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Recent advances in neuroimaging technologies have rendered multimodal analysis of
operators’ cognitive processes in complex task settings and environments increasingly
more practical. In this exploratory study, we utilized optical brain imaging and mobile eye
tracking technologies to investigate the behavioral and neurophysiological differences
among expert and novice operators while they operated a human-machine interface
in normal and adverse conditions. In congruence with related work, we observed
that experts tended to have lower prefrontal oxygenation and exhibit gaze patterns
that are better aligned with the optimal task sequence with shorter fixation durations
as compared to novices. These trends reached statistical significance only in the
adverse condition where the operators were prompted with an unexpected error
message. Comparisons between hemodynamic and gaze measures before and after
the error message indicated that experts’ neurophysiological response to the error
involved a systematic increase in bilateral dorsolateral prefrontal cortex (dlPFC) activity
accompanied with an increase in fixation durations, which suggests a shift in their
attentional state, possibly from routine process execution to problem detection and
resolution. The novices’ response was not as strong as that of experts, including a slight
increase only in the left dlPFC with a decreasing trend in fixation durations, which is
indicative of visual search behavior for possible cues to make sense of the unanticipated
situation. A linear discriminant analysis model capitalizing on the covariance structure
among hemodynamic and eye movement measures could distinguish experts from
novices with 91% accuracy. Despite the small sample size, the performance of the linear
discriminant analysis combining eye fixation and dorsolateral oxygenation measures
before and after an unexpected event suggests that multimodal approaches may be
fruitful for distinguishing novice and expert performance in similar neuroergonomic
applications in the field.
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INTRODUCTION

Understanding the neural underpinnings of complex cognitive
tasks in the context of safety-critical settings is a key objective
for neuroergonomics research (Parasuraman, 2011; Parasuraman
et al., 2012; Mehta and Parasuraman, 2013). Operators’ effective
utilization of human-machine interfaces in such settings depends
on interface design considerations, as well as the operators’
level of expertise in carrying out key tasks via the interface.
Cognitive or mental workload is an essential determinant of
operator performance that needs to be optimized through
effective training and user-centered design practices. Cognitive
workload addresses the limited capacity of the human brain
for processing information demanded by the task at hand
(Wickens and McCarley, 2007). Decrements in performance, as
evidenced in missed responses or delayed response times, are
typically observed when operators are subjected to cognitive
workload beyond the maximum information processing capacity
of their brains (Hancock and Parasuraman, 1992; Wickens
et al., 2013). In other words, cognitive workload is an essential
determinant of cognitive performance. However, these limits
are subject to change due to the development of expertise
during training, and design elements that promote or hinder the
utilization of the system’s affordances, which altogether make
their assessment a challenging issue (Fairclough et al., 2005;
Ullén et al., 2018).

Due to its essential role in cognitive performance, developing
operational measures for monitoring cognitive load is an
active area of investigation in neuroergonomics. Such measures
have been traditionally monitored offline through subjective
assessments with the help of instruments such as NASA-TLX
(Hart and Staveland, 1988; Hill et al., 1992). Despite their
convenience for administering these instruments in various
real-life and experimental task settings, the subjective nature of
the assessments obtained and the difficulties participants have
in providing verbal accounts of their actions motivated the
need for more objective means for measurement. Recent studies
in psychophysiology and neuroergonomics have expanded on
self-evaluation based methods by focusing on neurophysiological
measurements targeting key components of the central and the
peripheral nervous system, as well as the cardiovascular system
(for extensive reviews, see Fairclough, 2009; Borghini et al., 2014;
Lim et al., 2018; Charles and Nixon, 2019).

Increase in operator workload is often associated with
increase in heart rate, heart rate variability, respiration rate,
blood pressure and galvanic skin conductance (Boucsein, 2012;
Borghini et al., 2014; Durantin et al., 2014). However, the
existence of other sources of variability competing with mental
workload such as anxiety, muscle fatigue and room temperature
present challenges for mental workload estimation methods
based on these measures. Related work focusing on ocular
correlates of cognitive workload tend to employ eye trackers and
electrooculograms (EOGs) to relate measures such as fixation
duration, saccadic amplitude, gaze entropy, pupil dilation,
PERCLOS (the percentage of time that the eyelid covers 80% or
more of the pupil), gaze blink frequency and latency with changes
in workload. In particular, increase in cognitive workload is

associated with increases in fixation duration, pupil dilation and
blink latency, as well as decreases in blink duration, PERCLOS
and gaze variability; whereas investigations on blink rate have
produced mixed results (Marquart et al., 2015; Diaz-Piedra
et al., 2019). External sources of variability such as changes in
lighting conditions or the anatomic variation of the eyelids can
influence the eye tracking, pupillometry and EOG measurements
(Holmqvist et al., 2011).

Cognitive workload assessment approaches based on brain
physiology mainly focus on electroencephalography (EEG) and
functional near-infrared spectroscopy (fNIRS), due to their
portability and flexibility that make them suitable for in-the-
field neuroimaging studies. Studies on neural correlates of
mental workload with EEG tend to focus on changes in the
EEG power spectra, where an increase in workload is typically
associated with an increase in the theta band power, especially
at the top- and mid-central electrodes (Borghini et al., 2017).
Since EEG monitors changes in electric potentials originated
in the brain via electrodes located over the scalp, it offers
high temporal resolution. However, due to the complexities
involved with the propagation of electric potentials within neural
tissue, achieving good spatial resolution requires high-density
EEG recording setups with sufficient number of electrodes
(Gevins and Smith, 2008). The presence of artifacts such as eye
movements, muscle contractions and heart-beat, the need for
ensuring low impedance levels for suitable signal-to-noise ratio,
and the need for using gels or liquids to improve conductance
are other challenges involved with the use of EEG for monitoring
workload in the field (Dussault et al., 2005; Borghini et al., 2011;
Borghini et al., 2014).

fNIRS monitors the hemodynamic changes over the cortex
by using specific wavelengths of infra-red light that are known
to interact with oxygenated and deoxygenated hemoglobin in
the capillary beds (Obrig et al., 2000). fNIRS is a neuroimaging
modality that enables continuous, noninvasive, and portable
monitoring of changes in blood oxygenation and blood volume
related to human brain function (Ayaz et al., 2013). fNIRS is not
only non-invasive, safe, affordable and portable, it also provides a
balance between temporal and spatial resolution which makes it
a viable option for in-the field neuroimaging. Neuroergonomics
studies employing the fNIRS modality reported a strong
relationship between increasing bilateral dorsolateral prefrontal
cortex (dlPFC) activity and systematic increases in cognitive
workload (Izzetoglu et al., 2003; Gateau et al., 2015; Çakır
et al., 2016). In combination with performance measures, this
relationship could be fruitfully employed to evaluate alternative
human-machine interaction designs (Menda et al., 2011; Ayaz
et al., 2013) and to monitor expertise development as a function
of the systematic decrease in prefrontal activity accompanied
by improvements in performance in time (Ayaz et al., 2012).
Moreover, the way infrared photons migrate in the neural tissue
allow strategic placement of the sensor to target specific cortical
regions close to the surface with a reasonable spatial resolution
(Obrig et al., 2000). However, the latency involved with the
hemodynamic response in reaction to neural activity is a limiting
factor on the temporal resolution of the fNIRS methodology
(Gratton and Fabiani, 2008).
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To sum up, each modality offers specific advantages and
limitations in terms of quantifying a complex construct such
as mental workload due to the differences in their physical
working principles and the relationship between the monitored
biological processes to cognitive phenomena (Fairclough, 2009).
Multimodal neurophysiological models that can bring the
advantages of each modality together in contextually sensitive
ways is an emerging necessity in neuroergonomics research
(Fairclough et al., 2005). Existing efforts include simultaneous
use of EEG and fNIRS (Aghajani et al., 2017; Liu et al., 2017a,b),
as well as other physiological sensors (De Rivecourt et al.,
2008; Gateau et al., 2015), and reported superior workload
classification performance during working memory tests such
as n-back as compared to predictions obtained from any single
modality. However, conducting multimodal data recording and
analysis brings significant challenges, such as sensor placement
and shielding for reliable data acquisition, minimization of
interference among the chosen modalities, time-synchronization
of data streams, obtaining measurements without interfering
with the operators’ normal task execution, and most importantly,
finding appropriate means to integrate the data and insights
obtained from the chosen modalities.

COGNITIVE WORKLOAD AND EXPERTISE

In addition to the challenges involved with multimodal
investigation of cognitive workload, another key source of
variability in its assessment is due to individual differences
in expertise with regards to the task at hand, which further
complicates the development of metrics and/or thresholds
for mental workload classification (Charles and Nixon, 2019).
Related studies in cognitive neuroscience comparing experts
and novices have identified both structural and functional
changes due to expertise development, including the growth
of gray and white matter in task-relevant cortical locations,
as well as the reduction of activity in prefrontal and parietal
cortex involved in domain-general cognitive control (Hill and
Schneider, 2006; Bilalić et al., 2011; Bilalić, 2017; Bilalić and
Campitelli, 2018). In particular, related work in expertise and
distinguishing expertise levels in laparoscopic surgery skills
showed that in contrast to novices experts exhibit greater
performance under time pressure accompanied with significantly
lower PFC activations and significantly higher primary motor
area and supplementary motor area (SMA) activations, which are
regions associated with bimanual motor dexterity performance
(Modi et al., 2018; Nemani et al., 2018). Moreover, related work
in gaze measures of expertise suggest that experts tend to exhibit
more well-defined scan-paths towards task-relevant locations in
the visual field, which is manifested in lower gaze entropy, lower
fixation durations and shorter saccadic amplitudes (McCarley
and Kramer, 2006). In a related research on expert and novice
endoscopists’ gaze patterns, the results showed that there are
distinct gaze patterns that are associated with expert behavior
(Lami et al., 2018). However, such differences can be highly
contextual with respect to the specific task domain and the
way expertly conduct is characterized in that domain (Hodges
et al., 2006). Therefore, a broader view of expertise is needed

to make sense of the underlying causes of the differences
obtained when experts and novices are contrasted along various
neurophysiological measures.

The body of research in psychology and cognitive
neuroscience of expertise suggest that most forms of expertise
in domains such as sports, chess, math, dance and music entail:
(i) a process of automation; (ii) reorganization of memory
resources; and (iii) sensorimotor adaptations (Ullén et al., 2018).
Sensorimotor adaptations involve changes due to extensive
motor practice, such as the development of complex reflexes and
sensitivities in sports like tennis, and the corresponding changes
in the somatosensory, premotor and motor cortices such as
the enlargement of the representations of the fingers of the left
hand for string players (Elbert et al., 1995). Automation refers
to a change from a more effortful, flexible, deliberate mode of
carrying out tasks that relies on attention and working memory
resources towards a less effortful, reflex like, low effort, difficult to
modify mode of conduct that requires less attentional resources
due to training and experience (Hill and Schneider, 2006). Since
experts require little explicit control, surplus cognitive resources
can be allocated for strategic decision making and planning.
Together with before-mentioned sensorimotor adaptations
presumably occurring in the premotor cortex guiding the eye
movements, the notion of automation could also be manifested
in the scan-paths of experts guiding the expert’s motor actions
(Hodges et al., 2006). In neuroimaging, such adaptations are
usually manifested as a decrease in the fronto-parietal network
that is associated with deliberate guidance of attention (Duncan,
2010, 2013).

Experts also tend to exhibit superior recognition of
complex sensory stimuli, which is claimed to be facilitated
by mechanisms of efficient retrieval of relevant domain-specific
information from long term memory into working memory
during performance (Guida et al., 2012, 2013). According
to this view, with developing expertise specialized long-term
memory elements with complex knowledge structures called
chunks are formed in the medial temporal lobe, which can
be accessed by working memory, effectively increasing the
information processing capacity of the expert. As the knowledge
elements get bound into chunks within working memory, an
increase in medial temporal lobe activation is accompanied
by decreasing activations in prefrontal and parietal areas that
are typically associated with memory retrieval and working
memory management (Just and Carpenter, 1992). In terms of
eye movement metrics, changes in the memory organization
may also influence the way the visual information is sampled
as perceptual input. This could be partly the underlying reason
for the experts’ lower number of fixations and shorter fixation
durations, as they can pick up and interpret the visual cues
in a more efficient manner according to the related work in
psychology of expertise (Hodges et al., 2006).

Overall, the growing body of literature in neuroergonomics
have utilized increasingly portable/wearable neurophysiological
measurement modalities in various work settings. However, the
need for applying these methods and insights in multitude of
field settings to test their robustness and assess their degree
of domain specificity are still important considerations for the
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şbilir et al. A Multimodal Model of Cognitive Workload

burgeoning field of neuroergonomics. To that end, in this study,
we explored the simultaneous use of fNIRS and eye tracking
in a human-machine interaction scenario involving a military
land platform. The goal of the study is to observe in what
ways experts and novices differ in terms of their prefrontal
hemodynamic responses and eye movement patterns during
regular and adverse task conditions in the field. The study aimed
to investigate to what extent expertise levels modulated some of
the expected neurophysiological correlates of cognitive workload
as manifested in fNIRS and eye tracking modalities in a realistic
setting with professional operators. Finally, the study explored
a possible multivariate integration of prefrontal hemodynamics
and gaze data to support expert vs. novice distinction.

MATERIALS AND METHODS

Participants
The study included a human-machine interaction scenario
where the participants (MeanAge = 28.9, SD = 3.6) were asked
to operate a training version of a military land platform by
using a computer-based control interface. The experimental
procedures were conducted in the field with 14 professional,
real-life operators, eight of whom were identified as experts
due to their prior training on the platform, whereas six were
novices/beginners who were on their first training day. All
operators had prior experience in other comparable military
platforms. Those operators who were considered as novices
were all using the interface for the first time after receiving
a formal presentation of the basic features of the system
in a classroom setting. The experiment was conducted when
this cohort moved on to the vehicles to perform hands-on
exercises. An independent t-test showed that the age difference

between the novices (Mean = 27.3, SD = 2.1) and the experts
(Mean = 30.5, SD = 3.9) was not significant, t(12) = −1.76,
p > 0.05. Participants were informed prior to the study that the
main goal of the experiment was to perform a usability analysis
of the system, their data would be kept anonymously and their
observed performance would not have any implications on their
professional careers. The study was approved by the METU
Human Subjects Research Ethics Committee.

Materials and Equipment
While the participants were performing the tasks, their eye
movements and the hemodynamic changes in their prefrontal
cortices were monitored with a mobile eye tracker system (60 Hz,
binocular by Pupil Labs GmbH, Germany) and a portable
fNIRS system (fNIRS Imager 1002, fNIR Devices LLC, Potomac,
MD, USA), respectively. The fNIRS system is composed of a
flexible headpiece that holds four LED infrared light sources
and 10 photodetectors to obtain oxygenation measures from
16 optodes located over the prefrontal cortex (PFC), a control box
for hardware management, and a computer that runs the COBI
Studio software (Ayaz et al., 2011) for data acquisition. fNIRS
1002 is a continuous wave NIRS system that uses wavelengths
of 730 nm and 850 nm for optical imaging of the PFC. The
sensor has a source-detector separation of 2.5 cm, which allows
for approximately 1.25 cm penetration depth. This system can
monitor changes in relative concentrations of oxy-hemoglobin
(HbO) and deoxy-hemoglobin (HbR) at a temporal resolution
of 2 Hz. According to co-registration studies that mapped the
measurement locations of this fNIRS sensor on a standard brain
template (Ayaz et al., 2006; Chen et al., 2017), the 16 optodes
correspond to Broadmann areas 9, 10, 44 and 45 (Figure 1). The
approximated mapping over a standard brain and the diffuse

FIGURE 1 | The functional near-infrared spectroscopy (fNIRS) probe with four light sources and 10 detectors, and the corresponding 16 optodes mapped over the
prefrontal cortex (PFC).
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nature of photon migration paths in the tissue imply that the
spatial resolution of the optodes are in the centimeter range
(Ayaz et al., 2013).

The eye movements of the participants were monitored with
the Pupil Labs mobile eye tracking system. The mobile eye tracker
had two infrared cameras and two video cameras facing towards
both eyes for binocular recording, as well as an integrated
world camera capturing the field of view from the participant’s
perspective (Figure 2). The two eye cameras monitor the pupil
center and the corneal reflection by utilizing the dark pupil
method in reference to a three-dimensional geometric model of
the eyeball. The system has a sampling rate of 60 Hz, a reported
accuracy of 0.6◦, and precision of 0.08◦. The external camera
can record an external world image at 720 p HD resolution. The
PupilCapture open source software accompanied with the mobile
eye tracker was used to calibrate and record the eye movements.
A nine-point calibration was performed at the beginning of
each task and the recorded data was monitored in real time
by the researchers for possible indicators of calibration loss or
hardware failure.

Since the fNIRS sensor and the eye tracker both rely on
infra-red light for the monitoring of brain activity and eye
movements, the IR camera of the eye tracker may interfere with

the fNIRS signals. Moreover, since the study was conducted as
a field study inside a training version of the real platform, the
sensors were also partly exposed to sunlight entering through the
windows. The fNIRS sensor was shielded with a cap supported
with aluminum foil, which can minimize the effects of outside
IR sources (Figure 3). Moreover, tests conducted with the
eye tracker on and off while recording fNIRS data did not
produce any discernable effects on the raw fNIRS signals. This
is probably due to the fact that the Pupil Labs system’s IR
light source is located beneath the eye balls, which introduces
a separation between the eye tracker IR camera and the fNIRS
receivers. Due to their location over the forehead and orientation
towards the cortex, the LEDs of fNIRS did not introduce any
discernable interference on the eye tracking measurements.
Excessive sunlight also hampers the eye tracker’s performance
and the head-mounted world camera recording the screen, so the
built-in roller blinds of the vehicle were used to provide further
protective shield from sunlight.

Experiment Setup
During the experiment, participants were seated inside the cabin
of a training version of a military land platform designed and
manufactured by Roketsan Inc. The training vehicle is an exact

FIGURE 2 | The Pupil Labs mobile eye tracking system.

FIGURE 3 | The installation of the fNIRS sensor and the mobile eye tracker for multimodal recording with minimal IR interference.
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replica of the real system with the exception of live ammunition.
The operators interacted with the system through a 15.6 inch
laptop computer. A wire diagram of the graphical user interface
is provided in Figure 4. Each control button on the left opens
a window at the center of the screen dedicated to the specific
features associated with that function. For instance, pushing the
define mission button will bring the target definition screen as
a pop-up window in the middle of the screen, which allows the
user to either enter coordinates or select a pre-defined target from
the list.

Procedure
During the experiment, the participants were asked to
engage a pre-defined target by using the control interface
in normal and adverse conditions. In the first task, participants
executed the standard procedure for engaging a target, which
required the completion of a sequence of operations including
data entry, initialization, system checks, monitoring and
target engagement. The second task required participants
to engage with a second target in the same way, which
was deliberately defined by the researchers as slightly
out of range. Briefly after the participants unknowingly
selected this target as instructed, the system triggered
an unexpected interruption with a system failure message
effectively aborting the mission. The translated error message
prompted by the system stated ‘‘Command Received/Command
Aborted: guidance cannot be completed because the cradle’s
target information is out of guidance criteria,’’ which was
expected to be challenging for some of the operators to
comprehend. Once the system failure message was prompted,
the experimenter waited for about 60 s to observe the
operator’s response to the prompt, and then verbally asked
what might have caused the error. The task was completed
when the operator provided an answer. The expected response

was related to the fact that the second target was slightly
out of range, which was not immediately evident on the
system interface.

Although all operators had prior experience with comparable
platforms, it was the first time the novice operators worked on
the computer-based control interface used in this study. Prior
to the experiment, novice operators attended a formal training
presentation introducing the basic features of the platform. The
experiments were conducted while the novices were using the
training platform for the first time. For that reason, novice
participants were provided verbal guidance by an expert when
they needed while completing the first task. For the second task,
participants were asked to follow the regular operation sequence
as in the first task. It was observed that novice participants were
able to perform the main operations until the error message
without the need for guidance as in the first task.

Overall, in line with existing studies on neural and ocular
correlates of expertise, we expected experts to elicit less prefrontal
activity and exhibit gaze patterns that are better aligned with
optimal task sequence due to their familiarity with the system
while performing the routine task sequence. In terms of eye
movements, we hypothesized that since novices have just been
exposed to the environment, they will be searching for the
next action in the task sequence, which will require them to
inspect more parts of the interface for longer periods of time.
We expected this behavior to be reflected in higher saccadic
amplitudes and longer fixation durations. For the experts, we
expected eye movements to precede the next action with shorter
fixation durations and saccadic amplitudes, since the expert is
familiar with the task sequence. In the second task, we expected a
stronger response from the experts towards the unexpected error
when it first appears on the screen, and novices to be less alert
since they do not yet have a full grasp of the possible error states
and their underlying causes.

FIGURE 4 | A wirediagram of the graphical user interface used by the participants during the experiment. Error messages were popped up as a separate window in
the middle of the screen in the event of exceptions.
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RESULTS

Behavioral Performance Analysis Findings
During the first task, all participants were able to successfully
complete the regular operation sequence. An independent
groups t-test conducted on the mean task completion times
showed that the novices (Mean = 559.7 s, SD = 128.1 s)
took significantly longer than the experts (Mean = 444.0 s,
SD = 35.1 s), t(12) = 2.46, p < 0.05 to complete the first
task as expected (Figure 5). During the second task, all
novice participants failed to identify the cause of the system
error, whereas 63% of the expert group was able to correctly
interpret the error and provide a satisfactory explanation for
the underlying reason. In addition to this, the time to reach
the error message (which concluded the task) for the expert
participants (Mean = 115.8 s, SD = 23.08 s) was significantly
lower than the novice participants (Mean = 216.8 s, SD = 116.8 s),
t(12) = 2.42, p < 0.05 (Figure 5). Although the groups differed
in terms of the time to reach the error message, the error was
consistently displayed in the same stage following the closing
of the target selection screen on the interface. In short, the
significant differences in accuracy and task completion times
further support our initial grouping of the operators as experts
and novices.

fNIRS Analysis Findings
Filtering of the raw fNIRS data and the conversion to
oxygenation measures were carried out by using the fNIR
Soft v4.11 (Ayaz, 2010). Firstly, the raw fNIRS data were
visually inspected for cases including excessive noise and motion
artifacts. Saturated optodes exceeding the signal-to-noise ratio

limit of the sensors (if any) were excluded from analysis. The data
obtained from one subject was eliminated due to such issues,
so the analysis of fNIRS data was conducted over 13 subjects
(six novices, seven experts). Sliding Windows Motion Artifact
(SMAR) filter (Ayaz, 2010) was used to attenuate signal changes
due to head movements. In total, 12 blocks were rejected due to
saturation or motion artifacts among the 16 × 13 = 208 blocks,
which corresponds to 6% of the collected data. Raw fNIRS data
were low-pass filtered with a linear phase filter with order 20 and
cut-off frequency 0.1 Hz to reduce the effect of high-frequency
noise due to respiration and heart beat cycles. The filtered fNIRS
data were then converted into HbO and HbR concentration
changes by using the Modified Beer Lambert Law with the default
differential path factor and chromophore absorption parameters
for adults provided in fNIR Soft. The total hemoglobin (HbT)
value, which is defined as the sum of HbO and HbR values
observed at each optode and is known to correlate with total
cerebral blood flow, was considered as the main dependent
variable. The HbT measures were baseline-corrected with respect
to the beginning of each block.

Task 1–Normal Operation
For the first task, the expert and novice groups were
compared in terms of the average HbT levels observed
at all optodes. For this purpose, the HbT signals between
the beginning and end of the first task were extracted for
each participant and block averages were calculated. The
differences between the two groups were investigated by using
independent t-tests conducted for each optode. Overall the
average HbT levels tended to be higher for the novices
as compared to the experts, especially at optodes 14 and

FIGURE 5 | Task completion times for the novice and expert groups for task 1 (left) and task 2 (right). The whiskers indicate standard error. Significant differences
are indicated with an asterisk.
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16 that are close to the right inferior frontal gyrus. However,
independent t-tests showed that none of these trends reached
statistical significance.

Task 2–Response to Error Message
For the second task, participants followed an operation sequence
similar to the first task. However, the second task included
a condition where the system generates an error message at
a pre-defined stage. The average HbT values were obtained
20 s before and after the error message was prompted on
the participants’ screens. A 2 × 2 mixed analysis of variance
(ANOVA) was conducted on average HbT levels to contrast
experts and novices in terms of their hemodynamic responses to
the error message.

Although the average HbT levels tended to be higher for
novices in contrast to experts across all optodes, the main effect of
expertise did not reach significance in any one of the 16 optodes,
which was consistent with the results obtained for the first task
(Figure 6). However, the main effect of pre-/post- distinction
and its interaction with expertise levels revealed significant
differences, which are summarized in Figures 7, 8, respectively.

The plot in Figure 7 summarizes the locations where
significant HbT difference was observed when the post-error
block averages were contrasted with the pre-error block averages.
The plot is generated in fNIR Soft by using a BSpline
interpolation of F-ratios computed for each optode for the
main effect of pre-/post-error on mean HbT levels. Only
those areas that exceed the statistical significance threshold
are highlighted in the plot. The plot suggests that the error
prompt elicited the strongest HbT response in the left dlPFC,
followed by the left dmPFC and right dlPFC regions for the
entire sample. The bilateral dlPFC response is a typical indicator
of increased cognitive workload, and the stronger response in

the left hemisphere could be interpreted as a reaction to the
unanticipated error that aborted the mission.

As shown in Figure 5, the difference between the expert
group’s pre- and post-HbT response was overall higher than
the novice group. The regions where the interaction between
the expertise level and the pre-/post-HbT level differences were
significant are shown in Figure 7. The change in the HbT trend
in the right dlPFC was particularly stronger in the expert group
between pre- and post-error blocks, whereas the novice group
exhibited almost no difference in HbT trends in this region. The
implicated regions in the right dlPFC are known to be involved
with the fronto-parietal network involved with the control of
visual attention, so the difference among experts and novices
between the levels of pre- and post-error episodes could be
related to the attentional demand triggered by the error.

Eye-Tracking Analysis Findings
Prior to the extraction of gaze measures, the quality of the
eye-tracking data was evaluated by going through the video
recordings overlaid with raw gaze coordinates. The data of two
participants were excluded due to technical issues encountered
while finalizing the recorded data with the eye tracker software.
Therefore, the analysis of the eye-tracking data was conducted
on 12 participants including five novices and seven experts. The
velocity-threshold identification (I-VT) filter as implemented
by Komogortsev and Karpov (2013) was applied on the raw
data to extract the eye fixation durations and the saccadic
events. The data obtained from expert and novice operators
were compared in terms of their average fixation durations and
saccadic amplitudes observed during the first and second tasks.

Task 1–Normal Operation
During the first task, participants in both groups tended to
exhibit similar gaze patterns while following the standard

FIGURE 6 | Average HbT changes observed at 16 optodes during the second task before and after the prompted error message.
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FIGURE 7 | BSpline interpolated F-ratios that exceeded the significance
threshold obtained for each optode for the contrast between mean HbT
changes during post- and pre-error message. The significant responses in
both groups were predominantly localized over the left dorsolateral prefrontal
cortex (dlPFC) together with a narrower region within right dlPFC.

flow on the interface for target engagement. The novice users
tended to do more visual search scans to find the relevant
menu items for each step of the task, whereas the experts
followed a more well-defined gaze sequence directed towards the
relevant interface elements. However, no significant difference
was observed between expert and novice operators in terms of
their mean fixation durations and mean saccadic amplitudes
through the course of Task 1 (Figure 9).

We also compared the average fixation duration and saccadic
amplitudes during the first and the last minute of Task 1 through
2 × 2 mixed ANOVAs to check if the behavior of the novices
and experts differed at different stages of the task. No significant
effect of order (F(1,10) = 0.43, p > 0.05), group (F(1,10) = 0.26,
p> 0.05) and interaction (F(1,10) = 0.42, p> 0.05) were observed
for the average fixation duration measure. A significant main
effect of order was observed for the case of saccadic amplitudes,
F(1,10) = 22.97, p < 0.01, partial η2 = 0.69, but the main effect
of group (F(1,10) = 0.01, p > 0.05) and interaction (F(1,10) = 0.45,
p > 0.05) were not significant. Towards the end of Task 1 both
experts and novices had larger average saccadic amplitudes,
simply because they had to turn a series of manual switches
to finalize the launch that was located towards the left side
of the screen.

Task 2–Response to Error Message
Similar to the analysis of the fNIRS data, we focused on
the influence of the error message on the eye movement
patterns of expert and novice operators. For this purpose, the
average fixation durations observed for the five fixation events
that precede and succeed the error message respectively were
compared by using a 2× 2 mixed ANOVA. The results indicated

FIGURE 8 | BSpline interpolated F-ratios that exceeded the significance
threshold obtained for each optode for the interaction of expertise level and
pre-/post-episode on the mean HbT changes. The experts were most
distinguished from novices with respect to their HbT response in the right
dlPFC when their pre- and post-error average HbT responses were
contrasted.

that the main effect of group and pre-/post- sequence were
not significant, whereas the interaction effect was marginally
significant, F(1,10) = 2.02, p = 0.09, one-tailed, partial η2 = 0.17.
The majority of the novices tended to fixate on different parts
of the interface for further cues, whereas two novices and one
expert (who also could not identify the cause of the error) tended
to fixate on the error message for longer durations of time. This
led to an unclear pattern where the majority switched into a quick
scan mode whereas the others fixated on a single location on the
screen, which led to larger variability in the fixation duration
measures of the novice participants. On the other hand, those
experts who correctly identified the reason tended to switch to
a more vigilant mode where they read the message and checked
the relevant screen for inspecting the location of the given
target. This was accompanied with a slightly increased average
fixation duration. However, these qualitative observations did
not translate into significant statistical differences in gaze data,
possibly due to the small sample size (Figure 10). A similar
analysis performed on saccadic amplitudes before and after the
error message also did not detect any significant differences.

Multivariate Analysis Results
A multivariate model combining eye-tracking and fNIRS data
was also considered based on the findings of our analysis for each
modality. The analysis focused on a subsample of 11 participants
(five novices, six experts) whose fNIRS and eye-tracking data
were complete. Since no meaningful differences could be
detected in task 1 in either modality, we focused on task 2 where
subjects were prompted with an unexpected error message.
A discriminant analysis model was constructed by using the

Frontiers in Human Neuroscience | www.frontiersin.org 9 October 2019 | Volume 13 | Article 375

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


I
.
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FIGURE 9 | Bar charts showing the average fixation durations (left) and saccadic amplitudes (right) observed for the novice and expert operators during the first
task.

FIGURE 10 | Bar charts showing the average fixation durations observed for
the novice and expert operators during the second task.

pre- and post-mean HbT changes across 16 optodes and the
mean fixation durations as possible predictors in the model.
The model that included all the features produced a single
discriminant function that failed to significantly differentiate
novice and expert groups, Wilk’s Λ = 0.019, χ2

(6) = 11.91,
p > 0.05, with 64% prediction accuracy in the leave-one-out
validation phase. When the model was restricted to those optodes
over left and right dlPFC where significant changes in HbT levels
were observed for both groups, a significant discrimination was
obtained, Wilk’s Λ = 0.005, χ2

(7) = 18.79, p < 0.01 with leave-
one-out validation accuracy of 73%. The model with the highest
validation phase accuracy was obtained when the model was
restricted to those optodes in the right dlPFC where we observed

a significant interaction effect among pre-post and expert/novice
dimensions. In particular, the model with mean HbT levels
obtained from optodes 15 and 16 in the right dlPFC and the
fixation duration provided a significant discrimination, Wilk’s
Λ = 0.043, χ2

(6) = 15.73, p < 0.05, with 91% accuracy in leave-
one-out validation. The histogram for the single discriminant
function estimated by the LDA procedure for this model is shown
in Figure 11, where experts and novices were clustered around
smaller and lager values, respectively. When we excluded the
pre-/post- fixation duration information from the last model and
focus only on the HbT features, the validation accuracy dropped
to 55%, Wilk’s Λ = 0.341, χ2

(4) = 6.45, p> 0.05.

DISCUSSION

Based on the characterization of neural and ocular correlates of
expertise in the related literature, in this study we hypothesized
that there would be differences between expert and novice
operators in terms of their gaze patterns and prefrontal
oxygenation trends while they were engaging with regular and
adverse versions of the target engagement task. In particular,
since the experts were more familiar with executing the routine
target engagement sequence, we expected them to exhibit lower
prefrontal oxygenation levels and more structured gaze patterns
over relevant parts of the interface as compared to novice
operators. In contrast, we expected novices to have more
scattered gaze patterns and higher prefrontal oxygenation trends
due to the novelty of the interface. Finally, we expected the
adverse condition to provide an even stronger contrast between
the neurophysiological measures of expert and novice operators.

The findings suggest a less straightforward picture for the
normal task condition. Although experts completed both tasks
significantly more accurately and more quickly, these behavioral
differences were not simply translated into significantly lower
prefrontal oxygen consumption and shorter fixation durations.
Eye-tracking videos qualitatively suggested that the expert
operators were executing the task sequence more smoothly where
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FIGURE 11 | The histogram for the single discriminant function that separate novices (blue) and experts (red).

their gaze patterns tended to precede/anticipate their actions
on the interface, whereas the novices exhibited rather a visual
search like behavior where they were possibly searching for
cues to find the relevant interface elements for the next step.
However, none of these qualitative differences translated into
significant differences in terms of average fixation duration,
saccadic amplitude and prefrontal oxygenation levels during the
regular task.

In contrast to the regular task, the adverse task condition
turned out to be more effective in terms of revealing significant
differences between experts and novices. The unanticipated
interruption to the task sequence elicited a significant HbT
response at bilateral dlPFC for the experts, whereas there was no
change with the exception of a minor, non-significant increase
over the left dlPFC for the novices. The interaction effect
was most salient over the right dlPFC where experts had a
stronger HbT increase following the error, a region known
to be part of the right fronto-parietal network related to the
management of visual attention. In contrast to hemodynamics
effects, univariate analyses of fixation and saccadic amplitudes
revealed only a marginally significant interaction effect, which
is due to the crisscrossing trends in fixation durations for the
experts and novices following the error message. Experts’ fixation
durations increased after the error message, whereas the novices’
fixation durations got shorter. A multivariate model exploiting
the covariance structure between fixation duration measures and
the hemodynamic measures obtained from the right dlPFC could
successfully discriminate novices from experts.

The bilateral dlPFC response and elongated fixation durations
in the case of experts seem to suggest that experts moved from
an automated task processing mode towards a more deliberate

attentional state in response to the unanticipated error message.
Although we could not monitor the parietal cortex in this study,
the overlap between the optodes where we observed a significant
interaction and the prefrontal components of the right fronto-
parietal attention network seems to support this interpretation.

The case is less clear in the case of novices as their prefrontal
responses stayed more or less the same, and they tended to switch
to shorter fixation durations. The fact that novices could not
provide a reasonable explanation regarding the underlying cause
of the error suggests that they had difficulty in interpreting the
error message. The obscure language used in the error message
itself seemed to have contributed to this issue. Moreover, the
error message appeared not immediately after the target was
selected, but only a few minutes later while the operator was
carrying out the subsequent steps in the launch sequence, which
seemed to have contributed to its surprise effect. With the
exception of a single operator, the members of the expert group
could interpret the meaning of the error message, reportedly
based on their past experience with the same problem, whereas
novice operators failed to comprehend even whether the error
effectively aborted their mission. This highlights the need to
consider expertise level and usability aspects hand in hand for
cognitive workload assessment.

A key limitation of the study is the small sample size,
which is due to the limited availability of the operators and
the limited access to the real system for research purposes.
Since the system was recently acquired, the population of
operators who received training and who were authorized to
operate the vehicle were quite limited at the time of this
study. This limitation precluded us from running a power
analysis to determine the optimal sample size for this study.
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Although the data set is rather small for a classification
analysis, the multivariate discriminant analysis models revealed
some key insights regarding the neurophysiological differences
between novices and experts when they are presented an
unanticipated error. The best classification performance was
achieved when HbT averages observed at the right dlPFC were
combined with average fixation durations before and after the
error message. When we investigated unimodal classifiers the
validation accuracy significantly dropped to chance levels. This
suggests that a multivariate model tapping on the covariance
structure of eye tracking and fNIRS measures may lead to
more robust assessments of expertise. In future work, we plan
to expand on additional gaze and neuroimaging features, such
as gaze entropy and fronto-parietal as well as fronto-temporal
connectivity changes, to further develop our understanding of
the neurophysiological factors differentiating expert and novice
performance in ecological settings.
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