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Previous results have shown that the linear topological potential-to-phase relationship (well known
from Josephson junctions) is the key to iterative coupling and non-perturbative bosonization of the
2 two-spinor Dirac equation. In this paper those results are combined to approach the nature
of proton, neutron, and electron via extrapolations from the Planck scale to the System of Units
(SI). The electron acts as a bosonizing bridge between opposite parity topological currents. The
resulting potentials and masses are based on a fundamental soliton mass limit and two iteratively
obtained coupling constants, where one is the fine structure constant. The simple non-perturbative
and relativistic results are within measurement uncertainty and show a very high significance. The
deviation for the proton and electron masses are approximately 1 ppb (10−9), for the neutron 4 ppb.

Introduction. In the context of the sine-Gordon
equation (SG) [1] mass and coupling constants consti-
tute phenomenological dimensions without any direct
relation to the topological processes. If topological
phases evolve (stepwise) proportional to the potential
(as often observed) a possible iterative approach to
coupling constants is already included [2] and provides
i.e. for an iterative approach to the fine–structure
constant. Additionally, a simple bosonization is possible
and based on a Dirac Hamiltonian that carries pairs of
standard vector and scalar potentials [2] and requires the
standard hydrogen Hamiltonian to arrive at the SG that
represent bosonized spin-orbit coupling which requires
to compare at least two interacting states carrying spin
and opposite currents.

Bosonizing a radial symmetric Dirac equation.
We start with interaction described by massless vector
particles (photons) and massless scalar mesons within a
relativistic local quantum field theory. The Dirac equa-
tion ĤDΨ = MγΨ based on a Dirac - Hamiltonian ĤD

for a mixed potential consisting of a scalar potential Vs(r)
and a vector potential Vv(r) is given by

ĤD = cα̂ · p̂ + γ̂0 [V0 + Vs] + Vv , (1)

where α̂ and γ̂0 are the Dirac matrices [3, 4]. The vec-
tor and scalar potentials will provide for spin–spin and
spin–orbit coupling and be helpful to bosonize the Dirac
equation with two opposite parity two–spinors. In the
same way the vector Coulomb potential part of Vv cor-
responds to the exchange of massless photons between a
nucleus and leptons orbiting around it, the scalar Lorentz
potential potential part of Vs with −1/r characteristics
corresponds to the exchange of massless scalar mesons.
The resulting energy eigenvalue Vγ corresponds to oppo-
site parity two-spinors components with total mass V0.
The two-spinor wave–function in spherical symmetry is
given by

Ψ ∝
(

ψR(r)ym
jlR

iψL(r)ym
jlL

)
, (2)

where ym
jl are the normalized spin-angular functions con-

structed with Pauli spinors and spherical harmonics of

order l. The spinors ψR and ψL are eigenfunctions with
eigenvalues lR(lR + 1), and lL(lL + 1), respectively. A
new parameter κ can be interpreted as orbital (spin)
excitation between the two–spinor components, where
2κ = lR(lR +1)− lL(lL +1) > 0 characterizes a left/right
spin-asymmetry or difference. The radial functions have
to obey the asymmetry relation

d2θR

dr2
= −κ

r

dθR

dr
+

[
V0 − Vγ + Vs − Vv

~c

]
dθL

dr
, (3)

d2θL

dr2
= +

κ

r

dθL

dr
+

[
V0 + Vγ + Vs + Vv

~c

]
dθR

dr
.

Topological currents. The 1/r-terms carry dimen-
sional information and can be interpreted as fractional
dimension shifts, κ by spin–asymmetry (a fractional par-
ity property) and α by vector potentials. For SG–solitons
a radial topological current can be introduced according
to

q(r) =
∂rθ

r
,

2V

µ
= (∂rθ)2 = q(r)2r2, (4)

where q(r) can be interpreted as a (fractional) radial di-
mension shift induced by vector and/or scalar currents
[5]. q(r) simply represents the electric charge density.
Let the Dirac equation describe topological charge and
current density, the 2-dim. case allows to introduce or-
thogonal topological currents or phase gradients by

ψL(r) =
∂rθL

r
, ψR(r) =

∂rθR

r
, (5)

where

|Ψ|2 = q(r)2 = ψL(r)2 + ψR(r)2. (6)

Constant q eq.(4) immediately provides for a harmonic
oscillator coupling potential V ∝ r2 with proportionality
between potential and phase

V (r) =
µ

2
(qr)2 , V (θ) =

µ

2
qθ, Eµ = µc2 , (7)

and unit condition

V0 = V (r = 1) = V (θ = q) =
µ

2
q2 . (8)
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Stationary boson exchange. The balancing con-
dition is given by

ψR(r)
ψL(r)

=
α

κ
> 1 , (9)

this couples opposite parity radial functions, and pro-
vides for a wide variety of possible Lorentz scalar Vs(r)
and vector Coulombic potential Vv(r) functions [6, 7].
With eq.(5) both types of 1/r–coupling, coulombic cou-
pling and spin–asymmetry correspond to relative topo-
logical phase evolutions

θL = πκf(r), θR + θ0 = παf(r), (10)

where f(r) will be a special function of r and θ0 a phase
offset. This couples opposite parity radial functions, and
provides for a wide variety of possible Lorentz scalar
Vs(r) and vector Coulombic potential Vv(r) functions
that have to obey the asymmetry relation

Vγ

V0
=

Vv(r) + ~cα
r

Vs(r) + ~cα
r

=
α2 − κ2

α2 + κ2
. (11)

To couple opposite parity components both type of
potentials have to include Coulombic −~cα/r terms.
But finally those two components will merge after
bosonization to one −~cα/r potential and give the SG
equation. The two first order ODE can now be combined
to a Schrödinger/Klein–Gordon type relativistic wave
equation that have bosonic solutions.

Coupling by sine–Gordon. With eq.(9) it is suf-
ficient to consider only one part, therefore we omit the
index θR → βφ

d2φ

dr2
=

κ

r

dφ

dr
+

[
V0 + Vγ + Vs + Vv

~c

]
κ

α

dφ

dr
. (12)

With the SG potential

V (φ) =
µ

2β2
[1− cos(βφ], (13)

and SG equation

d2φ

dr2 − β−1 sin(βφ) = 0 , (14)

the vector and scalar potentials necessary to bosonize
the Dirac equation with two opposite parity two–spinors
merge to one Coulomb-type potential

Vs + Vv = −~cα
r

, (15)

where

(V0 + Vγ)
~c

κ

α
= cos(βφ/2) =

(V0 − Vγ)
~c

α

κ
. (16)

Background-soliton and soliton-soliton cou-
pling. According to [8] basic background fluctuations
mediated are by linear waves with mean potential 2V =
~c/λ1 that couple to solitons in a Compton–type per-
manent scattering process. The soliton Compton wave-
length λµ is related to the effective background (cut–off)
wavelength by λ1 = q2λµ, q2 characterizes localization
or the reduction of fluctuation amplitude between back-
ground and soliton. Another q2 factor corresponds to
the fluctuation reduction due to soliton–soliton coupling.
This means, that soliton–soliton interaction and corre-
spondent topological currents scale with q4 with respect
to the linear and massless background reference, where
the coupling cascade is given by

2V0 = q2Eµ = q2 hc

λµ
= 2q4V . (17)

More can be found in [2].

Iterative coupling. The linear relationship between
potential and phase eq.(8) provides for an iterative solu-
tion, where the optimum phase shift θM is given by

θM = πα = βφ , (18)

MθM = −2πJ cos θM . (19)

The Sommerfeld fine structure constant can be well ap-
proached by α137 = 1/137.00360094... [9, 10] and fits well
to the interpretation, that the topological phase gradient
or charge/current q provides for a dimensional shift.
In the permanent radial symmetric background–soliton
Compton scattering process a radial phase gradient will
be induced that corresponds to a radial coupling poten-
tial Vr(θ) driven by V

1− cos(θ) =
Vr(θ)

V
. (20)

And again, the linear relation between phase and po-
tential leads quickly with Eµ = V (2πJ) to the iterative
condition for the optimum phase shift

1− cos(θ) =
θ

π

q2

2πJ
=

1
N

, θ = πκ . (21)

Eq.(21), 1/q2 = 12π2, and J = 1
2 provides for

κ = 1836.11766.... The value of κ controls the topo-
logical phase gradient induced by radial spin–asymmetry.
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TABLE I:

The results of the α-κ model compared to values in [12].

Name Not. ≈ meas. value dev. calculation comment

fine structure const. α−1 137.03601144(498) [13] ≈ 1.5 ·10−8 137.036009411.. eq.(19), from iteration, [9]

N = 3805.5 α−1
3805.5 137.03599976(50) ≈ 6 · 10−9 137.036000525.. modal shifts in [9]

spin asymmetry κ−1 1836.118 < 10−7 1836.1176608.. ≈ 6π5 eq.(21), from iteration

N = 683174 κ−1
683174 1836.11748207.. eq.(44), incl. modal shift

current w.n. kµ, qµ 4.76804431085... ·1015m−1 exact 2πq2Ξ2m−1 eq.(24), energy 940.8637..MeV

Vacuum permittivity
constant

ε0 8.95419.. · 10−12(s/m)2 ≈ 1.35% 8.97413.. ·10−12(s/m)2 eq.(41)-eq.(43), the fixed SI value
is ε0 = 107/(4πc2).

electron ξe− 5.431168277 · 10−4 −9.8 · 10−8 5.4311688808 · 10−4 eq.(36)

electron + correction ξe− 5.431168277 · 10−4 < 10−9 5.4311682794 · 10−4 eq.(36), eq.(44), including modal
shift (−9.7 · 10−8)

proton ξp+ 0.9972454102 +9.6 · 10−8 0.99724531409 eq.(37)

proton + correction ξp+ 0.9972454102 < 10−9 0.99724541114 eq.(37), eq.(44), including modal
shift (+9.7 · 10−8)

neutron ξn 0.9986200355 4 · 10−9 0.99862003154 eq.(38)

? small neutral ξm qm ≈ qπ ? ? 0.2728144.. eq.(39), 256.68 MeV

Origin of the basic soliton energy. With Planck
units assigned to the background fluctuation level we
get λ1 = q2λµ = 1, q−2Eµ = 1. To get the correct
baryon mass scale in our SI system, we have to shift the
Planck scale velocity units to human artificial velocity
units based on SI length and arbitrary mass units. Planck
velocity units demand that the light velocity equals the
unit velocity c = u = 1 such, that the mean background
energy V scales with the square of the wave velocity and
the SI unit energy scales with the square of the unit ve-
locity u (in SI Eu =1J = 1kg m2/s2)

2V

Eu
=

c2

u2
= Ξ2, Ξ = 299792458 . (22)

Practical applicability of the SI system motivates to ex-
pect a unit velocity 0 < u ¿ c with Ξ = c/u À 1. Par-
ticle and photon energies can be compared via Compton
and photon wavelengths that refer to the light velocity.
Planck length units demand that the 1-dimensional quan-
tum energy of waves coupling to particles Eµ is inversely
proportional to the wavelength, especially to the Comp-
ton wavelength with

Eµ

Eu
=

λu

λµ
. (23)

As a result, the characteristic soliton wavelength of one-
dimension coupling is with eq.(17), eq.(22), and eq.(23)
exactly given by [2]

λµ =
λu

q2Ξ2
≈ 1, 31777... · 10−15m . (24)

Eq.(24) provides for the basic soliton mass µ via Comp-
ton relation µ = h/(cλµ) = q2Ξ2h/(cλu). Realized in SI

units the value is

µ =
~
c

Ξ2

6πm
≈ 1.67724... · 10−27kg , (25)

where

λ1 = q2λµ = ~c/(2V ) = q2λµ = |c−2|/(2π)m . (26)

Currents and bridges. Supported by the Dirac
equation, the following steps provide probably for the
most effective strategy to obtain very accurate funda-
mental particle energies. The basic soliton energy will
split [see eq.(4) and eq.(6)] into left- and right–handed
parts EL, ER

Eµ = EL + ER = 2q2V , (27)

where Planck units provide for a common base. The cor-
respondent left, right, and basic mass currents qL, qR, qµ,
respectively, can be defined with eq.(9) according to

Eµ = q2 = q2
L + q2

R = q2
µ(α2 + κ2),

2V = 1 . (28)

A (self-)bound state energy Vγ < V0 will be assigned to
the left–right current asymmetry that scales like eq.(17)
and defines the ratio

Vγ

V0
=

(
qγ

qµ

)4

=
q2
L − q2

R

q2
L + q2

R

=
q4
L − q4

R

q4
L + q4

R + 2q2
Lq2

R

. (29)

According to the soliton-soliton coupling relation eq.(17)
coupling currents scale with the fourth power in q. But
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not the extra term 2q2
Lq2

R in the normalizing denomina-
tor: it will be identified as the low-dimensional internal
left/right bosonization bridge and leads to the one and
only possible definition of a symmetric bridge in accor-
dance with eq.(9) and eq.(29)

qe− =
qLqR

qµ
(30)

that can be normalized with eq.(28) to

ξe− =
qe−
q

= α
qR

q
= κ

qL

q
,

qL = αqµ, qR = κqµ , (31)

see appendix. Acting as a kind of direct topological
bridge qe− connects and balances left– and right–handed
currents in accordance with the bosonization relation
eq.(9). If the smaller current qR becomes reciprocal to
the bigger current qL (i.e. by inversion) the coupling
bridge qe− = qLqR/qµ can be removed by setting

q4
L = q4

n − q4
m, qπ =

qm

qn
qL =

qn

qm
qR, (32)

providing for a neutral and symmetric decoupling bridge
qπ with big neutral current qn and small neutral current
qm, see appendix. The transition generates a decompo-
sition without a bridge or mixed term given by

(
qγ

qµ

)4

=
q4
n − q4

m

q4
n + q4

m

, (33)

where the neutral currents qn and qm scale with the
fourth power like qµ and split into two (“orthogonal”)
parts as desired

E2
µ = E2

n + E2
m = 4q4V

2
. (34)

Identification of particles Any (self-)bound stable
particle should be lighter than µ of eq.(25). With q as
the current, qe− , qγ , and qn can now be identified as
electron, proton, and neutron currents, respectively. It is
proper to assign the coupling currents and correspondent
energy eigenvalues to dimensionless ξx = qx/q = kx/kµ

values that correspond to the ratio of measured particle
Compton wavenumber given by

Ex = ~ωx = ~ckx = ~ξxωµ = ~ξxckµ , (35)

with respect to the reference soliton Compton wavenum-
ber kµ, see table 1 and appendix. The bosonizing bridge
qe− based on the bridge in eq.(31) is with eq.(35) given
by

qe− =
q√

κ−2 + α−2
= ξe−q (36)

and will represent the electron, the proton coupling and
stabilizing partner. In equilibrium the coupling can be
assumed to happen in rotary motion where the orbital

phase evolution given by α provides for a velocity v = αc.
The correspondent relativistic factor γ = 1/

√
1− α2 in-

creases the soliton background current of the co-rotating
body-fixed frame qγ and provides for the effective current

qp+ =
qγ√

1− α2
=

(
κ−2 − α−2

κ−2 + α−2

)1/4
q√

1− α2
= ξp+q,

(37)
that represents the (proton) current in the laboratory
frame. The big neutral current eq.(32) can be assigned
to the neutron,

qn =
(

κ−2

κ−2 + α−2

)3/4 (
κ−2 − α−2

κ−2 + α−2

)−1/4

q = ξnq ,

(38)
the small neutral current to an unknown

qm =
√

κ

α
qn = ξmq . (39)

Using the fine structure value α−1 ≈ 137.036 according
to the Dirac equation with Coulomb coupling it turns
out that for a special κ−1 ≈ 1836.118 the system above
can describe fundamental particle energies and mass
ratios. Possible numbers are shown in table 1, κ is given
similar to α as an iterative orbital coupling condition.

3-dim. charge and permittivity. The coupling
currents or fluxes “flow” usually 3-dimensional. The
Gauss relation connects the 1-d coupling topology to a
spherical symmetry such, that the fine structure constant
can be defined by

α =
q2

4πε00~c
. (40)

This provides for

ε00 =
λ1q

~c
, αq =

q

4π
, M =

[
1
αq

]
= 137 , (41)

where [ ] means next higher integral value [11]. Leaving
Planck units and introducing the Coulomb charge
unit by replacing q with the SI elemental charge e,
ε00 = λ1e/(~c) ≈ 8.974129 · 10−12(s/m)2 is slightly
above (≈ 1.35%) the SI vacuum permittivity constant
ε0, see eq.(41) and [2]. If we assume, that eq.(41) is
correct, the unit of charge is with the fixed SI value
ε0 = 107/(4πc2) directly coupled to the unit of mass
part of ~. As a consequence, the dimension of charge
in eq.(41) becomes kilogram and we have determined
the most likely charge–to–mass ratio of a fundamental
baryon, where the reduction ε0/ε00 could be due to
nuclear effects and binding energies (the charge–to–mass
ratio of protons depends always on the context) [2].

Local screening? But there is another interesting
approach: if we take into account that the ratio e/~ has
been determined with the reduced Vγ in the bound state
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and not with the “free” V0 value, the reduction of Vγ with
respect to V0 due to the radial phase gradient depends
only on κ and α and is with eq.(11) ≈ 1.12%. The electric
field surrounding an electron polarizes the QED vacuum.
In QED this phenomenon leads to charge screening for
the electron qe < q or a = q/qe − 1 > 0 that can be
found as a g-factor anomaly ge = 2(1 + a) > 2. The
screening can be translated a reduction of the topological
phase gradient due to the bound state potential reduction
Vγ < V0 and dimensional shift. Splitting the shift in a
q-dependent and V -dependent part (includes λµ, c, e/~)
where

ε00 = q2 λµ

c

e

~
, εe =

q2
eVγ

q2V0
ε00 , (42)

it turns out that εe = ε0 requires a first order correction

1 + a = q/qe ≈ 1.00115810.. (43)

that is quite near to the electron g-factor ge/2 =
1.00115962.. . The overall reduction V0 − Vγ by spin–
asymmetry without screening effect for a given λµ is
about 10.42MeV and could be indeed a source for strong
interaction as a form of cooperative phase shift and di-
mensional reduction.

It should be noted, that the iterative method to de-
termine the fine-structure extended by a variable charge
Z in MθM = −2πJ cos(ZθM ) in eq.(19) is a chaotic
system. As an iterative system it shows asymptotic
stable and converging regimes but also bifurcations and
unstable regimes for special feedback coupling strengths
Z, the chaotic dynamics should be found in charged
nuclei where Z > 114 and J = 1 reaches the critical
value. A simulation can be found at [14].

The small difference. To fulfill the requirements of
single-valuedness, κ coupling provides for both, orbital
radial and standing waves, see fig.1. The correspondent
adjustment requires to increase κ′ → κ and angle θ′ → θ
to obtain an integer N in eq.(21). This process stretches
the wave and reduces the orbital wavenumber. With in-
teger N = 683174 there is a very small increase in κ′ → κ
given by

δκ =
1

κ′N
π

q2
− 1 ≈ 9.7 · 10−8, κN =

π

q2
,

N = 683174, N ′ = 683174.06648.. . (44)

In table 1 a similar shift can be found for both, the
proton (same direction) and electron (opposite direc-
tion), while the neutron value is quite exact within
measurement uncertainty. Neglecting the orbital ef-
fect of α, the orbital wavelength stretch in fig.1 and
wavenumber reduction can be assigned to the electron
since Ee− ≈ V 2π/N ′. In electron–to–proton mass
ratio measurements the proton mass now appears to be
heavier. This could be the reason why Ep+ = ξp+Eµ is
increased by the relative difference δκ.

θ = πκ
θ

FIG. 1: Integer N in eq.(21) corresponds to both, the orbital
and radial electron wavenumber. Increasing the angle κ′ →
κ, θ′ → θ to adjust to the integer N , stretches the orbital
standing wave and reduces the orbital wavenumber, see also
eq.(44).

Conclusion. Increasing the angle κ′ → κ, θ′ → θ fits
to the shifts tabulated in table 1 and provides for an over-
all deviation for the proton and electron mass of < 10−9.
Regarding weak interaction, the small neutral partner
current should somehow be related to the neutrino, but
256.7 MeV would probably be too heavy for a neutrino.
One could ask if it is an unmeasurable massless fluctua-
tion current related to the massless background current.
The local current and phase reduction including phase
gradient and dimensional reduction (charge screening)
provides for a possible understanding of ε00 > ε0 con-
nected to strong interaction. Regarding the currents, two
neutrons provide approximately for the same reduction
like one proton, see table 1. This fits to the well known
proton–to–neutron number ratio found in heavy nuclei.
Generally, these mass differences could be relevant for ap-
proaching (nuclear) binding energies with many–soliton
models [8]. The corresponding energies are in the MeV–
range. The neutron is energetically lower than µ, this fits
with the semi–stability of a free neutron.

Since the vector potential Vv in eq.(15) already in-
cludes the negative coulomb term, Vv = −Vs − ~cα/r
also includes the negative scalar potential. If we would
make the scalar component very small we would find sim-
ply the relativistic hydrogen formalism providing for the
famous result of Dirac [3, 4] including relativistic spin-
orbit coupling. The two central coupling constants can
be determined iteratively from the a linear SG potential–
to–phase relationship - a general key that also provides
for balanced and bosonized Dirac currents with a very
high significance.
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Appendix

Some additional algebra regarding coupled and decoupled partner currents:

q2 = q2
R + q2

L (45)
q2(q2

R − q2
L) = q4

R − q4
L (46)

αqL = κqR (47)

qR = qκ/
√

κ2 + α2 (48)

qL = qα/
√

κ2 + α2 (49)

qµ = q/
√

κ2 + α2 (50)
qe− = qRqL/qµ (51)

q4
p+ = q2(q2

L − q2
R)γ4 (52)

q4
n = q4

L/(1− κ2/α2) (53)
q4
m = q4

n(κ2/α2) (54)

q4
n = (q4

L − q4
R)(1 + κ2/α2)/(1− κ4/α4)2 (55)

q4
n = (q4

L − q4
R)/(1− κ2/α2)/(1− κ4/α4) (56)

q4
n = (q4

L − q4
R)/(1− κ2/α2)2/(1 + κ2/α2) (57)

q4
n = q4(q4

L − q4
R)/(q2

L − q2
R)2/(1 + κ2/α2)3 (58)

q4
n = q4(q2

L + q2
R)/(q2

L − q2
R)/(1 + κ2/α2)3 (59)

q4
n = q6/(q2

L − q2
R)/(1 + κ2/α2)3 (60)

q4
n = (q4

L − q4
R)/(1− κ4/α4)2(1 + κ2/α2) (61)

q4
n = q2(q2

L − q2
R)/(1− κ4/α4)2(1 + κ2/α2) (62)

q4
n = q2(q2

L − q2
R)/(1− κ4/α4)/(1− κ2/α2) (63)

q4
n = q4/(1− κ4/α4)/(1 + κ2/α2) (64)

q4
n = q4/(1− κ2/α2)/(1 + κ2/α2)2 (65)
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