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Counterfactual logic and the Hardy paradox:

Remarks on Shimony and Stein’s criticism of Stapp’s proof

Abstract

This is an extended critique of comments made by Abner Shimony and Howard Stein on Henry Stapp’s proof of the non-locality of quantum mechanics. Although I claim that ultimately Stapp’s proof does not establish its purported conclusion, yet Shimony and Stein’s criticism contains a number of weak points, which need to be clarified.
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Introduction

Henry Stapp has pioneered the use of counterfactual logic in reconstructing Bell-type reasoning in quantum mechanics. In a series of publications, starting in (1971), Stapp has attempted to strengthen the Bell result by replacing the realist premise with the principles of modal logic of counterfactuals. Stapp’s goal has been to prove that it is possible to derive a contradiction merely from the counterfactual assumption of locality and some quantum-mechanical predictions, thereby establishing not only that local realistic interpretations of quantum mechanics are impossible (which is the result of the original Bell theorem), but also that quantum mechanics itself is inevitably non-local.
 One of his recent alleged proofs (1997) uses an example known in literature as the Hardy state. Stapp claims that he has succeeded in deriving formally a contradiction from several principles of locality combined together with the consequences of the quantum-mechanical description of the Hardy state, and an additional premise of the free choice of experiments. However, several critics have subsequently questioned the validity of his proof.
 In two detailed publications (2001) and (2003), Abner Shimony and Howard Stein subjected Stapp’s argument to a thorough and critical analysis, concluding that his results are not warranted. In what follows I would like to discuss several weak points of Shimony and Stein’s criticism, focusing mostly on their (2003) analysis. My goal is not so much a defense of Stapp’s proof, which I ultimately see as flawed beyond repair (the reason for this assessment will be given at the end of the paper), but rather to clarify certain important issues pertaining to the semantics of counterfactuals and to its use in the interpretation of quantum mechanics. 

Stapp’s proof employs a quantum system consisting of two objects and prepared in a particular quantum state, known as the Hardy state (Hardy 1992). For the purposes of analyzing Stapp’s argument we need to know only that it is possible to select two pairs of two-valued observables L1, L2 and R1, R2, performed respectively in two space-like separated regions L and R, and such that the Hardy state implies the existence of certain precise correlations between their particular outcomes. The prediction of the Hardy state is presented on the diagram below, where solid arrows represent a necessary implication from one outcome to the other, and dashed lines represent possibilities (if one outcome is obtained, the other is possible).
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Stapp’s original proof makes use of three versions of counterfactually formulated principles (LOC1), (LOC2) and (LOC3). The detailed formulations of these conditions, as well as the entire formal derivation, can be found in Stapp’s article and Shimony and Stein’s responses. In my subsequent analysis I will explicitly formulate only those principles and assumptions which are of significance to the point I am making, referring the reader to the above-mentioned publications for more details.

1. Stapp’s modal logic of counterfactuals


Shimony and Stein (further abbreviated as SS) correctly identify a minor logical oversight in Stapp’s original proof. The oversight consists in a misinterpretation of “nested” strict conditionals of the form p ( (q ( r). Stapp treats this formula as being logically equivalent to (p ( q) ( r, whereas, according to the standard semantics for the strict conditional “(”, the former statement is much more stronger than the latter. In fact, the truth of the statement p ( (q ( r) implies, surprisingly, that the strict implication q ( r will be true unconditionally, provided that p is possible, i.e. true in some possible world. It can be easily checked that the correct equivalent of (p ( q) ( r is p ( (q ( r), where arrow “(” stands for material implication. Taking this into account, SS made an emendation of Stapp’s proof, replacing all nested strict conditionals with formulas of this last sort, consisting of a strict conditional and a material implication. Incidentally, we should notice that the same problem arises with respect to “mixed” nested conditionals, built of counterfactuals and strict implications, of the sort p (( (q ( r). It also turns out that if the latter is true, then under the condition that p is possible, q ( r is true in all possible worlds. Therefore, if we want to express the more restrained idea that under a counterfactual condition p, q will imply r, we have to use the ordinary material implication: p (( (q ( r).


In addition to the aforementioned oversight, SS claim to have discovered another peculiar feature of Stapp’s logic, which they refer to as “the anomaly”. The issue of the anomaly appears in the context of the analysis of the final step in Stapp’s proof. Stapp claims that his proof establishes the truth of the two following conditionals:

(1) (R2 ( L1) ( [R1 (( (L1– ( R1–)]

(2) (R2 ( L1) ( [R1 (( ((L1– ( R1–)]

For a moment let us ignore the incorrect “nesting” of the strict implication within the counterfactual conditional in (1). The only feature of (1) and (2) which is of interest to us right now is that R1 counterfactually implies two contradictory statements. From this Stapp derives the conclusion that R1 has to be impossible, because if it were possible, there would be a possible world in which R1 would hold, and hence two contradictory statements would have to be true in it.
 Finally, Stapp interprets the impossibility of R1 under the condition that the actual settings were R2 and L1, as contradicting the assumption of the free will of the experimenter, which is what he aimed to show in the first place.


SS rebut this argument on the basis of their reading of Stapp’s counterfactual semantics. They seem to claim (although they are not particularly clear on this point) that according to Stapp (1) and (2) can be jointly true even if there is a possible world in which R1 is true. Now, in ordinary Lewis’ semantics for counterfactuals (as presented in Lewis 1973 and 1986) this situation is impossible to obtain, unless the only worlds in which R1 is true are inaccessible from the actual one. As it is well known, the Lewis truth conditions require that for a counterfactual p (( q to be true, q has to be true in all p-worlds which are closest to the actual one with respect to their similarity. Alternatively, p (( q can be deemed vacuously true, if there is no accessible p-world whatsoever. (The assumption that all worlds are accessible from the actual one SS call “the assumption of a minimal degree of similarity.” They say that Lewis’ semantics does not make this assumption, but does not rule it out either.) It should be made clear, however, that invoking inaccessible worlds in order to avoid contradiction implicit in (1) and (2) does not threaten Stapp’s objective, for if the world in which an alternative setting R2 has been chosen cannot be accessed from the actual one, it plainly means that R2 is not a viable option (in modal logic a statement is deemed possible if it is true in an accessible world).


However, SS point out that according to Stapp’s semantics of counterfactuals both (1) and (2) may be true even if there is a world which is very much accessible from the actual one, and in which R2 is true (this is exactly what they call “the anomaly”). In order to see their point, we have to carefully formulate Stapp’s purported truth conditions for counterfactuals, as reported by SS. They offer the following explication of Stapp’s counterfactual semantics (p. 502):

(3) The conditional p (( q is true in a world w iff q is true in every world w( that differs from w only by the consequences of doing the action described by p, i.e. in every world w( in which p is true, and which agrees with w everywhere outside the future light-cone of the spatiotemporal region R referred to in p.

Obviously the above equivalence makes sense only under certain conditions – one of them being that p describes an event (typically: an action taken by the experimenter) localized somewhere
. However, more problematic is the fact that the meaningfulness of (3) also presupposes that there is a world w( which agrees with w everywhere outside the future light-cone of R. If this presupposition is for any reason not satisfied, the right-hand side of equivalence (3) becomes meaningless, and we don’t know how to evaluate the appropriate counterfactual. Although SS do not explicitly mention this problem, they seem to interpret (3) in a way which avoids it – namely, they assume, without much discussion, that when there is no world w(, the conditional p (( q becomes vacuously true. We have to admit that nowhere in (2003) can we find a fragment which would directly confirm this method of interpreting (3); however it may be indirectly inferred from SS’s discussion of statements (1) and (2) given on p. 506. They say there that according to Stapp’s interpretation of “((”, statements (1) and (2) may be true together if any two possible worlds such that measurements L1 and R2 are performed in one of them, and L1 and R1 in the other, differ somewhere outside the future light-cone of the region R.  And the phrase given here may be construed as a possible expression of the fact that the world w( in which L1 and R1 are performed, and which differs from a given (L1 and R2)-world only within the future light-cone of region R, does not exist. That should make it reasonably clear that SS’s intended reading of Stapp’s counterfactual semantics is most probably as follows:

(3() 
The conditional p (( q is true in a world w iff either (1) there is no world w( in which p is true, and which agrees with w everywhere outside the future light-cone of the spatiotemporal region R (vacuous case), or (2) q is true in every such world w(.

SS go one step further in their analysis, mentioning that Stapp’s final conclusion derived from (1) and (2) would be justified if he added some further “formal locality principle”. Although they are not specific about what this principle may look like, it is probable that what they mean is something like “for all antecedents p referring to an event localized in a region R, there is a p-world such that it differs from the actual one nowhere except the future light-cone of R”. With this condition in place the conditional p (( q would never be vacuously true, which implies that (1) and (2) could not be true together (would lead to a contradiction). Incidentally, this is exactly the form of the locality assumption which I have proposed elsewhere, calling it the “semantic locality principle” (SLOC)
, and – more importantly – proving its equivalence with the locality condition encompassed in Stapp’s formula (LOC1) (Bigaj 2004b). 

However, it appears that there is a possible interpretation of Stapp’s truth conditions for counterfactuals which differs from (3(), and is moreover free from the “anomaly” SS ascribe to Stapp’s logic. This interpretation was proposed by Finkelstein (1999) and further amended in (Bigaj 2004a). It originates from the observation that the truth conditions given in (3) work well only for so-called “free-choice” events, i.e. events which are not causally related to any events outside their absolute future (this assumption ensures the existence of world w(). However, not all events have to be of that sort. For example, if we chose L1– as the counterfactual antecedent p, and if we assumed that in the actual world the following situation obtains: L1+, R2–, then any possible world in which p is true would have to have the outcome of R2 changed to “+”, in order to preserve the quantum-mechanical predictions. Now, under those circumstances the interpretation (3() entails that all counterfactuals of the form p (( q would come out (vacuously) true. But this doesn’t have to be the case. The idea is that we can include some p-worlds which diverge from the actual one outside the future light-cone of R into the evaluation of the appropriate counterfactual, provided, of course, that their divergence is not too extravagant. Hence, we should first compare different possible p-worlds with regard to the extent of their divergence, and choose only those which differ from the actual one in the minimal degree allowed by the laws of nature. This idea can be encompassed in the following relation of comparative similarity between possible worlds:

(SIM)
World w is at least as similar to the actual one as w( iff 
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 is a set of spatiotemporal points defined as the closure of the set of all primary points of divergence of the world w with respect to their absolute future.
 Once we have the similarity relation given in (SIM), we can use the standard Lewis truth-conditions for evaluating counterfactuals.
 It can be easily verified that the counterfactual semantics based on (SIM) produces (3) as a special case when the “formal locality principle” SS alluded to on p. 506 is invoked. And yet (SIM) allows for non-trivial evaluations of counterfactuals even if this condition is not met for a given antecedent. Moreover, the anomaly bothering SS disappears. For right now the existence of any R1-world automatically leads to a conflict with the truth of both (1) and (2), because any world can be compared to the actual one with the help of the relation introduced in (SIM).


Even with the anomaly eliminated, SS would still claim that the final conclusion derived by Stapp is not guaranteed. Remember that because of the logical flaw in Stapp’s proof, (1) is actually not derivable within the standard modal logic. Rather than (1), we can deduce only the following:

(1()
(R2 ( L1) ( [R1 (( (L1– ( R1–)]

Now it should be clear that (1() together with (2) does not lead to the conclusion that R1 is impossible. Statement (2) is, as SS put it, “ludicrously weak”, and hardly contradicts any reasonable claim. Replacement of the second strict implication in (2) with the material conditional would not help much, for the resulting statement – although contradicting (1() under the assumption that R1 is possible – would become totally unwarranted by the quantum-mechanical predictions displayed on the diagram. By elementary logic the formula ((L1– ( R1–) is equivalent to L1– ( (R1–, and obviously no quantum-mechanical rule can guarantee that when the measurements performed are L1 and R1, the outcomes have to be L1– and R1+. So it seems that Stapp’s final step is incorrect anyway.


In spite of this argument, I think that the problem can be fixed relatively easily. The motivation behind (incorrect) statement (2) was that according to the predictions given on the diagram, when L1 and R1 are performed and the result of L1 is “–”, both results of R1 are possible. Now we can give this intuition a correct modal interpretation, using the “might” rather than “would” counterfactual:

(2()
(R2 ( L1) ( [R1 (( (L1– ( (R1–)]

The counterfactual p (( q, which we read “if p were true, q might be true”, is typically interpreted in such a way that it becomes true if there is at least one p-world closest to the actual, in which q holds. Based on this interpretation is the following equivalence, which may be used as a definition of “((”: p (( q iff (( p (( (q). If we apply this equivalence to (2(), we will immediately see that the resulting formula contradicts (1() under the assumption that R2 ( L1 is possible, which well serves Stapp’s purpose. In that way it may be argued that at least the last stage of Stapp’s proof can be defended against SS’s criticism.

2. The locality assumption (LOC2)


Regardless of the validity of the final derivation of Stapp’s proof, the main thrust of SS’s assault is directed against its most controversial assumption (LOC2), which according to Stapp exhibits another legitimate intuition regarding locality. First let us note that SS opt for a radical simplification of Stapp’s proof, maintaining that (LOC2) itself is capable of revealing a contradiction with Stapp’s initial assumptions, including his counterfactual semantics. For that reason they abandon almost entirely any discussion of the other two locality conditions (LOC1) and (LOC3), focusing only on the prima facie plausibility of (LOC2). The principle (LOC2), which is actually a rule of inference, not a statement, is alleged to validate the transition from statement (4) to (5) below (the statements are already given in their corrected forms following the remarks about the logical fallacy of nested strict conditionals):

(4) L2 ( [R2+ ( (R1 (( R1–)]

(5) L1 ( [R2+ ( (R1 (( R1–)]

SS point out that under the semantics of the counterfactual given in (3), the quantum-mechanical predictions imply that (4) is true, but (5) is false. They argue for this in the following way: let us suppose that in the actual world L2 and R2+ are true (remember that (4) is logically equivalent to (L2 ( R2+) ( (R1 (( R1–)). Then, according to the quantum-mechanical prediction represented on the diagram by the solid arrow leading from R2+ to L2+, the outcome of L2 has to be “+”. Now, in order to evaluate the counterfactual R1 (( R1–, SS consider a possible world w( in which R1 is performed instead of R2, and which is exactly identical to w in the entire area outside the future light-cone of experiment R1. For that reason L2+, which takes place in a region space-like separated from R1, still holds in w(, and therefore by the quantum-mechanical predictions R1– must hold, which completes the proof. The falsity of (5) is established in a similar fashion, with a reference to quantum-mechanical predictions given in dashed arrows on the diagram. Hence if this is correct, the rule of inference (LOC2) has been shown to lead directly to a contradiction with the rest of Stapp’s assumptions.  


Let us notice at the outset that the above argument, purporting to establish the truth of (4), has one important gap. It requires namely an assumption that there is a possible world w(, satisfying the aforementioned requirements. But how can we be sure? SS would probably respond that if w( does not exist, then the counterfactual R1 (( R1– is still true, this time vacuously (according to the modification given in (3()). But this does not necessarily do the job well. For if we agree that there may be no world fulfilling the conditions (3) in case of (4), then we have to contend that there is a possibility that there will be no appropriate R1-world which is exactly the same as the L1-and-R2+ world outside the future light-cone of R1, and hence (5) will turn out true too, in spite of SS’s claim to the contrary. And besides, we indicated earlier that there is a legitimate generalization of the counterfactual semantics (3) which makes it perfectly possible to evaluate counterfactuals p (( q even in the absence of a p-world sharing with the actual one the entire region outside the future light-cone of p. So in principle it is possible that in some R1-worlds closest to the L2-and-R2+ world with respect to (SIM), the result L2+ will not hold, and therefore the derivation of R1– will fail. In order to make SS’s argument in favor of the truth of (4) valid, we have to resort to the “formal locality principle” (SLOC) of the sort I have discussed earlier. And if my above-mentioned result establishing equivalence between this locality principle and (LOC1) is accepted, then it becomes clear that SS are mistaken when they say that (LOC2) itself implies a contradiction with some other Stapp’s assumption; actually it is (LOC2) together with (LOC1) that does the job.


This emendation to the claim advanced by SS does not affect substantially their general strategy, as they don’t question the legitimacy of (LOC1), agreeing that it correctly represents our intuitions regarding locality of physical phenomena. For that reason, we should now focus on the question of how can principle (LOC2) be independently justified. Stapp offers one general argument in favor of (LOC2), employing the fact that both conditionals (4) and (5) have (apparently) identical consequents, whose component statements refer to events pertaining to region R only. From this he infers that the consequent of both conditionals (4) and (5) is a statement which describes physical phenomena taking place exclusively in region R, and therefore the truth of this statement cannot depend on any change in a space-like separated region, if our intuitions regarding locality are to be respected. Hence, if a statement S(R) describing a physical phenomenon taking place in a particular region R is true under the assumption that L2 obtains in a faraway region L, statement S(R) should remain true also under the assumption that L1 rather than L2 holds. Now, this looks like a legitimate instance of a locality assumption, provided that all auxiliary premises which we accepted along the way are reasonable. In particular, it can be questioned whether the entire consequent S(R) of both (4) and (5) really refers to a state of affairs located only in region R, or – to put it differently – whether the truth-maker of S(R) is restricted exclusively to the facts of the matter in R. Stapp can rightly point out that all atomic sentences included in complex statement S(R) refer to region R, however it remains unclear whether the referent of a complex statement can be always presented as a simple function of its components’ referents. Probably this would be true if all logical connectives involved in S(R) were truth-functional, but the consequent in (4) and (5) includes a non-truth-functional operator: the counterfactual conditional. And, as D. Mermin pointed out in his criticism of Stapp’s proof (1998), counterfactual conditionals conjoining statements about local events can nevertheless derive their truth conditions from distant events. 


This last observation can be supported by the reference to the truth conditions given in (3), which plainly state that in order to evaluate a particular counterfactual p (( q with the antecedent and the consequent referring to a region R, we nevertheless have to take into account all physical events that occur in areas space-like separated from R. If one feels that this dependence of the truth of p (( q on distant physical events is not acceptable because it violates our intuitions regarding locality, then one has to choose an alternative method of evaluating counterfactuals. One possibility may be to select the absolute past of the event described in p as the only region which has to be kept intact while considering possible p-worlds. Under this reading, the counterfactual p (( q would be true in w if q were true in all p-worlds w( that have the same past light-cone of region R as w.
 With this interpretation, changes in regions space-like separated from R cannot in any way influence the truth of the counterfactual. However, such semantics of the counterfactual is of no use for Stapp, because you are not allowed here to make inferences crucial for the success of Stapp’s proof, such as, for example, the inference underlying the following strict conditional: (L2+ ( R2) ( (R1 (( R1–). Obviously, there is a possible R1-world such that it has exactly the same past light-cone of region R as the (L2+ and R2)-world, and yet the result of L2 is “–” in it, hence R1 doesn’t have to be “–”. In conclusion, if Stapp wants to keep his counterfactual derivations valid, he has to admit that the truth of the counterfactual may depend on distant events, and therefore the rule of inference (LOC2) loses its prima facie plausibility.


SS apparently agree with Mermin’s criticism of (LOC2), and even extend it a bit in (2001). However, they also propose a general argument on their own against the coherence of Stapp’s entire strategy. This innovative argument deserves serious attention, because if it is sound, it will thwart right from the beginning any attempt at using modal logic of counterfactuals in proving that quantum mechanics is incompatible with relativistic locality. According to SS’s reconstruction, the general strategy that Stapp adopts in his proof is the following: he assumes formalisms of quantum mechanics and special relativity (provisionally accepting that these two theories can be combined into a consistent body of statements), and then to this he adds principles about modal connections and modal (counterfactual) reasoning plus the assumption of free choice of experiments. From these assumptions Stapp claims to have derived a contradiction. But SS argue that this goal is unattainable. Stapp cannot derive any contradiction on the basis of his assumptions, because – according to SS’s interpretation – he has to build first his semantics of possible worlds, in order to make sense of any modal expression he wishes to use. And possible worlds are defined exclusively with the help of individual facts (individual histories – as SS put it) and the laws of physics (expressed in non-modal language). Hence, once the laws are given, the set of all possible worlds is delineated by the constraints derived from these laws and put upon complete “world-histories”. When the set of all possible worlds is determined, the logical values of all modal (counterfactual) statements are determined too. This means that if there was no contradiction in the original set of physical laws taken from quantum mechanics and relativity, then no contradiction can occur in the language enriched by modal operators. Hence Stapp cannot consistently claim that his counterfactual reasoning has revealed any contradiction.


The above argument, presented here in a much shorter version in comparison to the original, has obviously some “loose ends” requiring explanations. For example, it is not entirely clear how the assumption of free choices of experiments may affect Stapp’s reasoning. It may be for example conjectured that although there is no contradiction within physical theories in question, the contradiction occurs when the free choice hypothesis is added. SS do not respond to this objection directly, but they seem to assume simply that because nobody has ever shown that physics may be incompatible with the free will of experimenters, this objection looks quite implausible – and I am willing to agree on that. But there is a more important gap in SS’s attack on Stapp’s strategy. Their main presumption is that Stapp has to presuppose that both physical theories in question, given in their non-modal formulations, are consistent with one another, because if they were inconsistent, there would be no possible worlds compatible with all their laws – and the assumption of the existence of these possible worlds is necessary for the semantic interpretation of modal propositions Stapp uses in his proof. However, this doesn’t have to be so. Stapp can present his entire reasoning in the form of a reductio ad absurdum: starting from the assumption that quantum mechanics and special relativity are consistent – through the “hypothetical” construction of the possible world semantics – he may still arrive at a contradiction presented in modal terms, and hence conclude that his initial premise was wrong after all, and the possible worlds are actually non-existent. There is nothing wrong – at least according to the standard mathematical practice – in constructing reductio arguments based on existential statements (an example may be Euclid’s proof of the non-existence of the greatest prime number, which starts with the assumption that there is such a number, and subsequently leads to a contradiction with itself).


I think that for the reason presented above the general argument advanced by SS fails to show that Stapp’s procedure is inherently inconsistent. Nevertheless, the argument still creates a challenge for a proponent of a counterfactual analysis of physical phenomena, because it contains a claim that counterfactual (modal) statements are essentially supervenient on non-modal ones, and hence whatever fact or result can be discovered with the help of modal logic of counterfactuals, should be in principle accessible within standard, non-modal language of physical theories. This assessment, if correct, would show that the logic of counterfactuals is dispensable and therefore ultimately worthless within the context of the foundational analysis of physical theories.
 I believe that this is not so, and therefore I would like to respond to the challenge. First of all, even if SS are right and the truth of all conceivable modal statements is entirely determined by non-modal statements of physics, still it may happen that the modal logic of counterfactuals can offer us an easier and more elegant way of discovering particular consequences of our physical theories. The situation here may be analogous to the problem of the applicability of mathematics in empirical sciences. According to some, pure mathematical theories – because of their feature called “conservativeness” – cannot lead to any new empirical consequences, however they can dramatically affect our ability of making derivations from one set of empirical statements to the others, by offering effective and heuristically stimulating “shortcuts” (an obvious example is the use of arithmetic in counting physical objects). In the same way it may happen that the logic of counterfactuals can be of a pragmatic value with regard to the task of revealing new consequences of our current physical theories.


But I think that there is more to say than that. I think that modal, and in particular counterfactual statements can be used in order to formalize certain additional constraints on physical phenomena, over and above those that are implied by physical theories. Let us consider for example the locality condition, as given in formulation (LOC1). SS assume that according to Stapp’s intention (LOC1) is meant to be a logical consequence of a special theory of relativity, but I think that this is not a reasonable claim. Apart from the fact that it is by no means clear whether there is one statement of locality derivable directly and only from the mathematical formalism of relativity theory, we may notice that typically it is assumed that relativity forbids only transfers of mass or energy at superluminal speeds. And (LOC1) clearly goes beyond that, implying that under a counterfactual supposition concerning the local situation, a distant system can remain intact. So (LOC1) can be seen as an additional metaphysical principle which is merely justified, or motivated, but not strictly implied by special relativity. A similar point can be made with respect to quantum mechanics. Here a distinction between philosophical interpretation and mathematical formalism is even more conspicuous. For example, the question of the existence of elements of reality which would go beyond probabilistic description of quantum theory, is treated as being not decidable by the quantum-mechanical formalism only, and yet the assumption of anti-realism (or realism) is often added in discussions of quantum-mechanical phenomena. And it may be claimed that counterfactuals offer a workable tool for the clarification of such “metaphysical” additions to quantum mechanics
. Hence, the logic of counterfactuals – if properly applied – may provide us with a method of revealing some consequences of quantum mechanics coupled with extra assumptions: the realist assumption, the locality assumption, etc. To sum it up – I don’t believe that all conceivable constraints on phenomena are exhausted by what is given in the mathematical formalisms of appropriate physical theories. We can add many more constraints (metaphysical, semi-physical) – and we can do it in a modal language. The truth of some modal statements does not have to be derived from the laws of physics – it can be simply adduced as an extra element of our description of the natural phenomena. 

3. Stapp’s proof versus EPR argument


Actually, SS themselves seem to accept a possibility that there may be certain assumptions and restrictions going beyond literal readings of physical theories, which should be of interest to a philosopher of science. One example may be the assumptions and principles used in the standard EPR argument. In their analysis of Stapp’s controversial premise (LOC2), SS turn to the EPR-type argument, looking for some possible motivations of (LOC2). Their ultimate conclusion is that, apart from the fact that the talk about “elements of physical reality” apparent in EPR is not available for Stapp (because he wants to derive a contradiction only from the assumption of locality, without any quasi-realistic insertions), the addition of the EPR assumptions does not lead to the prima facie plausibility of (LOC2). To be accurate, this is the claim advanced only in (2003). In their polemics (2001), which appeared in print earlier but historically was preceded by (2003), SS maintain that the addition of the EPR-like assumption can lend credence to (LOC2), but that this is not an option for Stapp because of the aforementioned reason. In what follows I will try to critically examine both claims.

SS begin their comparison between Stapp’s proof and the EPR argument with a presentation of their own version of the latter, adapted to the Hardy case. The EPR argument rests on Einstein’s famous criterion of reality, which asserts that if it is possible to predict (or to infer) with certainty the value of a particular physical quantity, without disturbing the system, then there has to be an element of physical reality corresponding to this quantity. The element of physical reality, mentioned in the criterion, is subsequently interpreted by SS as a state of affairs r located exactly where the system in question is located, and such that r’s existence together with the assumption that the quantity is measured implies that the outcome will be identical to the value predicted. The criterion of reality is usually accompanied by the locality condition, according to which actions taken in one area can disturb no regions space-like separated from the first one. Now, SS claim that with these two principles it is possible to derive a contradiction with quantum-mechanical predictions regarding the Hardy system. They present the following argument in support of this claim. Let us suppose that for the left-hand side system L experiment L1 is chosen, and the result is L1–. Using quantum-mechanical predictions and Einstein’s criterion (in SS’s interpretation) we can derive that there should be an element of reality r located entirely in R and such that r plus R2 imply that the outcome will be R2+. By analogous reasoning it may be argued that if R2+ obtains, then there should be an element of reality r( located in L and determining the outcome of experiment L2 as being L2+. But because R2+ is implied by R2 plus r, all consequences of the former are the consequences of the latter; hence the existence of the element of reality r( in L is implied by the existence of r in R plus the assumption that R2 is performed.


So far, so good. But now SS make a crucial step. By appealing to the locality condition, they insist that any consequences of r and R2 that refer to the space-like separated region L have to hold even when only r occurs. Apparently, they tacitly derive this conclusion from the following reasoning: if we consider a world in which both r and R2 hold, and therefore – according to the reasoning above – r( has to exist in the distant region L, then if we imagine a possible world in which r still holds but R2 is not chosen, nothing should change in areas which do not belong to the absolute future of R. Note however that this step looks exactly like an application of the general locality principle (SLOC). On the other hand, Einstein’s locality principle, speaking about “disturbances” caused by a distant system, doesn’t seem to be sufficient to justify the above transition. Hence, SS’s reconstruction of the EPR argument requires a stronger locality assumption than it is typically associated with its original version.


If, in spite of the above-mentioned difficulty with the locality condition, we accept the step leading from r to r(, the rest is just a repetition of the same trick with respect to the prediction of the outcome of R1, which leads ultimately to the conclusion that, under the initial assumption L1–, there must be an element of physical reality r(, predetermining the result of R1 as being R1–; and this plainly contradicts the prediction of quantum-mechanical formalism. So SS apparently succeeded in showing that the locality condition (LOC1) together with Einstein’s criterion of physical reality, lead ultimately to a conflict with quantum mechanical predictions. This result seems to be stronger than the original Bell theorem, which proceeded under the explicit assumption of realism rather than the conditional criterion of Einstein. However, SS’s version of the EPR argument falls short of satisfying Stapp’s ambitious project to derive a contradiction from quantum mechanics and the locality condition only, without any help from additional, metaphysically “suspicious” principles. Admitting this, SS nevertheless raise a question whether the additional EPR premise could give some plausibility to the controversial principle (LOC2) used by Stapp. As I indicated earlier, SS do not answer this question unambiguously. In (2003, p. 515, second paragraph from the top) they say that a strategy of saving the locality assumption (LOC2) by the EPR assumption fails – but the brief argument offered in support of this thesis seems (at least to me) hard to comprehend. SS apparently replace a counterfactual statement R1 (( R1– present in (LOC2) with r( ( R (read as “element of reality r( exists in R”), but they create some confusion by rewriting with no justification premise (4) of Stapp’s rule (LOC2) as L2 ( (R2 ( r( ( R), whereas the original had R2+ as the antecedent of the material implication (this may, of course, have been a typographical error). Moreover, they seem to be focused entirely on the task of arguing for the truth of such reformulated premise (4), despite the fact that this has very little to do with the validity of the inference from (4) to (5) (can’t the inference be valid even if its premise (4) turns out to be false?). And finally, they say that the EPR criterion provides no support for the inference from L2 to R2 ( r( ( R, without offering any specific reason for this claim.


A much clearer attempt of supporting (LOC2) by the reference to the EPR criterion was included in (2001, p. 850). There, contrary to what was said in (2003), SS claim that Einstein’s criterion can offer some justification for (LOC2). More specifically, they maintain that with Einstein’s criterion it is possible to show that there is a matter of fact r( located in R and equivalent to the counterfactual R1 (( R1–, which supports the fact that this counterfactual – and hence the entire consequent in (4) and (5) – should remain independent of the choice of the left-hand side experiment. According to the criterion of physical reality, if R2+ is true, then there has to be an element of reality r( in L guaranteeing that the result of experiment L2 will be L2+. Now, when evaluating counterfactual R1 (( R1–, we have to take into account that r( occurs in the area outside the future-light cone of R, and hence r( should be present also in possible R1–worlds relevant for the evaluation of the above counterfactual. SS say that this fact alone suffices to infer that in those possible R1-worlds the outcome has to be R1–. Actually, this looks like jumping to a conclusion, for the presence of r( alone (without experiment L2 taking place) in a world in which R1 is performed does not seem to guarantee that the result will be R1–. However, SS may argue (though actually they do not raise this point in their 2001 article I am referring to), making use once again of the aforementioned general locality condition (SLOC), that the presence or absence of L2 should not change anything in region R. Hence, if the result R1– is predetermined in the situation in which L2 and r( are present, it should be predetermined also when r( is accompanied by a different experiment choice.


Unfortunately for SS’s argument, this case neatly illustrates the general observation, invoked by SS several times, that counterfactual (modal) inferences are indeed very tricky. When we look more closely at the counterfactual semantics and the literal reading of quantum-mechanical predictions, we can come to an unavoidable conclusion that even the assumption of the existence of the element of reality r( in L cannot guarantee that the counterfactual R1 (( R1– will be true no matter what choice of experiment is made in L. The crucial point here is that, although a locality principle like (SLOC) can guarantee that there will be a possible world in which an experiment in L is changed and which is exactly the same as the actual one outside the future-light cone of L, it cannot prove that this will be the only possible world in which an alternative experiment is performed in L. To see this, let us first carefully consider all possible worlds involved in SS’s reasoning. We start with the actual world in which R2+ obtains, and therefore (by Einstein’s criterion) r( occurs in L no matter which experiment is chosen there. This means that we are in fact considering two “actual” worlds: one characterized by R2+, r(, L2, and the other by R2+, r(, L1. Now we should be able to prove that in both worlds the counterfactual R1 (( R1– comes out true. There is no question that that is the case for the first world, but what about the second one? Would the existence of a possible world in which r(, L1 and R1+ coexisted violate the quantum-mechanical predictions or the assumption of locality? The quantum-mechanical predictions are not directly involved, as we do not have the necessary component of L2 here. As for the locality condition, it only requires that when you “switch” experiment L2 for L1 in the possible world in which r(, L2 and R1– hold (let’s denote this world by wL2), there should be a possible world such that R1– remains intact. But this does not exclude that there may be some other possible worlds which differ from wL2 with regard to events taking place outside L’s future light cone, provided that their existence does not violate any laws of physics. Those worlds would be obviously irrelevant for evaluation of counterfactuals L1 (( … in the world wL2, but they may be relevant for evaluation of counterfactuals in other worlds – for example counterfactuals R1 (( … in the world in which L1, r(, and R2+ hold. And the existence of those worlds (among them the r(, L1 and R1+ world) shows that the counterfactual R1 (( R1– may come out false under the assumption of L1, r( and R2+ without actually violating the locality or the quantum predictions. Summing up, SS may be able to argue, using Einstein’s criterion, that there will be a matter of fact located in R and “responsible” for the result R1–, but they cannot prove that this matter of fact is equivalent to statement R1 (( R1–, based on the accepted semantics of counterfactuals.


Actually, there is something unsettling in the last conclusion. Counterfactuals are ideal candidates for explications of such notions as the notorious notion of an element of physical reality. However, if my foregoing argument is right, a legitimate use of Einstein’s criterion of reality leads to the conclusion that there is an element of reality r( existing in R and predetermining the outcome R1–, and yet the appropriate counterfactual R1 (( R1– is not supported. But doesn’t this mean that there is something wrong with the counterfactual analysis after all, if it cannot reconstruct the results of otherwise reasonable arguments? In order to answer this challenge, I would like to point out the following. It seems to me that we should be careful in relying unconditionally on Einstein’s criterion without further justification. The critical point in SS’s reconstruction of this criterion is that using quantum predictions and the fact that the local experiment revealed a particular outcome we infer that there is an element of physical reality (or, in Mermin’s terminology, “an instruction set”) which determines an appropriate result of a distant system, and which is located exactly where this system is located. I have used italics to emphasize the point in the criterion which seems to me most controversial. It is acceptable that because my local experiment cannot in any way affect the distant system, the outcome of the distant measurement must be somehow predetermined by nature. But to claim that the physical state of affairs responsible for the occurrence of the appropriate outcome has to have a specific location requires at best some additional explanations. We cannot put all of our pre-theoretical intuitions which are at work here under the same convenient umbrella of locality. The least we should do is to keep different intuitive “locality” assumptions separate. One way of doing this is to introduce a new term here, for instance “connectivity” or “separability”, in order to single out the underlying assumption, which may be spelled out as claiming that properties of a particular system determining values of given quantities have to be located where the system is. Regardless of the terminology however, we have to note that the more extra assumptions we have to make, the less reliable and intuitively appealing the criterion becomes. And that may be an additional reason explaining why the use of counterfactual semantics may be advantageous in the context of quantum reasoning. The beauty of the counterfactual approach lies in the fact that we can reduce all locality intuitions to one elegant principle (in my opinion, that should be the general locality principle (SLOC) mentioned already several times earlier), and the rest is a matter of the appropriate counterfactual semantics and quantum-mechanical restrictions on possible phenomena, with no need of relying on suspicious-looking criteria of reality.

4. Conclusions


Stapp’s original argument aimed at showing that the counterfactually formulated locality assumption, and the assumption of free choices of experimenters, together contradict the quantum-mechanical predictions regarding the Hardy case. It is doubtful, however, that he has achieved his intended goal. Although many elements of SS’s criticism have been shown here to be unwarranted, they are in my opinion right in their general assessment that “he has not succeeded in his attempt to derive a […] contradiction […] by a simple appeal to counterfactual reasoning” (2003, p. 516). The main reason for this assessment is Stapp’s use of a controversial and otherwise unjustified assumption (LOC2), which cannot be claimed to be a consequence of the relativistic locality. However, the question remains whether Stapp’s contradiction can be derived with the help of a more reasonable locality principle, like for example the general principle (SLOC). In the end of this article I would like to present a general argument that this task is impossible to accomplish. I will namely show that there exists a semantic model consisting of possible worlds in which the following statements are jointly true:  the quantum-mechanical predictions derived from the Hardy state, the assumption of the free will of experimenters, and the locality assumption (SLOC) regarding alternative choices of experiments. This obviously means that the statements in questions are consistent, for inconsistent statements cannot be simultaneously true.


Let us symbolize possible worlds relevant to the Hardy case with the help of the following pairs: (the left-hand side experiment and its result; the right-hand side experiment and its result(. Without quantum-mechanical restrictions there would be obviously 16 different possible worlds of that sort. However, because of those restrictions only some of them are in fact possible. The table below contains all the possible worlds which are admissible by the quantum-mechanical predictions derived from the Hardy state.

	(L1+; R1+(
	(L1+; R2+(
	(
	(L2+; R2+(

	(L1+; R1((
	(L1+; R2((
	(L2+; R1((
	(

	(L1(; R1+(
	(L1(; R1+(
	(L2(; R1+(
	(L2(; R2+(

	(L1(; R1((
	(
	(L2(; R1((
	(L2(; R2((


Empty cells indicate worlds eliminated by the quantum predictions. We assume that all the differences between the worlds presented above are confined to the set-theoretical sum of two future light-cones: one with its apex in L and the other in R. To the list of worlds above we may want to add a “null” world (0; 0(, in which no experiments are performed. Now, it should be clear that in the so prepared semantic model all the required statements are true. The free choice assumption is satisfied, because no matter what world on the list we consider (including the null world), there is always a possible world with a different arrangement of experiments. The quantum predictions are ensured to be true by construction, but if necessary, we can prove it directly. For example, in order to show the truth of the prediction given in the strict conditional L2+ ( (R1 ( R1–), we have to check that in all L2+ worlds (given in the third column, second row, and the fourth column, first row) the material implication R1 ( R1– is true.


Finally, the locality assumption (SLOC). Restricted to the choice of experiments, it assures that for a given possible world there is a world in which a particular experiment is different, and yet everything pertaining to the distant system remains unchanged, including the outcome of the distant experiment. This means that for a given pair (Lab; Rcd( there have to be pairs (La(b(; Rcd( and (Lab; Rc(d(( with a ( a( and c ( c( – the first one representing a world with a different experiment in L and an unchanged situation in R, the second the opposite. I leave it to the reader as a simple exercise to check, with the help of the table above, that this is indeed the case. As an example let us consider only one case: the world (L2+; R1((. The worlds of the first type we can find in the first column, second and fourth row; the second type of world is present only in the last column, first row.


The foregoing example shows once and for all that Stapp’s task was too ambitious. However, I see another possible use for logic of counterfactuals in the context of the Hardy paradox. As we remember, for reasons I presented earlier, the EPR-like derivation of a contradiction with the additional help from Einstein’s criterion may raise legitimate concerns. But we still have a standard derivation based on the realism assumption concerning the results of all experiments in the Hardy case. It may be interesting to ask, therefore, if it is possible to reconstruct the latter reasoning and proving formally its validity, replacing the statements about objective existence of quantum properties with appropriate counterfactual statements. In my opinion this reconstruction could shed a new light on the possibility of the counterfactual realist interpretation of quantum mechanics, and for that reason I think it is worth investigating.
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� One of the relatively less-known versions of Stapp’s proof was published jointly by Stapp and Bedford in (Bedford, Stapp 1996). I have criticized this proof in (Bigaj 2002).


� (Mermin 1998), (Unruh 1999), (Finkelstein 1998).


� Strictly speaking, from (1) and (2) we can infer only that either the setting R2 and L1 is not possible, or R1 is not possible. But we can ensure the truth of the first disjunct by simply selecting R2 and L1 as the actual settings.


� This assumption doesn’t have to hold for all conceivable antecedents p; for example – where can we localize statements expressing general laws of nature?


� I will use this abbreviation henceforth.


� A primary point of divergence of a possible world w is a point in which a difference between w and the actual one occurs (a point of divergence), and whose backward light-cone contains no other points of divergence. For example, possible world w( defined in (3) will have only one primary point of divergence (provided that the region R is reduced to a point).


� Actually, one technical correction has to be made in order to accommodate the fact that the relation given in (SIM) is not a linear ordering. For details see (Bigaj 2004a).


� Incidentally, the possibility of generalizing Stapp’s truth conditions (3) with the help of the similarity relation (SIM) shows that SS were correct, tentatively suggesting that Stapp’s theory of the counterfactual can be seen as a special case of Lewis’s (SS 2003, p. 502).


� This is an interpretation of the counterfactual which I call (C2) in my (Bigaj 2004a). The most prominent proponent of this interpretation is Michael Redhead.


� Although this conclusion is nowhere stated explicitly by SS, it may be reasonably inferred not only from the critique (2003), but also from another text by one of the authors (Shimony 2001) devoted to the defense of the claim that there is no immediate need of using counterfactuals in the analysis of the original EPR argument.


� We can for example propose a conceptually simple counterfactual interpretation of the existence of certain “hidden variables”, by postulating that the counterfactual conditional “If the measurement were performed, the outcome would be such-and-such” should be true for particular observables and particular values. This method of interpretation of “property attributions” has been put forth in (Ghirardi, Grassi 1994).
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