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Abstract

We continue the investigation of the path-connected geometry on the Cantor
space and the related notions of dilution and compressibility described in [1]. These
ideas are closely related to the notions of effective Hausdorff and packing dimensions
of reals, and we argue that this geometry provides the natural context in which to
study them.

In particular we show that every regular real can be maximally compressed -
that is every regular real is a dilution of some real of maximum effective Hausdorff
dimension.

1 Introduction

One of the fundamental objects of study in Information and Computability Theory is
the set of all infinite binary sequences. It has a similar role in these subjects as the unit
interval does in Analysis. This set, elements of which are called reals, when equipped
with a standard metric,1 is referred to as the Cantor space and we denote it 2N. The
standard metric provides the set of reals with a topology that is Hausdorff, complete,
compact, and totally disconnected – that is any two elements of 2N can be separated
with clopen sets. In particular (and important for our purposes) it is far from being
path-connected; there is no way under this topology to conceive of one real transforming
continuously into another.

1The distance between binary sequences X and Y is 2−n where n is the length of the maximal initial
segment the have in common. The resulting topology has a basis of clopen sets consisting of all sets of
the form Uσ = {X ∈ 2N : X ⊃ σ}.
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A natural path-connected topology can be given to 2N if every real is considered to
be a binary expansion of a real number in the interval [0, 1]. This is not a one-to-one
identification however as if σ is any finite binary string, then

0.σ100000000000 · · · = 0.σ011111111111111 . . .

represent the same real number. If this causes technical issues in practice, it is often
dealt with by declaring any two such sequences equivalent and applying the topology of
[0, 1] onto the resulting set of equivalent classes in 2N (almost all of which will have only
one element anyway). Alternatively, one could drop any expectation that the topology
be Hausdorff and accept the fact that the two above sequences cannot be separated by
disjoint open sets.

In [1] another metric was described that we argue is interesting and relevant to the
study of Kolmogorov complexity. It also induces a non-Hausdorff, path-connected topol-
ogy on 2N, and is closely connected to the study of the effective dimensions of reals –
specifically their effective Hausdorff and packing dimensions. These dimensions arise nat-
urally as effectivisations of classical notions and have been studied in [5], [4], [6], [2], [7]
and elsewhere. Effective dimensions have simple characterisations in terms of Kolmogorov
complexity and we will take these characterisations as definitions. The Hausdorff and
packing dimensions of a real X are respectively

dimHX = lim inf
n

C(X �n)

n
dimpX = lim sup

n

C(X �n)

n

where C(X � n) is the plain Kolmogorov complexity of the first n bits of X.

The metric from [1] that we will be working with here is technically a pseudometric
as it is possible for two distinct reals to be distance 0 from each other. We refer to it as
the d-metric and introduce it first as a directed pseudometric2:

d(X → Y ) = lim sup
n

C(Y �n |X �n)

n
,

with the pseudometric given by:

d(X, Y ) = max{d(X → Y ), d(Y → X)}.

We will continue to stretch terminology somewhat by referring to d as a ‘metric’. Two
realsX, Y at distance 0 from one another will be considered equivalent – denotedX 'd Y .

Along with the topological structure induced on 2N by d, we also have a certain
amount of algebraic structure. This is produced by an associative scalar multiplication
which was introduced in [1] and represents dilutions of the information in a real X. We

2The terminology for weakenings of the metric space axioms is inconsistent in the literature. d
could also be described as a quasi-pseudometric, a term we avoid. All that is meant here is a function
d : 2N × 2N → R+ ∪ {0} that obeys the triangle inequality in the direction of the arrow.
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dilute the information in X by a factor α ∈ [0, 1] by adding strings of 0s at defined
positions in X. The result we denote by αX. The lower the value of α, the more X
is diluted: if α = 0, then αX = 000000 · · · := 0 and if α = 1, then αX = X. These
dilutions cohere well with dimensional and metric properties as, as we show in Section 3,

dimH(αX) = α dimHX and dimp(αX) = α dimpX,

and (more generally)
d(αX → αY ) = αd(X → Y ).

A distinguished subset of the reals – the so-called regular reals – were talked about in
[1], [6] and [8] will also be considered in this paper. X is said to be regular if dimH(X) =
dimp(X). In this case we simply refer to dimX. It was proved in [1] that if X is regular,
then

d(αX, βX) = |α− β| dimX.

Regularity is preserved under scalar multiplication.

The relationship between scalar multiplication and the metric d allowed us in [1] to
introduce and investigate geometric properties such as the angle between two reals and
the projection of one real onto another.

In this paper we extend some of the results in [1] – relaxing requirements of regularity
and proving that d induces a path-connected topology on 2N. We also show that the
Hausdorff and packing dimension functions

dimH : 2N → [0, 1] and dimp : 2N → [0, 1]

are continuous in the d topology.

The main result however is one of compressibility. A real X is an 1/α-compression of
Y if Y 'd αX. Or in other words, if Y is d-equivalent to an α-dilution of X. We prove
here that every regular real is maximally compressible. That is, for every regular real X
there is a (unique) real Y (also regular) of dimension 1 such that X 'd (dimX)Y.

2 Definitions and Notation

We will follow [3] for the basic notation here and we outline this in this section. The
Cantor space of reals (infinite binary sequences) is denoted 2N, and 2<N is the set of finite
binary strings. We conventionally denote elements of 2N by uppercase roman letters X,
Y and Z, and elements of 2<N by lowercase greek letters σ, τ, µ, ν and so on. The length
of a binary string is denoted |σ|. If n ∈ N, then 0n is the string of n 0s, and we will
denote the infinite sequence of 0s by 0. If n ∈ N, then we use log n to represent the
length of the standard binary expansion of n.

C(σ) denotes the plain Kolmogorov complexity of the string σ. This will be the
only notion of complexity used in this paper, however all the following results regarding
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dimension apply equally to prefix-free complexity. C(σ1, σ2, . . . σn) is the complexity of⊕n
i=1 σi and C(σ|τ) is the complexity of σ given τ .

As is standard σ∗ refers to the shortest string that describes σ – the shortest string
that will produce σ when input into a fixed universal machine. We introduce the new
notation (σ|τ)∗ to denote the shortest program that will produce σ when input into a
fixed universal oracle machine given τ as oracle. Thus,

C(σ) = |σ∗| and C(σ|τ) = |(σ|τ)∗|.

If σ and τ are two binary strings, then we denote their concatenation by στ . We will
often need to calculate the complexity of a sequence of concatenated strings, and issues
of deciding where one string ends and the next starts will arise. To deal with this we let
σ be the string σ with 2 log |σ| bits appended to the beginning to indicate the length of
σ. More precisely, if b1b2b3 . . . bn is the standard binary expansion of |σ|, then

σ = b10b20b30 . . . 0bn1σ.

The motivation here is that C(τ1 τ2 . . . τn) = C(τ1, τ2, . . . , τn)±O(1).

Definition 2.1. Let X be any real. Then the effective Hausdorff dimension of X is

dimHX = lim inf
n

C(X �n)

n
.

The dual notion

dimpX = lim sup
n

C(X �n)

n

is the effective packing dimension of X. If these two dimensions are equal, that is, if
limnC(X �n)/n exists, then X is said to be a regular real and we refer to the dimension
of X and denote this dimX:

dimX = lim
n

C(X �n)

n
.

Definition 2.2. Let X, Y, Z ∈ 2N, define

d(X → Y ) = lim sup
n

C(Y �n |X �n)

n

where C(Y �n|X �n) is the Kolmogorov complexity of Y �n given X �n. The function d
obeys the triangle inequality in the direction of the arrow, that is

d(X → Y ) + d(Y → Z) > d(X → Y ).

See [1] for the proof of this fact and other details.
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Notice that under this definition

dimp(X) = d(0→ X).

Definition 2.3. A metric can be formed from d by defining

d(X, Y ) = max{d(X → Y ), d(Y → X)}

and by identifying reals that are distance 0 from one another. We write X 'd Y if
d(X, Y ) = 0.

2.1 Symmetry of Information

The next lemma is well-known and will be used extensively. For a proof and historical
reference see [3].

Lemma 2.4 (Symmetry of Information (Levin, Kolmogorov)). If σ, τ ∈ 2<N, then

C(σ, τ) = C(σ|τ) + C(τ)±O logC(σ, τ).

We will also use the following two consequences:

Corollary 2.5.

lim inf
n

C(X �n | Y �n)

n
= lim inf

n

C(X �n, Y �n)− C(Y �n)

n

and similarly for limit supremum.

Corollary 2.6. If τ1, τ2 . . . , τn ∈ 2<N, then

C(τ1, τ2 . . . , τn) = C(τ1) + C(τ2|τ1) + C(τ3|τ1, τ2) + . . .

+ C(τn|τ1, τ2 . . . , τn−1)±On logC(τ1, τ2 . . . τn).

Proof. The 6 direction is derived by concatenating the required descriptions on the
right-hand side along with enough bits to distinguish them. On logC(τ1, τ2 . . . τn) bits
are sufficient for this purpose.

For the > direction, take a fixed constant k such that for all σ, τ ∈ 2<N

C(σ, τ) > C(σ|τ) + C(τ)− k logC(σ, τ),

and then repeatedly apply Lemma 2.4 starting with C(τn,
⊕n−1

i=1 τi).
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2.2 Scalar Multiplication

Another concept that we will use repeatedly is that of a dilution. It is a function from
R × 2N to 2N that consists of interpolating 0s into a real and consequently reducing its
dimension. This we interpret as a scalar multiplication, and if α ∈ [0, 1] and X ∈ 2N, we
write αX for the dilution of X by a factor α. The effective dimensions of X are scaled
by a factor of α as a result. We now give an exact definition.

Notation 2.7. Let X ∈ 2N, α ∈ [0, 1] and i ∈ N+. Let pi(α) be the least natural number
k that minimises | αi− k | . We then have that

αi− 1/2 6 pi(α) 6 αi+ 1/2

and that limi pi(α)/i = α.

Definition 2.8 (Scalar multiplication). If X ∈ 2N and α ∈ [0, 1], then we let αX be the
real

σ10
a1σ20

a2σ30
a3 . . . σi0

ai . . .

where

1. X = σ1σ2σ3 . . .

2. |σi| = pi(α)

3. |σi0ai | = i.

Notation 2.9. Later we will be considering initial segments of αX, so we introduce some
useful notation now. For every n, there exists a unique m = m(n) and τ = τ(n) such
that

αX �n = σ10
a1σ20

a2σ30
a3 . . . σm0amτ

where m is the largest possible integer such that
∑m

i=1 i = m(m + 1)/2 6 n. To make
the calculations more readable, we let

• M := m(m+ 1)/2 and

• Pm(α) :=
∑m

i=1 pi(α),

both of which are implicitly functions of n. We will also refer to the string σ1σ2σ3 . . . σm
above as the bits of X in αX �M , and to the added 0s as the padding bits. This notation
will be used throughout the paper.
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3 Basic Results

In this section we will prove some basic lemmas giving the relationship between the scalar
multiplication and the metric d.

Lemma 3.1. If α ∈ [0, 1], X ∈ 2N and n ∈ N, and if m and Pm(α) are as in Notation
2.9, then C(X �Pm(α)) = C(αX �n)±O(m logm).

Proof. With all the notation as stated, αX �n is of the form

σ10
a1σ20

a2σ30
a3 . . . σm0amτ

where |τ | < m+ 1 and σ1σ2σ3 . . . σmτ ⊂ X.

Therefore, to describe αX �n, it is sufficient to know X �Pm(α), the values of pi(α)
for i 6 m and the string τ . Therefore

C(αX �n) 6 C(X �Pm(α)) +O(m logm).

Similarily, to describe X �Pm(α), it is sufficient to describe αX �n and to distinguish
in αX �n the padding bits from the bits of X. To do this it is enough to know the values
of pi(α) for all i 6 m. Thus

C(X �Pm(α)) 6 C(αX �n) +O(m logm),

and consequently
C(X �Pm(α)) = C(αX �n)±O(m logm).

Lemma 3.2. Again using the above notation, limn
Pm(α)
n

= α.

Proof. Recall that,
αi− 1/2 6 pi(α) 6 αi+ 1/2,

hence, by summing over all i 6 m,

αM − m

2
6 Pm(α) 6 αM +

m

2
.

Now dividing by n we get

αM

n
− m

2n
6
Pm(α)

n
6
αM

n
+
m

2n
.

As limn
M
n

= 1 and m = O(
√
n), the result follows.
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Lemma 3.3. In the above notation

lim sup
n

C(X �Pm(α))

Pm(α)
= lim sup

n

C(X �n)

n
,

and similarly for lim infn
C(X�Pm(α))

Pm(α)
.

Proof. Let [·] : R→ N be the nearest integer function. The definition of Pm(α) suggests
that Pm(α) should be close to [αn], and indeed it can be shown, using a similar argument
to that in Lemma 3.2 that

[αn] = Pm(α)±O(m).

The fact that α 6 1 means that {[αn] : n ∈ N} = N and therefore that,

lim sup
n

C(X �n)

n
= lim sup

n

C(X � [αn])

[αn]
(1)

= lim sup
n

C(X �Pm(α))±O(m)

Pm(α)±O(m)
(2)

= lim sup
n

C(X �Pm(α))

Pm(α)
(3)

(4)

as Pm(α) = O(n) and m = O(
√
n). The proof for lim infn

C(X�Pm(α))
Pm(α)

is identical.

Lemma 3.4. For all X ∈ 2N and α ∈ [0, 1]

dimH(αX) = α dimH(X) and dimp(αX) = α dimp(X).

Proof. Let n ∈ N and consider αX �n. Notice that, in the notation of 2.9, m(m+1)/2 6 n
and therefore

lim
n

O(m logm)

n
= 0. (5)

Now,

dimp(αX) = lim sup
n

C(αX �n)

n

= lim sup
n

C(X �Pm(α))±O(m logm)

n
by Lemma 3.1

= lim sup
n

C(X �Pm(α))

n
by (5)

= lim
n

Pm(α)

n
lim sup

n

C(X �Pm(α))

Pm(α)

= α dimp(X) by Lemmas 3.2 and 3.3.

By a similar argument, dimH(αX) = α dimH(X). Hence if X is regular, dimαX =
α dimX.
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Lemma 3.5. If X, Y ∈ 2N are regular and dim(X) = dim(Y ), then d(X → Y ) = d(Y →
X).

Proof. Using the symmetry of information:

d(X → Y ) = lim sup
n

C(Y �n |X �n)

n

= lim sup
n

C(Y �n,X �n)− C(X �n)

n

= lim sup
n

C(Y �n,X �n)

n
− lim

n

C(X �n)

n
as X is regular

= lim sup
n

C(X �n, Y �n)

n
− lim

n

C(Y �n)

n
as dimX = dimY

= lim sup
n

C(X �n, Y �n)− C(Y �n)

n
as Y is regular

= lim sup
n

C(Y �n |X �n)

n

= d(Y → X).

In [1] we proved that for reals X, Y with strong regularity properties (namely being
mutually regular) that d(αX → αY ) = αd(X → Y ). We significantly improve this here
by proving this for all pairs of reals. We need first the following Lemma.

Lemma 3.6. Let X, Y ∈ 2N and α ∈ (0, 1]. If m = m(n) and Pm(α) are as above in 2.9,
then

lim sup
n

C(Y �Pm(α) |X �Pm(α))

Pm(α)
= lim sup

k

C(Y �k |X �k)

k
.

Proof. Just from the definition of the limit supremum, we get

lim sup
n

C(Y �Pm(α) |X �Pm(α))

Pm(α)
6 lim sup

k

C(Y �k |X �k)

k
.

For the other direction, temporarily fix k ∈ N and let n be the largest positive integer
such that Pm(α) = Pm(n)(α) does not exceed k. Thus k < Pm(n+1)(α) 6 Pm(n)(α)+m+1
and k 6 Pm(α) +m. Symmetry of information then gives

C(Y �Pm(α) |X �Pm(α)) = C(Y �Pm(α), X �Pm(α))− C(X �Pm(α))

±O logC(Y �Pm(α), X �Pm(α)).
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But because k 6 Pm(α) +m,

C(Y �Pm(α), X �Pm(α)) +O(m) > C(Y �k,X �k)

and
C(X �Pm(α)) 6 C(X �k) +O logm.

Therefore

C(Y �Pm(α), X �Pm(α))− C(X �Pm(α)) +O logC(Y �Pm(α), X �Pm(α)) >

C(Y �k,X �k)−O(m)− C(X �k)−O logm.

Giving

C(Y �Pm(α), X �Pm(α))− C(X �Pm(α)) > C(Y �k,X �k)− C(X �k)−O(m).

From here we can get

C(Y �Pm(α) |X �Pm(α)) > C(Y �k |X �k)−O(m),

and the result follows.

Theorem 3.7. If X, Y ∈ 2N and α ∈ [0, 1], then d(αX → αY ) = αd(X → Y ).

Proof. If α = 0, then the result is immediate. Assume α > 0. Again using the symmetry
of information:

d(αX → αY ) = lim sup
n

C(αY �n | αX �n)

n

= lim sup
n

C(αY �n, αX �n)− C(αX �n)

n

= lim sup
n

C(Y �Pm(α), X �Pm(α))− C(X �Pm(α))±O(m logm)

n
,

using an argument similar to Lemma 3.1. Since limn
O(m logm)

n
= 0, and using Lemma

2.5,

d(αX → αY ) = lim sup
n

C(Y �Pm(α) |X �Pm(α))

n

= lim sup
n

Pm(α)

n
·
C(Y �Pm(α) |X �Pm(α))

Pm(α)

= α lim sup
n

C(Y �Pm(α) |X �Pm(α))

Pm(α)

= αd(X → Y ) by Lemma 3.6
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4 Topological Results

4.1 Path connectedness

In [1] it was shown that for any regular real X, d(αX → βX) = |α−β| dimX, and hence
that the map α 7→ αX is continuous. Thus every regular real is path connected to the
point 0 and, by concatenation of paths, to each other. We extend this to the set of all
reals – proving not that d(αX → βX) = |α − β| dimX for nonregular X, but merely
that d(αX → βX) 6 |β − α|. This is still sufficient to imply continuity but does not
require that X be regular.

Theorem 4.1. 2N is path connected under the metric d.

Proof. Let X be any (possibly irregular) element of 2N and let α < β be elements of
[0, 1]. Consider d(βX → αX). For any n ∈ N, βX �n will contain at least as many bits
of X as αX �n because α < β. So to describe αX �n given βX �n it is sufficient to know
the values of pi(α) and pi(β) for all i 6 m as in Notation 2.9. As before this requires at
most O(m logm) bits. This term disappears in the limit, so d(βX → αX) = 0.

Now, for the other direction, let X[n,m] = 〈X(n), X(n+ 1), . . . , X(m− 1)〉 and con-
sider d(αX → βX). Then

d(αX → βX) = lim sup
n

C(βX �n | αX �n)

n

6 lim sup
n

C(X[Pm(α), Pm(β)]) +Om logm

n

because to describe βX � n it is sufficient to describe X � Pm(α), X[Pm(α), Pm(β)] and
strings of padding bits given by a description of length Om logm. But

C(X[Pm(α), Pm(β)]) 6 Pm(β)− Pm(α) +O(1)

so

d(αX → βX) 6 lim sup
n

Pm(β)− Pm(α) +Om logm

n

= β − α, by Lemma 3.2.

4.2 Continuity Theorems

Theorem 4.2. The functions

dimp : 2N −→ [0, 1]
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and
dimH : 2N −→ [0, 1]

are continuous under the d metric.

Proof. For the first, let X, Y ∈ 2N. Then

C(Y �n) 6 C(Y �n |X �n) + C(X �n) +O(log n).

And so

lim sup
n

C(Y �n)

n
6 lim sup

n

C(Y �n |X �n)

n
+ lim sup

n

C(X �n)

n
,

which means
dimp(Y )− dimp(X) 6 d(X, Y )

from which the continuity of dimp follows.

For dimH the situation is only slightly more complicated. Fix X ∈ 2N and ε > 0. We
show there is a δ such that for all Y ∈ 2N

d(X, Y ) < δ → | dimHX − dimH Y | < ε,

namely δ = ε/4. If Y is as above and if dimHX = α and dimH Y = β, then we can find
an N ∈ N such that for all n > N

1.
C(X �n | Y �n)

n
<
ε

4

2.
C(X �n)

n
> α− ε

4

3.
3 log n

n
<
ε

4

as d(Y → X) = lim supn
C(X�n|Y �n)

n
< δ = ε/4 and dimHX = lim infn

C(X�n)
n

= α. We
can also find an m > N such that

C(Y �m)

m
< β +

ε

4

as lim infn
C(Y �n)

n
= dimH Y = β. Fix such an m and now using basic theory:

C(X �m) 6 C(X �m | Y �m) + C(Y �m) + 3 logm

and so
C(X �m)

m
6
C(X �m | Y �m)

m
+
C(Y �m)

m
+

3 logm

m
,

giving, using the bounds above, that α − β < ε. A symmetrical argument shows that
β − α < ε and the result follows.
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Corollary 4.3. The set of regular reals is closed in the topology induced by the d metric.

Proof. The irregularity function irreg : 2N → [0, 1] defined by irreg(X) = dimpX −
dimHX is continuous by Theorem 4.2 and thus the set of regular reals {X ∈ 2N :
irreg(X) = 0} is closed.

Corollary 4.4. If X 'd Y , then dimHX = dimH Y and dimpX = dimp Y .

Proof. If d(X, Y ) < δ for all δ > 0, then dimpX − dimp Y < ε for all ε > 0 and similarly
for dimHX − dimH Y .

5 Compressibility of Reals

Theorem 5.1. Let X ∈ 2N be regular and of dimension α. Then there exists a regular
Y ∈ 2N of dimension 1 such that X 'd αY . Furthermore, if α > 0, then Y is unique up
to d-equivalence.

Proof. If α = 0, the result is immediate, so we suppose that α > 0.

Let X ∈ 2N be regular. We will divide X into finite blocks of strings:

X = τ1τ2τ3 . . .

where |τi| = i for all i.

Let γ1 = τ ∗1 and γi+1 = (τi+1|τ1, τ2, . . . τi)∗ where, as before, (τi+1|τ1, τ2, . . . τi)∗ is the
shortest program that will output τi+1 using τ1, τ2, . . . , τi as oracles. We now define Y to
be

Y = γ1 γ2 γ3 . . .

We will find it convenient to use the notations

Xi = τ1τ2 . . . τi

and
Yi = γ1 γ2 . . . γi

Notice that C(Xi) = C(τ1, τ2, . . . , τi)±O(1) and we can recover the strings τ1, τ2, . . . , τi
uniformly from the string Yi. So

C(Xi | Yi) = O(1). (6)

We will now establish some technical lemmas. First, we note that we can bound |Yi|
in terms of the complexity of Xi.

Lemma 5.2. |Yi| = C(Xi)±Oi logC(Xi).
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Proof. Using Corollary 2.6:

C(Xi) = C(τ1, τ2, . . . , τi)

> C(τ1) + C(τ2 | τ1) + C(τ3 | τ1, τ2) + · · ·+ C(τi | τ1, τ2, . . . , τi−1)
−Oi logC(τ1, τ2, . . . , τi)

> |γ1|+ |γ2|+ · · ·+ |γi| − Oi logC(τ1, τ2, . . . , τi)

= |Yi| − O
i∑

j=1

log |γj| − Oi logC(τ1, τ2, . . . , τi)

> |Yi| − Oi logC(τ1, τ2, . . . , τi)

= |Yi| − Oi logC(Xi)

we obtain the inequality
|Yi| 6 C(Xi) +Oi logC(Xi).

A similar argument will give us a lower bound on |Yi|:

|Yi| > C(Xi)−Oi logC(Xi).

Next, we show that if X is regular, then limi
|Yi|
|Xi| = dim(X). We note here that Lemma

5.3, as stated, also applies to irregular X. This extra generalisation will be useful later.

Lemma 5.3. Let X ∈ 2N, then lim supi
|Yi|
|Xi| 6 dimp(X) and lim infi

|Yi|
|Xi| > dimH(X).

Proof. By Lemma 5.2, |Yi| = C(Xi) ± Oi logC(Xi). Dividing both sides by |Xi| and
taking the limit supremum gives

lim sup
i

|Yi|
|Xi|

6 lim sup
i

(
C(Xi)

|Xi|
+
Oi logC(Xi)

|Xi|

)
6 lim sup

i

C(Xi)

|Xi|
+ lim sup

i

Oi logC(Xi)

|Xi|

= lim sup
i

C(Xi)

|Xi|
(as |Xi| = O(i2))

6 dimp(X).
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Similarily,

lim inf
i

|Yi|
|Xi|

> lim inf
i

(
C(Xi)

|Xi|
− Oi logC(Xi)

|Xi|

)
> lim inf

i

C(Xi)

|Xi|
+ lim inf

i
−Oi logC(Xi)

|Xi|

= lim inf
i

C(Xi)

|Xi|
> dimH(X).

Every initial segment of Y is of the form Yiµ for some unique i and µ an initial segment
of γi+1. In the next two lemmas we will calculate a lower bound on the complexity of
Yiµ.

Lemma 5.4. C(γi+1|Yi) > |γi+1| − O log |γi+1| − C(Yi) + C(Xi)−O logC(Yi).

Proof. To calculate a bound on C(γi+1|Yi), we begin by noting that

C(γi+1 | Yi) + C(Yi |Xi) +O logC(Yi |Xi) > C(τi+1 | τ1, τ2, . . . , τi)
= |γi+1|

as, from a machine that computes γi+1 given Yi and a machine that computes Yi given
Xi (and enough bits to tell them apart), we can easily construct a machine that, given
τ1, τ2, . . . , τi, computes Yi+1 and hence τi+1. Thus

C(γi+1 | Yi) > |γi+1| − C(Yi |Xi)−O logC(Yi |Xi).

But we can also put a bound on the second term on the right-hand side, using Symmetry
of Information and the fact that C(Yi, Xi) = C(Yi)±O(1).

C(Yi |Xi) = C(Yi, Xi)− C(Xi)±O logC(Yi, Xi)

= C(Yi)− C(Xi)±O logC(Yi).

And combining this with the previous equation gives

C(γi+1 | Yi) > |γi+1| − C(Yi) + C(Xi)−O logC(Yi)

or equivalently,

C(γi+1 | Yi) > |γi+1| − O log |γi+1| − C(Yi) + C(Xi)−O logC(Yi),

as required.
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Lemma 5.5. C(Yiµ) > |Yiµ| − O log |γi+1| − Oi logC(Xi)−O logC(Yiµ)

Proof. Let γi+1 = µν then,

C(γi+1 | Yi) = C(µν | Yi)
6 |(µ|Yi)∗ν|+O(1)

= C(µ | Yi) +O logC(µ | Yi) + |ν|.

Therefore,

C(µ | Yi) > C(γi+1 | Yi)− |ν| − O logC(µ | Yi)
> |γi+1| − O log |γi+1| − C(Yi) + C(Xi)

−O logC(Yi)− |ν| − O logC(µ | Yi) from Lemma (5.4)

= |µ| − O log |γi+1| − C(Yi) + C(Xi)−O logC(Yi)−O logC(µ|Yi)

But then the Symmetry of Information again gives us

C(Yiµ) = C(Yi, µ)

> C(µ | Yi) + C(Yi)−O logC(Yiµ)

> |µ| − O log |γi+1| − C(Yi) + C(Xi)

−O logC(Yi)−O logC(µ | Yi) + C(Yi)−O logC(Yiµ)

= |µ| − O log |γi+1|+ C(Xi)−O logC(Yiµ)

(using the fact that C(µ | Yi), C(Yi) 6 C(Yiµ) +O(1))

> |µ| − O log |γi+1|+ |Yi| − Oi logC(Xi)−O logC(Yiµ) from Lemma (5.2)

> |Yiµ| − O log |γi+1| − Oi logC(Xi)−O logC(Yiµ)

Now that we have completed these preparatory calculations, we can complete the
proof. We begin by proving that dimY = 1. To do this it is enough to prove that
lim infn

C(Y �n)
n

= 1. Every initial segment of Y is of the form Yiµ for some unique i and

µ an initial segment of γi+1. Accordingly, we will calculate a lower bound of C(Yiµ)
|Yiµ| in

terms of i and show that this lower bound approaches 1 as i goes to infinity.

By Lemma 5.5 we have a lower bound on C(Yiµ). Dividing both sides by |Yiµ| gives

C(Yiµ)

|Yiµ|
> 1− O log |γi+1|

|Yiµ|
− Oi logC(Xi)

|Yiµ|
− O logC(Yiµ)

|Yiµ|
.
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Hence,

lim inf
n

C(Yiµ)

|Yiµ|
> 1− lim sup

n

O log |γi+1|
|Yiµ|

− lim sup
n

Oi logC(Xi)

|Yiµ|
− lim sup

n

O logC(Yiµ)

|Yiµ|
.

We now show that each term, except the first, on the righthand side of the inequality
vanishes as n (and hence i) goes to infinity. This implies that the dimension of Y exists
and is equal to 1. This is easy to see in the case of the last term, as C(Yiµ) 6 |Yiµ|+O(1).
In the case of the second term on the right hand side, notice that

|γi+1| = C(τi+1 | τ1, τ2, . . . , τi) 6 C(τi+1) 6 |τi+1|+O(1) = i+ 1 +O(1).

This means

log |γi+1|
|Yiµ|

6
log(i+O(1))

|Yi|
6

log(i+O(1))

i
−→ 0 as i −→∞.

Lastly,

i logC(Xi)

|Yiµ|
6
i logC(Xi)

|Yi|

6
i logC(Xi)

C(Xi)−Oi logC(Xi)
from Lemma (5.2)

So, it is enough to show that lim supi
i logC(Xi)
C(Xi)

= 0. Now, because dimHX = α, there is

a function ε bounded by 1, such that lim supn ε(n) = 0 and for all n ∈ N

C(X �n)

n
= α(1− ε(n)). (7)

Hence

lim sup
i

i logC(Xi)

C(Xi)
= lim sup

i

i logα(1− ε(|Xi|))|Xi|
α(1− ε(|Xi|))|Xi|

6 lim sup
i

i logα(1− ε(|Xi|))
α(1− ε(|Xi|))|Xi|

+ lim sup
i

i log |Xi|
α(1− ε(|Xi|))|Xi|

.

But the first term on the righthand side gives:

lim sup
i

i logα(1− ε(|Xi|))
α(1− ε(|Xi|))|Xi|

6 lim sup
i

i

α|Xi|
· lim sup

i

logα(1− ε(|Xi|)
1− ε(|Xi|)

= 0,
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and similarly for the second term:

lim sup
i

i log |Xi|
(1− ε(|Xi|))|Xi|

6 lim sup
i

i log |Xi|
|Xi|

· lim sup
i

1

(1− ε(|Xi|))

= 0.

(Using the fact that |Xi| = O(i2) and lim supn ε(n) = 0.)

We now show that X 'd αY . Notice that up to this point in the proof we have not
used the fact that X is regular, and we have only assumed in (7) that dimHX = α.
This allows us to easily generalise the result in the next section. We must now however
make use of regularity. We will first show that d(αY → X) 6 dimpX − α and then that
Lemma 3.5 implies X 'd αY as X and αY are both regular.

For every n there exists a unique m and µ such that X �n = Xmµ where, as before,
m is the largest possible integer such that m(m+1)

2
6 n. Thus

d(αY → X) = lim sup
n

C(X �n | αY �n)

n

6 lim sup
n

C(Xmµ | Y �Pm(α)) +O(m logm)

n

6 lim sup
n

C(Xmµ | Ym) + C(Ym | Y �Pm(α)) +O(m logm)

n

(using O(logm) bits to distinguish between the programs for the first two terms)

6 lim sup
n

C(Xm | Ym) + |µ|+ C(Ym | Y �Pm(α)) +O(m logm)

n

= lim sup
n

C(Xm | Ym) + C(Ym | Y �Pm(α)) +O(m logm)

n
, since |µ| 6 m

6 lim sup
n

C(Xm | Ym)

n
+ lim sup

n

C(Ym | Y �Pm(α))

n
+ lim sup

n

O(m logm)

n
.

Now, since

lim
n

C(Xm | Ym)

n
= 0 by (6)

and

lim
n

O(m logm)

n
= 0,

it remains to show that

lim sup
n

C(Ym | Y � Pm(α))

n
= 0.

Now if m is such that Pm(α) > |Ym|, then
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C(Ym | Y �Pm(α)) = O(log(Pm(α)− |Ym|)).

From the second half of Lemma 5.3,

lim inf
m

|Ym|
|Xm|

> α,

but |Xm| = m(m+1)
2

so for all ε > 0 and sufficiently large m

|Ym| > (α− ε)m(m+ 1)

2
.

From the proof of Lemma 3.2

Pm(α) 6 αM +
m

2
= α

m(m+ 1)

2
+
m

2
.

So

Pm(α)− |Ym| 6 ε
m(m+ 1)

2
+
m

2
,

and therefore
C(Ym | Y �Pm(α)) 6 O(log(m2)) = O(logm).

Therefore the limit over all such m of C(Ym|Y �Pm(α))
n

is 0.

On the other hand, if m is such that |Ym| > Pm(α),

lim sup
n

C(Ym | Y � Pm(α))

n
6 lim sup

n

|Ym| − Pm(α) +O(1)

n

= lim sup
n

|Ym|
n
− α by Lemma 3.2

6 lim sup
n

|Ym|
|Xm|

· lim sup
|Xm|
n
− α

6 dimpX − α. (8)

The final line following from Lemma 5.3 and the fact that |Xm| 6 n. The result now
follows as X is regular.

To complete the proof we must show that Y is unique up to d-equivalence. Suppose
there exist Y1, Y2 ∈ 2N, both of dimension 1, such that X 'd αY1 and X 'd αY2.
Then d(αY1, αY2) 6 d(αY1, X) + d(X,αY2) = 0 and hence αY1 'd αY2. We know,
d(αY1, αY2) = αd(Y1, Y2) by Lemma 3.7, and so d(Y1, Y2) = 0 whenever d(αY1, αY2) = 0.
So we have Y1 'd Y2. Therefore Y is unique up to d-equivalence.
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5.1 Generalisation to Irregular Reals

Theorem 5.6. If X ∈ 2N and Y is as defined in Theorem 5.1, then if dimHX = α 6
β = dimpX,

d(X,αY ) = β − α = irreg(X).

Furthermore, if Z is any regular real of dimension α, then

d(X,Z) > d(X,αY ).

Proof. First note that from (8) in the proof of Theorem 5.1

d(αY → X) 6 β − α.

But suppose now that d(αY → X) < β − α. Let γ = (β−α)−d(αY→X)
2

. Now

C(X �n)

n
6
C(X �n | αY �n)

n
+
C(αY �n)

n
+

3 log n

n
. (9)

Similarly to Theorem 4.2, we can choose an m such that

1.
C(X �m)

m
> β − γ

3
(as dimpX > β)

2.
C(X �m|αY �m)

m
< β − α− γ (as d(αY → X) < β − α− γ)

3.
3 logm

m
6
γ

3

4.
C(αY �m)

m
6 α +

γ

3
(as dimp(αY ) 6 α)

Then substituting into (9) we get

β − γ

3
< (β − α− γ) + (α +

γ

3
) +

γ

3
,

which gives a contradiction. Thus d(αY → X) = irreg(X). But

d(X → αY ) = lim sup
n

C(αY �n |X �n)

n

= lim sup
n

C(X �n | αY �n)

n
+
C(αY �n)

n
− C(X �n)

n

6 d(αY → X) + dimp αY − dimHX

6 β − α.
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So d(X,αY ) = max{d(X → αY ), d(αY → X)} = irreg(X).

Finally let Z be regular and of dimension α. If we suppose d(Z → X) < β − α, then
we can repeat the proof above with Z replacing αY to get a contradiction as the only
assumption we made on αY was that dimp αY 6 α. Therefore d(Z → X) > β − α and
d(X,Z) > β − α = d(X,αY ).

6 Open Questions and Directions

This paper is part of an ongoing project to investigate the properties of 2N under the
d-metric. These properties are generally geometric in nature – arising from the interplay
between the scalar multiplication and the metric. The ultimate goal is to get a thorough
picture of the geometric structure of this space. We give a list here of some open questions
that will inform the general direction of our work.

Of course virtually any question one could ask about a general topological space,
one could ask about the d-topology. We limit questions here to ones we consider most
interesting and tractable.

1. Is 2N complete under the d-metric, i.e. does every Cauchy sequence converge?

2. Between any two points X, Y in 2N, does there exist a path between X and Y
whose length is exactly d(X, Y )? Is there a simple description of such a path if it
exists?

3. Given and two regular reals X and Y of the same dimension α, does there exist a
path from X to Y all of whose points have dimension α?

4. Is 2N locally compact? Or perhaps more to the point: Does there exist any point
in 2N with a compact neighbourhood?

5. What is the fundamental group and topological dimension of 2N?

There are also interesting computability theoretic questions that can be asked. In
particular what role if any do the Martin-Löf random reals play in this metric
space?

6. Does every d-equivalence class of dimension 1 regular reals contain a random?
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