Skip to main content
Log in

Black Hole Perturbations: A Review of Recent Analytical Results

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We review the gravitational self-force program to analytically compute first-order metric perturbations in a Schwarzschild black hole spacetime in the case of a perturbing (small) mass moving on a slightly eccentric equatorial orbit. The perturbed metric components should then be combined into gauge-invariant quantities to be associated with physical observables. In this way, for example, one determines the various “potentials” entering the Effective-One-Body model, i.e., a powerful formalism for the description of the gravitational interaction of two masses, which is currently successfully used for the analysis of gravitational wave signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bini, D., Damour, T.: Analytical determination of the two-body gravitational interaction potential at the fourth post-Newtonian approximation. Phys. Rev. D 87, 121501 (2013). arXiv:1305.4884 [gr-qc]

    Article  ADS  Google Scholar 

  2. Buonanno, A., Damour, T.: Effective one-body approach to general relativistic two-body dynamics. Phys. Rev. D 59, 084006 (1999). arXiv:gr-qc/9811091

    Article  ADS  MathSciNet  Google Scholar 

  3. Buonanno, A., Damour, T.: Transition from inspiral to plunge in binary black hole coalescences. Phys. Rev. D 62, 064015 (2000). arXiv:gr-qc/0001013

    Article  ADS  Google Scholar 

  4. Damour, T.: Coalescence of two spinning black holes: an effective one-body approach. Phys. Rev. D 64, 124013 (2001). arXiv:gr-qc/0103018

    Article  ADS  MathSciNet  Google Scholar 

  5. Barack, L., Damour, T., Sago, N.: Precession effect of the gravitational self-force in a Schwarzschild spacetime and the effective one-body formalism. Phys. Rev. D 82, 084036 (2010). arXiv:1008.0935 [gr-qc]

    Article  ADS  Google Scholar 

  6. Barack, L., Sago, N.: Gravitational self-force correction to the innermost stable circular orbit of a Schwarzschild black hole. Phys. Rev. Lett. 102, 191101 (2009). arXiv:0902.0573 [gr-qc]

    Article  ADS  Google Scholar 

  7. Isoyama, S., Barack, L., Dolan, S.R., Le Tiec, A., Nakano, H., Shah, A.G., Tanaka, T., Warburton, N.: Gravitational self-force correction to the innermost stable circular equatorial orbit of a Kerr black hole. Phys. Rev. Lett. 113, 161101 (2014). arXiv:1404.6133 [gr-qc]

    Article  ADS  Google Scholar 

  8. Dolan, S.R., Warburton, N., Harte, A.I., Le Tiec, A., Wardell, B., Barack, L.: Gravitational self-torque and spin precession in compact binaries. Phys. Rev. D 89, 064011 (2014). arXiv:1312.0775 [gr-qc]

    Article  ADS  Google Scholar 

  9. Bini, D., Damour, T.: Two-body gravitational spin-orbit interaction at linear order in the mass ratio. Phys. Rev. D 90, 024039 (2014). arXiv:1404.2747 [gr-qc]

    Article  ADS  Google Scholar 

  10. Bini, D., Damour, T.: Analytic determination of high-order post-Newtonian self-force contributions to gravitational spin precession. Phys. Rev. D 91, 064064 (2015). arXiv:1503.01272 [gr-qc]

    Article  ADS  Google Scholar 

  11. Dolan, S.R., Nolan, P., Ottewill, A.C., Warburton, N., Wardell, B.: Tidal invariants for compact binaries on quasicircular orbits. Phys. Rev. D 91, 023009 (2015). arXiv:1406.4890 [gr-qc]

    Article  ADS  Google Scholar 

  12. Bini, D., Damour, T.: Gravitational self-force corrections to two-body tidal interactions and the effective one-body formalism. Phys. Rev. D 90, 124037 (2014). arXiv:1409.6933 [gr-qc]

    Article  ADS  Google Scholar 

  13. Nolan, P., Kavanagh, C., Dolan, S.R., Ottewill, A.C., Warburton, N., Wardell, B.: Octupolar invariants for compact binaries on quasicircular orbits. Phys. Rev. D 92, 123008 (2015). arXiv:1505.04447 [gr-qc]

    Article  ADS  Google Scholar 

  14. Akcay, S., Dempsey, D., Dolan, S.R.: Spin-orbit precession for eccentric black hole binaries at first order in the mass ratio. Class. Quant. Grav. 34, 084001 (2017). arXiv:1608.04811 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  15. Kavanagh, C., Bini, D., Damour, T., Hopper, S., Ottewill, A.C., Wardell, B.: Spin-orbit precession along eccentric orbits for extreme mass ratio black hole binaries and its effective-one-body transcription. Phys. Rev. D 96, 064012 (2017). arXiv:1706.00459 [gr-qc]

    Article  ADS  Google Scholar 

  16. Bini, D., Damour, T., Geralico, A.: Spin-orbit precession along eccentric orbits: improving the knowledge of self-force corrections and of their effective-one-body counterparts. Phys. Rev. D 97, 104046 (2018). arXiv:1801.03704 [gr-qc]

    Article  ADS  Google Scholar 

  17. Chandrasekhar, S.: On the equations governing the perturbations of the Schwarzschild black hole. Proc. R. Soc. Lond. A 343, 289 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  18. Mano, S., Suzuki, H., Takasugi, E.: Analytic solutions of the Regge-Wheeler equation and the post-Minkowskian expansion. Prog. Theor. Phys. 96, 549 (1996). arXiv:gr-qc/9605057

    Article  ADS  Google Scholar 

  19. Mano, S., Suzuki, H., Takasugi, E.: Analytic solutions of the Teukolsky equation and their low frequency expansions. Prog. Theor. Phys. 95, 1079 (1996). arXiv:gr-qc/9603020

    Article  ADS  MathSciNet  Google Scholar 

  20. Nakano, H., Sago, N., Sasaki, M.: Gauge problem in the gravitational self-force. 2. First post-Newtonian force under Regge-Wheeler gauge. Phys. Rev. D 68, 124003 (2003). arXiv:gr-qc/0308027

    Article  ADS  Google Scholar 

  21. Detweiler, S.L.: A consequence of the gravitational self-force for circular orbits of the Schwarzschild geometry. Phys. Rev. D 77, 124026 (2008). arXiv:0804.3529 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  22. Barack, L., Sago, N.: Beyond the geodesic approximation: conservative effects of the gravitational self-force in eccentric orbits around a Schwarzschild black hole. Phys. Rev. D 83, 084023 (2011). arXiv:1101.3331 [gr-qc]

    Article  ADS  Google Scholar 

  23. Bini, D., Damour, T.: High-order post-Newtonian contributions to the two-body gravitational interaction potential from analytical gravitational self-force calculations. Phys. Rev. D 89, 064063 (2014). arXiv:1312.2503 [gr-qc]

    Article  ADS  Google Scholar 

  24. Bini, D., Damour, T.: Analytic determination of the eight-and-a-half post-Newtonian self-force contributions to the two-body gravitational interaction potential. Phys. Rev. D 89, 104047 (2014). arXiv:1403.2366 [gr-qc]

    Article  ADS  Google Scholar 

  25. Bini, D., Damour, T.: Detweiler’s gauge-invariant redshift variable: analytic determination of the nine and nine-and-a-half post-Newtonian self-force contributions. Phys. Rev. D 91, 064050 (2015). arXiv:1502.02450 [gr-qc]

    Article  ADS  Google Scholar 

  26. Kavanagh, C., Ottewill, A.C., Wardell, B.: Analytical high-order post-Newtonian expansions for extreme mass ratio binaries. Phys. Rev. D 92, 084025 (2015). arXiv:1503.02334 [gr-qc]

    Article  ADS  Google Scholar 

  27. Akcay, S., Le Tiec, A., Barack, L., Sago, N., Warburton, N.: Comparison between self-force and post-Newtonian dynamics: beyond circular orbits. Phys. Rev. D 91, 124014 (2015). arXiv:1503.01374 [gr-qc]

    Article  ADS  Google Scholar 

  28. Bini, D., Damour, T., Geralico, A.: Confirming and improving post-Newtonian and effective-one-body results from self-force computations along eccentric orbits around a Schwarzschild black hole. Phys. Rev. D 93, 064023 (2016). arXiv:1511.04533 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  29. Hopper, S., Kavanagh, C., Ottewill, A.C.: Analytic self-force calculations in the post-Newtonian regime: eccentric orbits on a Schwarzschild background. Phys. Rev. D 93, 044010 (2016). arXiv:1512.01556 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  30. Bini, D., Damour, T., Geralico, A.: New gravitational self-force analytical results for eccentric orbits around a Schwarzschild black hole. Phys. Rev. D 93, 104017 (2016). arXiv:1601.02988 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  31. Le Tiec, A.: First law of mechanics for compact binaries on eccentric orbits. Phys. Rev. D 92, 084021 (2015). arXiv:1506.05648 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  32. Bini, D., Damour, T., Geralico, A.: Spin-dependent two-body interactions from gravitational self-force computations. Phys. Rev. D 92, 124058 (2015) (Erratum: Phys. Rev. D 93, 109902 (2016)) arXiv:1510.06230 [gr-qc]

  33. Kavanagh, C., Ottewill, A.C., Wardell, B.: Analytical high-order post-Newtonian expansions for spinning extreme mass ratio binaries. Phys. Rev. D 93, 124038 (2016). arXiv:1601.03394 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  34. Bini, D., Damour, T., Geralico, A.: High post-Newtonian order gravitational self-force analytical results for eccentric equatorial orbits around a Kerr black hole. Phys. Rev. D 93, 124058 (2016). arXiv:1602.08282 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  35. Abbott, B.P., et al.: LIGO scientific and virgo collaborations: GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 116, 241103 (2016). arXiv:1606.04855 [gr-qc]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Prof. T. Damour for useful discussions. D.B. thanks ICRANet for partial support and the organizers of the meeting for a high scientific level conference framed in a very unique place.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donato Bini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bini, D., Geralico, A. Black Hole Perturbations: A Review of Recent Analytical Results. Found Phys 48, 1349–1363 (2018). https://doi.org/10.1007/s10701-018-0187-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-018-0187-7

Keywords

Navigation