Bulletin of the Section of Logic Volume 13/2 (1984), pp. 69–72 reedition 2008 [original edition, pp. 69–74]

Andrzej Biela

THE PROGRAM-SUBSTITUTION IN ALGORITHMIC LOGIC AND ALGORITHMIC LOGIC WITH NON-DETERMINISTIC PROGRAMS

This note presents a point of view upon the notions of programsubstitution which are the tools for proving properties of programs of algorithmic logics [5], [3] being sufficiently strong and universal to comprise almost all previously introduced theories of programming, and the so-called extended algorithmic logic [1], [2] and algorithmic logic with nondeterministic programs [4].

It appears that the mentioned substitution rule allows us to examine more deeply algorithmic properties of terms, formulas and programs. Besides the problem of Post-completeness and structural completeness of algorithmic logics strengthened additionally by the rule of substitution is raised.

For $i \in \{1, 2, 3\}$, L_i denote the language defined in [3], [1] and [4], respectively. In turn, $T, F, S, FS_i, FST_i, FSF_i$ are sets of classical terms, open' formulas, substitutions, programs, terms and program-formulas respectively.

By E_i we denote the set of all elementary formulas. We put $At_i = V_0 \cup \{1, 0\} \cup (E_i \cap F)$. By $C_{A_i R_i}$ we denote the consequence operations of the algorithmic logics defined in [3], [1], [4] respectively. We shall write $X \vdash_i$ instead of $\alpha \in C_{A_i R_i}(X)$ and $X = \emptyset$ will be omitted.

Let g be any one-one mapping of the set $V \cup V_0$ into $V \cup V_0$ such that $g(V) \subseteq V$ and $g(V_0) \subseteq V_0$. It is clear that any such napping can be extended to an endomorphism g' defined on $T \cup F$. If s is a substitution and f is a mapping from T into T and from F into F, then by f(s) we denote the substitution obtained from s by exchanging all expressions of the form $x_k, \tau_k, a_j, \alpha_j$ by $f(x_k), f(\tau_k), f(a_j), f(\alpha_j)$, respectively.

 ε_g^i is the set of all endomorphism on F such that e(1) = 1, e(0) = 0and $e(s\varrho(\tau_1, \ldots, \tau_n)) = g'(s)e(\varrho(\tau_1, \ldots, \tau_n))$ for every $\varrho(\tau_1, \ldots, \tau_n) \in E_i \cap F$ and $s \in S$.

For any $e \in \varepsilon_g^i$, let e_g be an endomorphism on F such that $e_g(\alpha) = g(\alpha)$ for every $\alpha \in V_0$, and $e_g(\alpha) = e(\alpha)$ for every $\alpha \in At_i - V_0$.

For any program K and any function $e \in \varepsilon_g^i$ we define K_g^e as follows: if $K = [{}^{x_1}\!/_{\tau_1}, \ldots, {}^{x_n}\!/_{\tau_n}, {}^{a_1}\!/_{\alpha_1}, \ldots, {}^{a_m}\!/_{\alpha_m}]$ then $K_g^e = [{}^{g(x_1)}\!/_{g'(\tau_1)}, \ldots, {}^{g(x_n)}\!/_{g'(\tau_n)}, {}^{g(a_1)}\!/_{e_g(\alpha_1)}, \ldots, {}^{g(a_m)}\!/_{e_g(\alpha_m)})$; if K is one of the form $\circ[MN], \underline{\vee}[\delta MN], *[\delta M], [M \cup N]$, then K_g^e is of the form $\circ[M_g^e N_g^e], *[e_g(\delta)M_g^e N_g^e], *[e_g(\delta)M_g^e], [M_g^e \cup N_g^e]$ respectively to the language L_i .

Let \bar{e}_g be an endomorphism on FSF_i satisfying the following conditions: $\bar{e}(\alpha) = e_g(\alpha)$ for every $\alpha \in F$, $\bar{e}_g(K\alpha) = K_g^e \bar{e}_g(\alpha), \bar{e}_g(\bigcup K\alpha) = \bigcup K_g^e \bar{e}_g(\alpha), \bar{e}_g(\varrho(\tau_1, \ldots, \tau_n)) = \bar{e}_g(\chi(\varrho(\tau_1, \ldots, \tau_n)))$ for $i = 1, \bar{e}_g(\exists_x \alpha) = \exists_{g(x)} \bar{e}_g(\alpha)$ for $i \in \{2, 3\}$. Then for i = 3, we put $\bar{e}_g(\bigcap K\alpha) = \bigcap K_g^e \bar{e}_g(\alpha), \bar{e}_g(\forall_x \alpha) = \forall_{g(x)} \bar{e}_g(\alpha)$ and $\bar{e}_g(DK\alpha) = DK_g^e \bar{e}_g(\alpha)$ for any $D \in \{\nabla, \nabla \bigcup, \nabla \cap, \nabla, \Delta \bigcup, \Delta \cap\}$.

For any expression $w, \mathcal{V}(w)$ denotes the set of all variables of w. For a couple of functions $\langle f, f' \rangle$ such that $f: T \cup F \to T \cup F$, f restricted to V_0 is one-one mapping from V_0 into $V_0, f': F \to F$ and for every $\alpha \in FSP_i$ such that $\mathcal{V}(\alpha) \cap V_0 = \{a_1, \ldots, a_m\}$ we put $s^{\alpha} = [f^{(a_1)}/_{f'(a_1)}, \ldots, f^{(a_m)}/_{f'(a_m)}]$. If $\mathcal{V}(\alpha) \cap V_0 = \emptyset$, then we put $s^{\alpha} = [$]. Further we shall say that s^{β} is designated by $\langle f, f' \rangle$.

For any $e \in \varepsilon_q^i$ we define e^g as follows:

$$\begin{split} e^g(\alpha) &= e(\alpha) \text{ for } \alpha \in F \text{ and} \\ e^g(\alpha) &= \begin{cases} s^{\chi(\alpha)} \bar{e}_g(\alpha) & \text{ for } i = 1 \\ \\ s^{\alpha} \bar{e}_g(\alpha) & \text{ for } i \in \{2,3\} \end{cases} \text{ for } \alpha \in FSF_i - F \end{split}$$

A function \bar{e} defined on FSF_i is called a program-substitution ($\bar{e} \in \varepsilon^i$) if $\bar{e} = e^g$ for some g and $e \in \varepsilon^i_q$.

LEMMA 1. For every open formula α and program-formula β and for every $e \in \varepsilon_{a}^{i}$, $s \in S$ the following properties hold:

The Program-Substitution in Algorithmic Logic and Algorithmic Logic with...71

- a. $g(V_0) \cap \mathcal{V}(e(E_i \cap F)) = \emptyset$,
- b. $\overline{s_q^e e_g(\alpha)} = e_g(\overline{s\alpha}),$
- c. If $V_0 \cap \mathcal{V}(\alpha) \subset \mathcal{V}(\beta)$, then $\overline{s^\beta e_g(\alpha)} = e(\alpha)$ where s^β is designated by $\langle g, e \rangle$,
- d. For every $\gamma \in FSF_i$ and for every $y \in V$, if $y \notin \mathcal{V}(\gamma)$, then $g(y) \notin \mathcal{V}(\bar{e}_g(\gamma))$.

THEOREM 1. Algorithmic logic is closed under program-substitution, i.e. $\bar{e}(C_{A_iR_i}(\emptyset)) \subseteq C_{A_iR_i}(\emptyset)$ for every $\bar{e} \in \varepsilon^i$.

By r_* we denote the substitution rule, that is, $\langle \{\alpha\}, \beta \rangle \in r_*$ iff $\beta = \bar{e}(\alpha)$ for some $\bar{e} \in \varepsilon^i$. Let $R_i^* = R_i \cup \{r_*\}$. Obviously, $C_{A_i R_i^*}(\emptyset) = C_{A_i R_i}(\emptyset)$.

LEMMA 2. For every $\alpha, \beta \in FSF_i$ and $e \in \varepsilon_g^i$: if $\mathcal{V}(\alpha) \cap V_0 \subseteq \mathcal{V}(\beta)$, then $\vdash_i s^\beta \bar{e}_g(\alpha) \leftrightarrow s^\alpha \bar{e}_g(\alpha)$ for $i \in \{2,3\}$ and for i = 1 instead $\mathcal{V}(\alpha)$, s^α we must write $\mathcal{V}(\chi(\alpha))$, $s^{\chi(\alpha)}$, where $s^\beta, s^\alpha, s^{\chi(\alpha)}$ are designated by < g, e >.

THEOREM 2. For every $\bar{e} \in \varepsilon^i$ and $\alpha, \beta \in FSF_i$: $\vdash_i \bar{e}(\alpha \cdot \beta) \leftrightarrow (\bar{e}(\alpha) \cdot \bar{e}(\beta))$ for $\cdot \in \{\rightarrow, \cdot, +\}$ and $\vdash_i \bar{e}(\sim \alpha) \leftrightarrow \sim \bar{e}(\alpha)$.

THEOREM 3. The consequence $C_{A_i R_i^*}$ is Post-incomplete.

A rule r is called structural if $\langle \bar{e}(X), \bar{e}(\alpha) \rangle \in r$ for every sequent $\langle X, \alpha \rangle \in r$ and $\bar{e} \in \varepsilon^i$.

For i = 1 we introduce the notion of algorithmic structural completeness which slightly differs from the known examination concerning the property of structural completeness [6]. If $X \subset FSF_i$ and $K \in FS_i$, then by KX we shall denote the set of all formulae of the form $K\alpha$ for any $\alpha \in X$.

For any $D \subset FS_1$ we shall say that the rule r is D-admissible in a consequence C if for every $\langle X, \alpha \rangle \in r$ and $K \in D, KX \subset C(\emptyset)$ implies $K\alpha \in C(\emptyset)$.

If D = S, then instead of saying that the rule r is S-admissible we shall say that the rule r is program-admissible.

Now we define the set $J \subset FSF_1$ as follows: $\alpha \in J$ iff there exists an open formula β such that $\vdash_1 \alpha \leftrightarrow \beta$.

A rule r is finitary if for every $\langle X, \alpha \rangle \in r$ the set X is finite and $X \cup \{\alpha\} \subset J$. We shall say that the consequence C in L_1 is algorithmically structurally complete if every structural, finitary and program-admissible rule r of C is derivable in it.

THEOREM 4. The consequence $C_{A_1R_1^*}$ of algorithmic logic is algorithmically structurally complete.

For $i \in \{2, 3\}$, the problem of algorithmic structural completeness is open.

References

[1] L. Banachowski, Investigations of properties of programs by means of the extended algorithmic logic I, Fundamenta Informaticae, Vol. I, No. 1 (1977), pp. 93–119.

 [2] A. Kreczmar, Effectivity problems of algorithmic logic, ibid. Vol. I, No. 1 (1977), pp. 19–32.

[3] G. Mirkowska, Algorithmic logic and its applications in the theory of programs I, II, ibid., Vol. 1, No. 1 (1977), pp. 1–17 and No. 2 (1977), pp. 147–165.

[4] G. Mirkowska, Model existence theorem in algorithmic logic with nondeterministic programs, ibid., Vol. III, No. 2 (1980), pp. 157–170.

[5] A. Salwicki, *Formalized algorithmic language*, Bulletin de l'Académic Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques 18 (1970), pp. 227–232.

[6] W. A. Pogorzelski, *Structural completeness of the propositional calculus*, ibid., Vol. 19 (1971), pp. 349–351.

Department of Mathematics Silesian University Katowice, Poland