Skip to main content

Advertisement

Log in

Reducing mind to molecular pathways: explicating the reductionism implicit in current cellular and molecular neuroscience

  • Original Paper
  • Published:
Synthese Aims and scope Submit manuscript

Abstract

As opposed to the dismissive attitude toward reductionism that is popular in current philosophy of mind, a “ruthless reductionism” is alive and thriving in “molecular and cellular cognition”—a field of research within cellular and molecular neuroscience, the current mainstream of the discipline. Basic experimental practices and emerging results from this field imply that two common assertions by philosophers and cognitive scientists are false: (1) that we do not know much about how the brain works, and (2) that lower-level neuroscience cannot explain cognition and complex behavior directly. These experimental practices involve intervening directly with molecular components of sub-cellular and gene expression pathways in neurons and then measuring specific behaviors. These behaviors are tracked using tests that are widely accepted by experimental psychologists to study the psychological phenomenon at issue (e.g., memory, attention, and perception). Here I illustrate these practices and their importance for explanation and reduction in current mainstream neuroscience by describing recent work on social recognition memory in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abel T., Nguyen P., Barad M., Deuel T., Kandel E.R., Bourtchouladze R. (1997). Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell. 88, 615–626

    Article  Google Scholar 

  • Bailey C.H., Bartsch D., Kandel E.R. (1996). Toward a molecular definition of long-term memory storage. Proceedings of the National Academy of Sciences (USA). 93, 13445–13452

    Article  Google Scholar 

  • Balzer W., Moulines C.U., Sneed J.D. (1987). An Architectonic for science. Dordrecht, Reidel

    Google Scholar 

  • Bechtel W. (2001). Decomposing and localizing vision: an exemplar for cognitive neuroscience. In: Bechtel W., Mandik P., Mundale J., Stufflebeam R.S.(eds) Philosophy and the neurosciences: a reader. Oxford, Basil Blackwell

    Google Scholar 

  • Bechtel W., Mandik P., Mundale J., Stufflebeam R.S. (2001). Philosophy and the neurosciences: a reader. Oxford, Basil Blackwell

    Google Scholar 

  • Bechtel W., Mundale J. (1999). Multiple realizability revisited: linking cognitive and neural states. Philosophy of Science. 66, 175–207

    Article  Google Scholar 

  • Bechtel W., Richardson R.C. (1993). Discovering complexity. Princeton, NJ: Princeton University Press

    Google Scholar 

  • Bickle J. (1998). Psychoneural reduction: The new wave. Cambridge, MA: MIT Press

    Google Scholar 

  • Bickle J. (2003). Philosophy and neuroscience: A ruthlessly reductive account. Drodrecht, Kluwer Academic Publishing

    Google Scholar 

  • Bourtchouladze R., Frenguelli B., Blendy J., Cioffi D., Schutz G., Silva A. (1994). Deficient long-term memory in micewith a targeted mutation of the cAMP-responsive element binding protein. Cell. 79, 59–68

    Article  Google Scholar 

  • Chain D., Casadio A., Schacher S., Hegde A., Valbrun M., Yamamoto N., Goldberg A., Bartsch D., Kandel E. R., Schwartz J. (1999). Mechanisms for generating the autonomous cAMP-dependent protein kinase required for long-term facilitation in Aplysia. Neuron. 22, 147–156

    Article  Google Scholar 

  • Churchland P.S. (1986). Neurophilosophy. Cambridge, MA: MIT Press

    Google Scholar 

  • Churchland P.S., Sejnowski T.J. (1992). The computational brain. Cambridge, MA: MIT Press

    Google Scholar 

  • Craver C.F. (2002). Interlevel experiments and multilevel mechanisms in the neuroscience of memory. Philosophy of Science Supplemental. 69, S83–97

    Google Scholar 

  • Craver C.F. (2003). The making of a memory mechanism. Journal of the History of Biology. 36, 153–195

    Article  Google Scholar 

  • Craver C.F., Darden L. (2001). Discovering mechanisms in neurobiology: the case of spatial memory”. In: Machamer P.,Grush R., McLaughlin P.(eds). Theory and method in neuroscience. Pittsburgh, PA: University of Pittsburgh Press, 112–135

    Google Scholar 

  • Ferguson J.N., Young L.J., Insell T.R. (2002). The neuroendocrine basis of social recognition. Frontiers in Neuroendocrinology 23, 200–224

    Article  Google Scholar 

  • Feyerabend P.K. (1962). Explanation, reduction and empiricism. Minnesota Studies in the Philosophy of Science. 3, 28–97

    Google Scholar 

  • Frey U., Huang Y.-Y., Kandel E.R. (1993). Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. Science. 260: 1661–1664

    Article  Google Scholar 

  • Gallistel C.R. (1995). Is LTP a plausible basis for memory?. In: McGaugh J.L., Weinberger N.M., Lynch G.(eds). Brain and Memory: Modulation and mediation of neuroplasticity. New York, Oxford University Press, 328–337

    Google Scholar 

  • Hayashi Y., Shi S.-H., Esteban J.A., Piccini A., Poncer J.-C., Malinow R. (2000). Driving AMPA receptors into synapses by LTP and CaMKII: Requirements for GluR1 and PDZ domain interaction. Science. 287, 2262–2267

    Article  Google Scholar 

  • Huang Y. -Y., Li X.-C., Kandel E.R. (1994). cAMP contributes to mossy-fiber LTP by initiating both a covalently mediated early phase and macromolecular synthesis-dependent late phase. Cell. 79, 69–79

    Article  Google Scholar 

  • Hummler E., Cole T., Blendy J., Ganss R., Aguzzi A., Schmid W., Beerman F., Schutz G. (1994). Targeted mutation of the CREB gene: Compensation with in the CREB/ATF family of transcription factors. Proceedings of the National Academy of Sciences USA. 91, 5647–5651

    Article  Google Scholar 

  • Jiang Y., Lee A., Chen J., Ruta V., Cadene M., Chalt B., MacKinnon R. (2003a). X-ray structure of a voltage-dependent K+ channel. Nature, 423, 33–41

    Article  Google Scholar 

  • Jiang Y., Ruta V., Chen J., Lee A., Mackinnon R. (2003b). The principle of gating charge movement in a voltage-dependent K+ channel. Nature, 423, 42–48

    Article  Google Scholar 

  • Kandel E.R., Schwartz J.R., Jessell T. (2000). Principles of neural science (4th ed). New York, McGraw-Hill

    Google Scholar 

  • Kemeny J.G., Oppenheim P. (1956). On reduction. Philosophical Studies. 7, 6–19

    Article  Google Scholar 

  • Kim J. (1993). Supervenience and mind. Cambridge, Cambridge University Press

    Google Scholar 

  • Kogan J.H., Frankland P.W., Blendy J.A., Coblentz J., Marowitz Z., Schutz G., Silva A.J. (1997). Spaced training induces normal long-term memory in CREB mutant mice. Current Biology. 7, 1–11

    Article  Google Scholar 

  • Kogan J.H., Frankland P.W., Silva A.J. (2000). Long-term memory underlying hippocampus-dependent social recognition in mice. Hippocampus. 10, 47–56

    Article  Google Scholar 

  • Larson J., Wong D., Lynch G. (1986). Patterned stimulation at the theta frequency is optimal for induction of hippocampal long-term potentiation. Brain Research. 368, 347–350

    Article  Google Scholar 

  • LePore E., Loewer B. (1989). More on making mind matter. Philosophical Topics. 17, 175–191

    Google Scholar 

  • Lodish H., Berk A., Zipursky S., Baltimore D., Darnell J. (2000). Molecular Cell Biology (4th ed). New York, W.H. Freeman

    Google Scholar 

  • Lynch G. (1986). Synapses, Circuits, and the Beginnings of Memory. Cambridge, MA: MIT Press

    Google Scholar 

  • Machamer P., Darden L., Craver C.F. (2000). Thinking about mechanisms. Philosophy of Science. 67, 1–25

    Article  Google Scholar 

  • Macrides F., Eichenbaum H.B., Forbes W.B. (1982). Temporal relationship between sniffing and the limbic θ rhythm during odor discrimination reversal learning. Journal of Neuroscience. 2, 1705–1717

    Google Scholar 

  • Nagel E. (1961). The structure of science. New York, Harcourt, Brace, and World

    Google Scholar 

  • Salzman C.D., Murasagi C.M., Britten K.H., Newsome W.T. (1992). Microstimulation in visual area MT: Effects on direction discrimination performance. Journal of Neuroscience. 12, 2331–2355

    Google Scholar 

  • Schaffner K. (1967). Approaches to reduction. Philosophy of Science. 34, 137–147

    Google Scholar 

  • Schaffner K. (1993). Discovery and explanation in biology and medicine. Chicago, University of Chicago Press

    Google Scholar 

  • Shors T.J., Matzel L.D. (1997). Long-term potentiation: What’s learning got to do with it?. Behavioral and Brain Sciences. 20, 597–655

    Google Scholar 

  • Squire L.R. (1987). Memory and brain. Oxford, Oxford University Press

    Google Scholar 

  • Staubli U., Lynch G. (1987). Stable hippocampal long-term potentiation elicited by “theta” pattern stimulation. Brain Research. 435, 227–234

    Article  Google Scholar 

  • Suppes P. (1956). Introduction to logic. Princeton, NJ: van Nostrand

    Google Scholar 

  • Taubenfeld S., Wiig K., Monti B., Dolan B., Pollonini G., Alberini C.C. (2001). Fornix-dependent induction of hippocampal CCAAT enhancer-binding protein β and δ co-localizes with phosphorylated cAMP response element-binding protein and accompanies long-term memory consolidation. Journal of Neuroscience. 21, 84–91

    Google Scholar 

  • Thor D.H., Holloway W.R. (1982). Social memory of the male laboratory rat. Journal of Comparative and Physiological Psychology. 96, 1000–1006

    Article  Google Scholar 

  • Vanderwolf C.H. (1969). Hippocampal electrical activity and voluntary movement in the rat. Electroencephalography and Clinical Neurophysiology. 26, 407–418

    Article  Google Scholar 

  • Wimsatt W.C. (1986). “Forms of aggregativity”. In: Donagan A., Perovich A.N., Wedin M.V.(eds). Human nature and natural knowledge. Dordrecht, Reidel, 259–291

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Bickle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bickle, J. Reducing mind to molecular pathways: explicating the reductionism implicit in current cellular and molecular neuroscience. Synthese 151, 411–434 (2006). https://doi.org/10.1007/s11229-006-9015-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-006-9015-2

Keywords

Navigation