPG) as a dynamic approach to reconstructing
features of evolving, biological networks. The formal seman-
tics of SPG’s in general, and their application to graph
grammars in particular, are specified in terms of stochastic
processes in [14].

6. LINEAGE TREE AND GRAPH GRAMMAR MODELS

In this approach we consider a simple lineage tree of nodes
bearing feature vectors. The tree has a fixed, arbitrary dis-
tribution g(n) on the number of children at each node. The
tree consists of feature vector nodes with only local depen-
dencies between the features of child and parent feature
vectors. This model incorporates a birth-and-death process
[15] for the tree nodes and has applications to hierarchical
clustering in N% cell lineage trees with a state vector for
each cell, and evolutionary phylogeny trees with a genotype
(e.g., a discrete sequence string in Z§ or Z%) for each species.
It can also serve as a scaffold structure (e.g., a cell lineage
tree) for many other more complex dynamic-structure sys-
tems. A tree of feature vectors is “context-free” in our ter-
minology if it can be generated by a context-free stochastic
grammatr, i.e., one in which each rule has only one term on
the left-hand side. In the grammar below, this means that
each node in the tree has a feature vector that is condition-
ally independent of all others except for the feature vector of
its parent node, and the number of child nodes is condi-
tionally independent of everything else except the existence
of the parent node within the tree. The grammar that we
outline below operates on four kinds of objects: “node”
objects (the final output tree nodes), “nodeset” objects (a
single one of which is the input nodeset object), and inter-
mediate “child” objects that eventually become nodesets

that give rise to nodes and more children and “OIDgen”

objects that label the nodes as they are created. The OID’s

are only needed for the context-sensitive graphgen gram-

mar that follows; the features themselves can be generated

in a context-free manner. The grammar that constructs the

tree is given below:

grammar (discrete-time) (start(x) —
node (k, x)}) f{

start(x) — nodeset(x), OIDgen(1l)

nodeset (x), OIDgen (k) — node(k, x), {child},
OIDgen(k + 1)

child(y) — nodeset(x, 1 + 1) with &(x]y)

}

nodegen

In the syntax above, “grammar” is a keyword that declares
what follows to be a grammar; “nodegen” is the name of the
grammar; start(x) — { node(k, x)} specifies that the input of
the grammar is a single start object and its output is a set of
node objects each with a value for a random variable x;
(arbitrarily numbered). Thus the grammar implements a
single rule that could be invoked recursively by this or any
other grammar. This grammar implements a branching sto-
chastic process which starts with a “node” with feature
vector x, and generates a set of terminal “fnode” terms with
probability 1. In the simplest case we consider, g(n) is a
geometric distribution of the form p". Each child changes its
real-valued feature vector x according to the conditional
distribution ¢. We consider the simple case where the fea-
ture vector takes the form x = (u, o) and y = (4, 6) and the
function ¢ is of the form ¢ = G(lx — }|&)d(c, 6/0,). With
clustergen, we have thus defined the context-free feature
tree family. This would imply that the child of a particular
node would be assigned a feature vector from a Gaussian
distribution centered at the feature vector of its parent
node. The variance of the Gaussian distribution depends on
the level of the parent node and decreases by a constant
factor o, at each level. In our implementation of this gram-
mar, a node can give rise to n children with probability
qg(n) = p", where p is some fixed constant between 0 and 1.
Once a tree has been created by the grammar above, we use
the grammar graphgen below to construct a graph based on
the evolutionary information in the tree.

grammar (discrete-time) graphgen { start —
{(link(k;, k, } 1 {
start via nodegen
node(k,, x;), node (k,, x,) — node(k;, x;),

node (k,, x,), link(k,, k,) with f(]x, — x,|)
node(i, x) — fnode (i, x)

)

The grammar above assigns a “link” object connecting the
nodes k, and k, based on the value of f{|x, — x,|). As a simple
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example, if the value of |x, — x,| is less than a threshold, a
link could be formed between nodes k; and k,. We then
analyze the properties of the resulting network and try to
adjust the parameters of g, ¢, and fto construct networks
that display some topological features of biological net-
works like protein-interaction networks or metabolic net-
works.

Biological motivations for this kind of graph grammar
include: (1) mechanical interactions between cells are influ-
enced by similarity in their position (adjacency) [11] and
complementary adhesion and regulatory interactions be-
tween vectors of membrane-bound molecules; (2) molecu-
lar recognition of targets in axonal guidance and synapse
formation, which generate neuronal networks; (3) the struc-
ture of biological networks [7-12]; (4) the empirical descrip-
tion of subgraph frequency in protein-protein interaction
data in terms of embedding in low-dimension spaces [16];
and (5) models of complementarity in “shape space” for
molecular binding interactions [17].

7. SIMULATIONS: DYNAMIC MODELS

In this section we run simulations of some of the grammars
described above to try and construct networks that display
some topological features of biological networks. We use the
geometric probability distribution g(n) = p”, where p = 0.7.
The root node is centered at the point (0.5, 0.5) in two-
dimensional Euclidean space. The position of the children
of a node come from a Gaussian distribution with mean at
the position of the parent node and with variance set at 0.1
for the first level and decreasing by a fixed factor at every
subsequent level. The variance for the Gaussian distribution
representing the position of the children of a node de-
creases at each level because we assume the variation de-
creases with each generation. The tree is grown till there are
hundred nodes and two nodes are connected by an edge if
the distance between them is less than a threshold # = 0.002.
As Figure 2 indicates, increasing the factor by which the
variance is reduced causes the network to become more
clustered. We also plot the clustering coefficient as a func-
tion of the factor by which the variance is reduced in Figure
3 to make the relationship between the two quantities more
evident.

8. DISCUSSION: DYNAMIC MODELS

The dynamic models proposed above are similar to Equi-
librium Graph Automata, but in a nonequilibrium setting
and without the two-way interaction between labels X; and
connections in G; Many other recursive/stochastic pat-
terns are possible with Stochastic Parameterized Grammars.
For example, an alternative kind of graph grammar uses a
subgrammar to specify the cell lineage tree, but also uses
recursive substitution rules to substitute subgraphs from a
library for individual nodes and links, as illustrated by the

nz = 5965

Effect of reducing the variance on the structure of networks.

following grammar “graph-recursion.” The a indices are
arbitrary “colors” in addition to the node index sequences i.

grammar (discrete-time) graph-recursion (start
{node (i), G-connection(a, i, j) } ) |
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In this grammar, boldface indices i, etc. correspond to (e.g.,
binary) index tuples (i;, i,, i,,_;) and (i, i,) denotes the tuple
extension to (i}, b, . . ., i,). Also Ay ;) is a set of 0-1 valued
indicator variables representing the existence of particular
indexed nodes as determined for example by nodegen.

In this way, Gf” acts as a reusable wiring pattern or
“cable” or, when i = j, as a reusable subgraph. The corre-

ful machine learning search for functional graph architec-
tures [18]. Whether and how simply they can also be
translated into the more biological feature-similarity style of
graph grammars such as graphgen (in a manner analogous
to our translation of degree distribution Hamiltonian terms
into computations on node-level fugacity labels) is an open
question.

sponding graph adjacency matrix recursion relation is

Such recursion relations are very powerful ways to spec-
ify network structure and have been used within a success-
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