
Bulletin of the Section of Logic
Volume 13/2 (1984), pp. 69–72

reedition 2008 [original edition, pp. 69–74]

Andrzej Biela

THE PROGRAM-SUBSTITUTION IN ALGORITHMIC
LOGIC AND ALGORITHMIC LOGIC WITH

NON-DETERMINISTIC PROGRAMS

This note presents a point of view upon the notions of program-
substitution which are the tools for proving properties of programs of
algorithmic logics [5], [3] being sufficiently strong and universal to com-
prise almost all previously introduced theories of programming, and the
so-called extended algorithmic logic [1], [2] and algorithmic logic with non-
deterministic programs [4].

It appears that the mentioned substitution rule allows us to exam-
ine more deeply algorithmic properties of terms, formulas and programs.
Besides the problem of Post-completeness and structural completeness of
algorithmic logics strengthened additionally by the rule of substitution is
raised.

For i ∈ {1, 2, 3}, Li denote the language defined in [3], [1] and [4],
respectively. In turn, T, F, S, FSi, FSTi, FSFi are sets of classical terms,
open’ formulas, substitutions, programs, terms and program-formulas re-
spectively.

By Ei we denote the set of all elementary formulas. We put Ati =
V0 ∪ {1, 0} ∪ (Ei ∩ F). By CAiRi we denote the consequence operations
of the algorithmic logics defined in [3], [1], [4] respectively. We shall write
X `i instead of α ∈ CAiRi

(X) and X = ∅ will be omitted.
Let g be any one-one mapping of the set V ∪ V0 into V ∪ V0 such

that g(V) ⊆ V and g(V0) ⊆ V0. It is clear that any such napping can be
extended to an endomorphism g′ defined on T ∪ F . If s is a substitution
and f is a mapping from T into T and from F into F , then by f(s) we
denote the substitution obtained from s by exchanging all expressions of
the form xk, τk, aj , αj by f(xk), f(τk), f(aj), f(αj), respectively.

70 Andrzej Biela

εi
g is the set of all endomorphism on F such that e(1) = 1, e(0) = 0

and e(s%(τ1, . . . , τn)) = g′(s)e(%(τ1, . . . , τn)) for every %(τ1, . . . , τn) ∈ Ei∩F
and s ∈ S.

For any e ∈ εi
g, let eg be an endomorphism on F such that eg(α) =

g(α) for every α ∈ V0, and eg(α) = e(α) for every α ∈ Ati − V0.

For any program K and any function e ∈ εi
g we define Ke

g as follows: if
K = [x1/τ1 , . . . ,

xn/τn
,a1/α1 , . . . ,

am/αm
] then Ke

g = [g(x1)/g′(τ1), . . . ,
g(xn)/g′(τn),

g(a1)/eg(α1), . . . ,g(am) /eg(αm); if K is one of the form ◦[MN],∨[δMN], ∗[δM],
[M ∪N], then Ke

g is of the form ◦[Me
g Ne

g], ∗[eg(δ)Me
g Ne

g], ∗[eg(δ)Me
g], [Me

g ∪
Ne

g] respectively to the language Li.

Let ēg be an endomorphism on FSFi satisfying the following condi-
tions: ē(α) = eg(α) for every α ∈ F , ēg(Kα) = Ke

g ēg(α), ēg(
⋃

Kα) =⋃
Ke

g ēg(α), ēg(%(τ1, . . . , τn)) = ēg(χ(%(τ1, . . . , τn))) for i = 1, ēg(∃xα) =
∃g(x)ēg(α) for i ∈ {2, 3}. Then for i = 3, we put ēg(

⋂
Kα) =

⋂
Ke

g ēg(α),
ēg(∀xα) = ∀g(x)ēg(α) and ēg(DKα) = DKe

g ēg(α) for any D ∈ {∇,∇
⋃

,
∇

⋂
,∇,∆

⋃
,∆

⋂
}.

For any expression w,V(w) denotes the set of all variables of w. For a
couple of functions <f, f ′> such that f : T∪F → T∪F , f restricted to V0 is
one-one mapping from V0 into V0, f ′ : F → F and for every α ∈ FSPi such
that V(α) ∩ V0 = {a1, . . . , am} we put sα = [f(a1)/f ′(a1), ...,

f(am) /f ′(am)].
If V(α) ∩ V0 = ∅, then we put sα = []. Further we shall say that sβ is
designated by <f, f ′>.

For any e ∈ εi
g we define eg as follows:

eg(α) = e(α) for α ∈ F and

eg(α) =

 sχ(α)ēg(α) for i = 1
for α ∈ FSFi − F

sαeg(α) for i ∈ {2, 3}

A function ē defined on FSFi is called a program-substitution (ē ∈ εi)
if ē = eg for some g and e ∈ εi

g.

Lemma 1. For every open formula α and program-formula β and for every
e ∈ εi

g, s ∈ S the following properties hold:

The Program-Substitution in Algorithmic Logic and Algorithmic Logic with...71

a. g(V0) ∩ V(e(Ei ∩ F)) = ∅,
b. se

geg(α) = eg(sα),

c. If V0 ∩ V(α) ⊂ V(β), then sβeg(α) = e(α) where sβ is designated by
<g, e>,

d. For every γ ∈ FSFi and for every y ∈ V , if y 6∈ V(γ), then g(y) 6∈
V(ēg(γ)).

Theorem 1. Algorithmic logic is closed under program-substitution, i.e.
ē(CAiRi

(∅)) ⊆ CAiRi
(∅) for every ē ∈ εi.

By r∗ we denote the substitution rule, that is, <{α}, β >∈ r∗ iff β =
ē(α) for some ē ∈ εi. Let R∗

i = Ri∪{r∗}. Obviously, CAiR∗
i
(∅) = CAiRi(∅).

Lemma 2. For every α, β ∈ FSFi and e ∈ εi
g: if V(α) ∩ V0 ⊆ V(β), then

`i sβ ēg(α) ↔ sαēg(α) for i ∈ {2, 3} and for i = 1 instead V(α), sα we
must write V(χ(α)), sχ(α), where sβ , sα, sχ(α) are designated by <g, e>.

Theorem 2. For every ē ∈ εi and α, β ∈ FSFi: `i ē(α·β) ↔ (ē(α)· ē(β))
for · ∈ {→, ·,+} and `i ē(∼ α) ↔∼ ē(α).

Theorem 3. The consequence CAiR∗
i

is Post-incomplete.

A rule r is called structural if < ē(X), ē(α) >∈ r for every sequent
<X, α> ∈ r and ē ∈ εi.

For i = 1 we introduce the notion of algorithmic structural com-
pleteness which slightly differs from the known examination concerning
the property of structural completeness [6]. If X ⊂ FSFi and K ∈ FSi,
then by KX we shall denote the set of all formulae of the form Kα for any
α ∈ X.

For any D ⊂ FS1 we shall say that the rule r is D-admissible in a
consequence C if for every < X, α > ∈ r and K ∈ D,KX ⊂ C(∅) implies
Kα ∈ C(∅).

If D = S, then instead of saying that the rule r is S-admissible we
shall say that the rule r is program-admissible.

Now we define the set J ⊂ FSF1 as follows: α ∈ J iff there exists an
open formula β such that `1 α ↔ β.

72 Andrzej Biela

A rule r is finitary if for every < X,α > ∈ r the set X is finite and
X ∪{α} ⊂ J . We shall say that the consequence C in L1 is algorithmically
structurally complete if every structural, finitary and program-admissible
rule r of C is derivable in it.

Theorem 4. The consequence CA1R∗
1

of algorithmic logic is algorithmi-
cally structurally complete.

For i ∈ {2, 3}, the problem of algorithmic structural completeness is
open.

References

[1] L. Banachowski, Investigations of properties of programs by means
of the extended algorithmic logic I, Fundamenta Informaticae, Vol. I,
No. 1 (1977), pp. 93–119.

[2] A. Kreczmar, Effectivity problems of algorithmic logic, ibid. Vol.
I, No. 1 (1977), pp. 19–32.

[3] G. Mirkowska, Algorithmic logic and its applications in the theory
of programs I, II, ibid., Vol. 1, No. 1 (1977), pp. 1–17 and No. 2 (1977),
pp. 147–165.

[4] G. Mirkowska, Model existence theorem in algorithmic logic with
nondeterministic programs, ibid., Vol. III, No. 2 (1980), pp. 157–170.

[5] A. Salwicki, Formalized algorithmic language, Bulletin de l’Académic
Polonaise des Sciences. Série des Sciences Mathématiques, As-
tronomiques et Physiques 18 (1970), pp. 227–232.

[6] W. A. Pogorzelski, Structural completeness of the propositional
calculus, ibid., Vol. 19 (1971), pp. 349–351.

Department of Mathematics
Silesian University
Katowice, Poland

