Skip to main content
Log in

On the Relation between Kanizsa's Bias Towards Convexity and the Gestaltists Prägnanz from the Perspective of Current in Shape Recognition

  • Published:
Axiomathes Aims and scope Submit manuscript

Abstract

What is the relation between Kanizsa's bias towards convexity and the Gestaltists' demonstrations that perceptual organization obeys a principle of pragnänz, or simplicity? Why should either kind of bias exist? Textbook accounts assign no functional role for these biases. Geon theory (Biederman 1987) proposes that we can understand these biases in terms of fundamental processes by which complex objects are decomposed into convex (or singly concave) regions at points of matched cusps according to the transversality regularity (Hoffman and Richards 1985). Such decomposition yields simple, convex parts segmented between the concavities. A shape that contains concavities is generally regarded as complex insofar as it can be decomposed into the regions, or parts, between the concavities. It is these simple parts that are the stable elements of shape, not the whole object. In fact, geon theory leads to the expectation that shape recognition proceeds most efficiently when the parts are good (in the pragnänz sense) but the object is bad!

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Biederman, I.: 1987. 'Recognition-by-components: A Theory of Human Image Understanding', Psychological Review 94, 115–147.

    Article  Google Scholar 

  • Biederman, I.: 1995. 'Visual Object Recognition', in S. M. Kosslyn and D. N. Osherson (eds.), An Invitation to Cognitive Science, 2nd edition, Volume 2, Visual Cognition. MIT Press, Chapter 4, pp. 121–165.

  • Biederman, I. And M. Bar: 1999. 'One-shot Viewpoint Invariance in Matching Novel Objects', Vision Research 39, 2885–2899.

    Article  Google Scholar 

  • Biederman, I., H. J. Hilton and J. E. Hummel: 1991. 'Pattern Goodness and Pattern Recognition', in J. R. Pomerantz and G. R. Lockhead (eds.), The Perception of Structure (Chapter 5, pp. 73–95). Washington, D.C.: APA.

    Google Scholar 

  • Biederman, I., and P. Kalocsai: 1997. 'Neurocomputational Bases of Object and Face Recognition', Philosophical Transactions of the Royal Society London: Biological Sciences 352, 1203–1219.

    Article  Google Scholar 

  • Biederman, I. and S. Subramaniam: 1997. 'Predicting the Shape Similarity of Objects without Distinguishing Viewpoint Invariant Properties (VIPs) or Parts', Investigative Ophthalmology & Visual Science 38, 998.

  • Buffart, H. E. and E. L. J. Leeuwenberg: 1983. 'Structural Information Theory', in H. G. Geisler, J. F. J. M. Buffart, E. L. J. Leeuwenberg and V. Sarris (eds.), Modern issues in perception (pp. 48–71). Berlin: VEB Deutscher Verlag der Wissenschaften.

    Google Scholar 

  • Fiser, J., I. Biederman and E. E. Cooper: 1996. 'To What Extent can Matching Algorithms Based on Direct Outputs of Spatial Filters Account for Human Shape Recognition?', Spatial Vision 10, 237–271.

    Google Scholar 

  • Garner, W. R.: 1974. The processing of information and structure. Potomac, MD: Erlbaum.

    Google Scholar 

  • Gibson, E. J. and H. Levin: 1975. The psychology of reading. Cambridge, MA: MIT Press.

    Google Scholar 

  • Ginsburg, A. P.: 1986. 'Spatial Filtering and Visual Form Perception', in K. R. Boff, L. Kaufman and J. P. Thomas (eds.), Handbook of perception and human performance (Vol. 2, Chapter 36, pp. 36–1 to 36–41). New York: Wiley.

    Google Scholar 

  • Hoffman, D. D.: 1998. Visual Intelligence. New York: Norton.

    Google Scholar 

  • Hoffman, D. D. and W. Richards: 1985. Parts of recognition. Cognition 18, 65–96.

    Google Scholar 

  • Hummel, J. E. and I. Biederman: (In press). 'Dynamic Binding in a Neural Network for Shape Recognition', Psychological Review 99, 480–517.

  • Kanizsa, G.: 1979. Organization in vision: essays on gestalt perception. New York: Praeger.

    Google Scholar 

  • Kayeart, G., I. Biederman and R. Vogels: 2003. 'A Systematic Study of Shape Tuning in Macaque Inferior Temporal Cortex', Journal of Neuroscience, in press.

  • Kimia, B. B., A. Tannenbaum and S. W. Zucker: 1989. 'Conservation Laws and the Evolution of Shape', Paper presented at the SPIE Meetings, Falmouth, MA.

  • Kobatake, E. and K. Tanaka: 1994. 'Neuronal Selectivities to Complex Object Features in the Ventral Visual Pathway of the Macaque Cerebral Cortex', Journal of Neurophysiology 71, 856–867.

    Google Scholar 

  • Koffka, K.: 1963. Principles of Gestalt psychology. New York: Harcourt, Brace & World. (Original work published, 1935).

    Google Scholar 

  • Lades, M., J. C. VortbrĄggen, J. Buhmann, J. Lange, C. von der Malsburg, R. P. Würtz and W. Konen: 1993. 'Distortion Invariant Object Recognition in the Dynamic Link Architecture', IEEE Transactions on Computers 42, 300–311.

    Article  Google Scholar 

  • Li, W. and C. D. Gilbert: 2002. 'Global Contour Saliency and Local Colinear Interactions', Journal of Neurophysiology 88, 2846–2856.

    Article  Google Scholar 

  • Lowe, D.: 1984. 'Perceptual Organization and Visual Recognition', Unpublished doctoral dissertation, Department of Computer Science, Stanford University.

  • Mangini, M. C. and I. Biederman: 1999. 'Do Objects with Many Parts Incur Greater Attentional Costs than Objects with Few Pparts?', Poster presented at the 7th Annual Workshop on Object Perception and Memory. Los Angeles. Nov.

  • Marr, D.: 1977. Vision. San Francisco: Freeman.

    Google Scholar 

  • Nalwa, V. S.: 1988. 'Line-drawing Interpretation: A Mathematical Perspective', International Journal of Computer Vision 2, 103–124.

    Article  Google Scholar 

  • Nederhouser, M., M. C. Mangini and I. Biederman: 2002. The matching of smooth blobby objects-but not faces-is invariant to differences in contrast polarity for both na<ve and expert subjects. Poster presented at the 2nd Annual Meeting of the Vision Sciences Society, Sarasota, FL., May.

  • Palmer, S. E.: 1999. Vision Science: Photons to Phenomenology. Cambridge, MA: MIT Press.

    Google Scholar 

  • Rolls, E. T. and G. Deco: 2002. Computational Neuroscience of Vision. Oxford.

  • Thorpe, S. J. and M. Fabre-Thorpe: 2001. 'Seeking Categories in the Brain', Science 291, 260–263.

    Article  Google Scholar 

  • Tsunoda, K., Y. Yamane, M. Nishizaki and M. Tanifuji: 2001. 'Complex Objects are Represented in Macaque Inferotemporal Cortex by the Combination of Feature Columns', Nature Neuroscience 4, 832–838.

    Article  Google Scholar 

  • van der Helm, P.: 1988. Accessibility and simplicity of visual structures. Unpublished doctoral dissertation, The Catholic University of Nijmegen, The Netherlands.

    Google Scholar 

  • Vaina, L. M. and S. D. Zlateva: 1990. 'The Largest Convex Patches: A Boundary-based Method for Obtaining Object Parts', Biological Cybernetics 62, 225–236.

    Article  Google Scholar 

  • Vogels, R., I. Biederman, M. Bar and A. Lorincz: 2001. 'Inferior Temporal Neurons Show Greater Sensitivity to Nonaccidental than Metric Differences', Journal of Cognitive Neuroscience 13, 444–453.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biederman, I. On the Relation between Kanizsa's Bias Towards Convexity and the Gestaltists Prägnanz from the Perspective of Current in Shape Recognition. Axiomathes 13, 329–346 (2003). https://doi.org/10.1023/B:AXIO.0000007318.67978.1c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:AXIO.0000007318.67978.1c

Keywords

Navigation