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Queller’s ‘Separation Condition’ Explained and Defended∗

Jonathan Birch† and James A. R. Marshall‡

June 4, 2014

Abstract : The theories of inclusive fitness and multi-level selection provide alternative

perspectives on social evolution. The question of whether these perspectives are of equal

generality remains a divisive issue. In a 1992 analysis based on the Price equation,

Queller argued (by means of a principle he called the ‘separation condition’) that the

two approaches are subject to the same limitations, arising from their fundamentally

quantitative-genetical character. Recently, van Veelen et al. have challenged Queller’s

results, using this as the basis for a broader critique of the Price equation, the ‘separation

condition’ and the very notion of inclusive fitness. Here we show that the van Veelen

et al. model, when analysed in the way Queller intended, confirms rather than refutes

his original conclusions. We thereby confirm (i) that Queller’s ‘separation condition’

remains a legitimate theoretical principle, and (ii) that the standard inclusive fitness

and multi-level approaches are indeed subject to the same limitations.

1 Introduction

The theories of inclusive fitness and multi-level selection provide alternative perspectives

on social evolution. From an inclusive fitness perspective, the genes for a social behaviour

spread because they contribute to the inclusive fitness of their bearers: that is, they

make a positive contribution to the actor’s genetic representation in future generations

(Hamilton 1964, 1970; Gardner et al. 2011). From a multi-level selection (or group

selection) perspective, the evolution of social behaviour results from the interplay of

selection within groups and selection between groups (Price 1972; Wilson 1975; Okasha

2006).

The formal parallels between the two theories are striking. Both approaches typi-

cally begin with a partition of the Price equation (Price 1970, 1972). In the inclusive

fitness partition, we split the change attributable to selection into components separately

attributable to the direct and indirect fitness effects of the social behaviour under con-

sideration (Queller 1992a; Gardner et al. 2011). In the multi-level partition, we split the
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change into components separately attributable to selection within groups and selection

between groups (Price 1972; Wade 1985; Okasha 2006). It is straightforward to show

that, when formulated in purely genetic terms, these alternative partitions of the Price

equation are formally equivalent, in the sense that they can never disagree regarding the

direction of the response to selection (Hamilton 1975; Wenseleers et al. 2010; Marshall

2011).

Although one might have expected these equivalence results to put to rest any debate

about the relative accuracy or generality of the two approaches, recent years have seen

numerous arguments to the effect that one approach (usually the multi-level approach)

is more accurate and/or applicable to a wider range of cases than the other (Wilson

and Hölldobler 2005; van Veelen 2009; Traulsen 2010; Nowak et al. 2010; van Veelen

et al. 2010, 2012). We suspect that one important reason for this continuing disagree-

ment is that results establishing the equivalence of the inclusive fitness and multi-level

perspectives tend to rely on purely genetic formulations of the two theories. Yet when

we apply the theories to particular ecological scenarios, we usually want to ‘play the

phenotypic gambit’ (Grafen 1984; Queller 2011): that is, we want to work with partly

phenotypic formulations of the theories that focus on the fitness effects and heritabilities

of behavioural phenotypes. The problem is that demonstrating the equivalence of the

two frameworks when both are formulated genetically does not settle the question of

whether they constitute equally valid ways to play the phenotypic gambit.

In an analysis based on the Price equation, D. C. Queller (1992b) directly addressed

this question. He argued that both the inclusive fitness and multi-level approaches (as

applied to behavioural phenotypes) are, at heart, quantitative-genetical approaches that

seek to separate selection gradients (which relate behavioural phenotypes to fitness) from

heritabilities (which relate behavioural phenotypes to underlying genotypes)—and that

both approaches succeed or fail to achieve this separation under the same conditions and

for the same reasons. More specifically, he identified a formal ‘separation condition’ and

showed that, for both the standard inclusive fitness and multi-level approaches (both of

which traditionally rely on two phenotypic predictors of fitness), a quantitative-genetic

separation of selection gradients from heritabilities is unattainable when genetic relatives

interact in ways that yield non-additive payoffs. The upshot is that both approaches

require additional predictors in order to accommodate such deviations from additivity.

This result has led to the development of extended formulations of inclusive fitness theory

in which deviations from additivity are explicitly represented and analysed (Smith et

al. 2010; Queller 2011; Cornforth et al. 2012). These extended formulations have already

proved invaluable in lab studies of microbial cooperation, a context in which accounting

for deviations from additivity turns out to be particularly important (Smith et al. 2010;

Cornforth et al. 2012).

We see Queller’s ‘separation condition’, and his conclusions concerning when it is

satisfied, as results of wide and profound significance for both behavioural ecologists and
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quantitative geneticists. Moreover, we want to emphasize that these results are valuable

not only for theorists, but also for biologists studying social behaviour in the field and

in the lab. In brief, this is because many empirical, quantitative-genetic studies of social

evolution employ roughly the following methodology: first, use regression analysis to

estimate the fitness effects and heritabilities of behavioural phenotypes; second, use

the breeder’s equation, or some suitably extended version of the breeder’s equation, to

predict the response to selection from these fitness effects and heritabilities (Falconer and

Mackay 1996; McGlothlin et al. 2010, 2014). Empirical studies which use an inclusive

fitness approach (e.g. Pfennig et al. 1999; Krakauer 2005; Chuang et al. 2010; Hatchwell

et al. 2014) and those which use a multi-level selection approach (e.g. Tsuji 1995; Eldakar

et al. 2010; Formica et al. 2010) all fall under this broad description, although (as we

show below) the two approaches represent two different ways of extending the traditional

breeder’s equation. Queller’s ‘separation condition’ has direct import for such studies,

because it provides a general statement of the conditions under which the breeder’s

equation-based methodology they employ will work. If our regression model satisfies

the separation condition, then the predictions delivered by this method will be accurate.

If it does not, then the predictions are likely to mislead, since there will be a residual

‘unseparated’ component of the response to selection that our regression model fails

to account for. Finding regression models that satisfy the separation condition when

simple models violate it is thus a central challenge for empirical studies in behavioural

ecology.

Unfortunately, because Queller framed his (1992b) argument in a relatively informal

way, he left room for doubt about the meaning of his crucial ‘separation condition’ and

the validity of the results he derived from it. In a recent critique, M. van Veelen et

al. (2012) argue (by means of a simple game-theoretic model) that the separation con-

dition is irrelevant to the question of the comparative generality of inclusive fitness and

multi-level selection, and that, moreover, the two approaches are not equally general

after all. If these new results were valid, they would have far reaching implications for

social evolution theory; for in addition to challenging conventional wisdom about the

relationship between inclusive fitness and multi-level selection, they would also vitiate

the program (pursued by Smith et al. 2010 and Queller 2011) of using the separation

condition to develop extended, more general formulations of Hamilton’s rule. In this

note, however, we come to Queller’s defence. We show that, if one interprets the ‘sep-

aration condition’ in the way that Queller intended it to be understood, the formal

model advanced by van Veelen et al. supports rather than refutes his conclusions re-

garding the circumstances under which the condition is satisfied. It therefore supports

Queller’s broader thesis that there is an important sense in which the inclusive fitness

and multi-level approaches are subject to the same limitations.
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2 What is the ‘separation condition’?

Queller’s immediate aim in formulating the ‘separation condition’ was to elucidate the

conditions under which a specified regression model of fitness, when used to analyse

the evolutionary change in some character, can successfully separate quantities that re-

late genotype to phenotype from quantities that relate phenotype to fitness. In other

words, Queller’s ‘separations’ are quantitative-genetic separations of quantities that mea-

sure a trait’s heritability from quantities that measure the strength of selection on that

trait. The simplest example of such a separation is the breeder’s equation (Falconer

and Mackay 1996), which expresses the response to selection (R) on some character as

the product of a selection differential (S) and the narrow-sense heritability (h2) of the

character:

R = Sh2 (1)

Queller’s ‘separation condition’ is intended to capture the conditions under which a

given regression model of fitness can achieve a quantitative-genetic separation of this

sort.

The reasoning that leads to the ‘separation condition’ is easiest to see in the simplest

case of a one-predictor regression model of fitness. We start with the simple Price

equation (Price 1970; Queller 1992b), which identifies the evolutionary change in the

breeding value (G) for some character between parental and offspring populations with

the covariance between breeding value and fitness (W ) in the parental population (we

explain the notion of a breeding value below; for now, note simply that it is a quantitative

measure of one’s genotype):

W∆G = Cov(W,G) (2)

The covariance between W and G is affected by both the heritability of the character

and the strength of selection on it. Suppose that we hope to separate these effects by

means of the following one-predictor regression model:

W = α+ βWPP + ϵW (3)

in which α is the intercept of the regression line, P is the phenotypic value of the focal

individual with respect to the character of interest, βWP is the slope of fitness on pheno-

typic value, and ϵW is the residual (i.e. the extent to which the focal individual’s fitness

departs from the regression prediction). By substituting (3) into (2) and making the

assumption that Cov(G, ϵW ) = 0, we can derive the following partition of evolutionary

change (Queller 1992b):

W∆G = βWPCov(G,P ) (4)
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We have now expressed the overall W -G covariance as a product of two quantities: one

relating fitness to phenotype, and the other relating genotype to phenotype. In fact,

we have arrived at a result that is formally equivalent to the breeder’s equation. To see

this, note that βWPCov(G,P ) = βGPCov(W,P ), and note that the regression coefficient

βGP is a measure of narrow-sense heritability h2, while Cov(W,P ) is a measure of the

selection differential S (Queller 1992b; Falconer and Mackay 1996).

Crucially, our assumption that Cov(G, ϵW ) = 0 is what makes this separation pos-

sible. If Cov(G, ϵW ) = 0, then our regression model has fully accounted for the W -G

covariance. By contrast, if the residuals in the regression model co-vary with G, then

there is a residual component of the W -G covariance that our one-predictor regression

model has failed to account for. This residual covariance will remain ‘unseparated’

(i.e. we will not be able to rewrite it as a product of a quantity relating P to W and

a quantity relating G to P ) unless we add more predictors to our regression model to

account for it. For this reason, Queller refers to Cov(G, ϵW ) = 0 as the ‘separation

condition’:

Separation condition: Cov(G, ϵW ) = 0 (5)

We should note from the outset that the mathematics of regression provide no guarantee

that the separation condition will be satisfied by any phenotypic regression model. It

is guaranteed that the residuals in a regression model do not co-vary with any of the

predictors, but when we ‘play the phenotypic gambit’ our predictors are phenotypic, not

genetic, and G is not among them (cf. Queller 1992a, b, 2011).

Equation (5) provides an adequate general statement of the separation condition. It

is vital, however, to note that the precise meaning of ϵW (and hence the precise meaning

of the separation condition) is not absolute, but rather depends on the regression model

of fitness we are working with. It always denotes the portion of the fitness of the focal

individual that our regression model fails to account for, but altering the predictor

set will typically change the residuals, and may accordingly affect whether or not the

separation condition is satisfied. We cannot overemphasize this point: the separation

condition must always be defined relative to a specified regression model, and the ϵW

variable always refers to the residuals in that model.

For example, inclusive fitness analyses of social evolution often make use of the

following two-predictor regression model (Queller 1992a, b, 2011; Frank 1998, 2013;

McGlothlin et al. 2014):

W = α+ βWP.P ′P + βWP ′.PP
′ + ϵW (6)

in which βWP.P ′ is the partial regression of one’s fitness on one’s own phenotype, control-

ling for the effect of one’s social partner’s phenotype; βWP ′.P is the partial regression

of one’s fitness on one’s social partner’s phenotype, controlling for the effect of one’s
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own; α is again the intercept of the regression line; and ϵW is again the residual, i.e. the

extent to which the focal individual’s fitness departs from the value predicted by the

regression model. On the assumption that Cov(G, ϵW ) = 0 (i.e. that the separation

condition is satisfied), we can use this two-predictor regression to derive the following

decomposition of evolutionary change:

W∆G = βWP.P ′Cov(G,P ) + βWP ′.PCov(G,P ′) (7)

from which it is straightforward to derive versions of Hamilton’s rule (Queller 1992b;

Frank 1998, 2013; McGlothlin et al. 2014). As Queller points out, equation (7) may

be conceptualized as a natural extension of the breeder’s equation to accommodate

(additive) social interaction, since the fitness effects of a social trait on oneself and on

one’s social partners are weighted (respectively) by a measure of the trait’s heritability

via each pathway. The separation condition (5) again captures what is needed for our

regression model to fully separate selection gradients from heritabilities. But note that

its precise meaning is different in this case. For in this case, it amounts to the condition

that the residuals in our two-predictor regression model (6) do not co-vary with breeding

value.

For a second example, consider the regression models we need in order to ‘play the

phenotypic gambit’ within the framework provided by G. R. Price’s (1972) formulation

of multi-level selection theory. A multi-level analysis first splits the overall evolutionary

change into a between-group component and a within-group component, and then seeks

to separate the effects of selection and heritability on each component. One way to

achieve this separation is to start with Price’s multi-level version of the Price equation,

in which the covariance term of the simple equation is partitioned into between-group

and within-group components (Price 1972; see Appendix for details). We can then

introduce two simple regression models, one expressing a group’s fitness as a function of

its average phenotypic value, and the other expressing an individual’s differential fitness

relative to its local group mean as a function of its own phenotypic value. As we show in

the Appendix, we can use these two simple regressions to achieve a clean separation of

selection gradients and heritabilities at each level, but only if we assume both that the

residuals in the group-level regression are independent of group breeding value and that

the residuals in the individual-level regression are independent of individual breeding

value. Hence, once again, a version of Queller’s separation condition captures what

is needed for our regression model to achieve a clean separation of selection gradients

and heritabilities; but once again, its meaning is subtly different in this case. For in

this case, it amounts to the condition that (i) the residuals in our regression model

of group fitness do not co-vary with group breeding value, and that (ii) the residuals

in our regression model of individual fitness (relative to the local group mean) do not

co-vary with individual breeding value. A multi-level quantitative-genetic separation is

attainable only if both conditions (i.e. one for each level) are satisfied.
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3 The van Veelen et al. synergy game

We now introduce the probabilistic synergy game presented by van Veelen et al. (2012).

In the following we have altered the notation slightly from the original, in order to

disambiguate allelic values from breeding values. Individuals interact in pairs drawn

from an infinite population. Every individual has an allelic value X, such that X = 1 if

the individual possesses the social allele of interest andX = 0 otherwise. Similarly, every

individual has a phenotypic value P , such that P = 1 if the individual expresses the

social phenotype of interest and P = 0 otherwise. A fraction r of individuals are assigned

a social partner with an allelic value guaranteed to be identical to their own (and thus

r can be equated with genetic relatedness; Grafen 1985). A fraction (1 − r) have their

social partner drawn uniformly at random from the population. Of individuals with the

allele (X = 1), a fraction P express the cooperative phenotype (P = 1). Individuals who

do not possess the allele (X = 0) never express the cooperative phenotype (P = 0). The

payoff matrix for interactions is given in Table 1 (where P ′ denotes the phenotype of the

focal individual’s social partner), and the frequencies of the various possible character

combinations are given in the Appendix (Table A2).

At this juncture, we also need to introduce breeding values. We note in passing that

van Veelen et al. do not do this; but it is necessary to do so, because the separation

condition is defined in terms of breeding values rather than allelic values. Roughly

speaking, an individual’s breeding value with respect to a character P is a measure of

its genetic predisposition to express P . More precisely, it is its value for that character

as predicted by a linear combination of its allelic values, weighted by their average

effects on the character (Falconer and Mackay 1996; Frank 1998; Gardner et al. 2011).

If βPX = 1, we could simply identify breeding values with allelic values, but in this game

βPX = P. Accordingly, individuals with the allele have a breeding value for P equal to

P (X = 1 ⇒ G = P), while individuals without the allele have a breeding value for P

equal to 0 (X = 0 ⇒ G = 0).

P ′ = 1 P ′ = 0
P = 1 b− c+ d −c
P = 0 b 0

Table 1: Non-additive payoff matrix as used in the probabilistic synergy game analysed
by van Veelen et al.. The game is symmetric; payoffs to the focal (row) individual are
shown in the table. As the table indicates, c denotes a payoff incurred by an agent if
and only if it cooperates; b denotes a payoff received by an agent if and only if its social
partner cooperates; and d denotes a ‘synergistic’ payoff that both players obtain if and
only if they both cooperate.
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4 Does the van Veelen et al. model support or refute

Queller’s argument?

The key claims of Queller’s (1992b) analysis are (a) that the two-predictor regression

model of fitness that underlies the standard inclusive fitness approach (i.e. our equation

(6)) satisfies the separation condition when the payoffs of social interactions between

relatives are wholly additive, but violates it when these payoffs deviate from additivity

(Queller 1992b, p. 551), and (b) that the two-predictor regression model of fitness that

underlies the standard multi-level selection approach also fails the separation condition

under the same circumstances (Queller 1992b, p. 553). From these results, Queller in-

ferred that the standard inclusive fitness and multi-level selection approaches are subject

to the same limitations, and that neither is more general than the other.

van Veelen et al. argue that the simple synergy game presented above, in which a

prosocial behaviour is expressed probabilistically, yields a counterexample to both of

these key claims. This is because they take their model to show that the additivity of

the payoff matrix is irrelevant to whether or not the separation condition is satisfied.

More precisely, van Veelen et al. (2012, p. 71) assert that:

The separation condition is satisfied ⇐⇒ b = 0 or r = 0 or P = 1 or P = 0 (8)

in which b represents the additive component of the benefit conferred by the behaviour,

r represents the coefficient of genetic relatedness, and P represents the probability that a

gene encoding the prosocial phenotype is expressed. Crucially, and contrary to Queller’s

(1992b) results, the deviation from additivity (d) is absent from the right-hand side of

the biconditional.

This alleged refutation of Queller rests on a misunderstanding of the separation

condition. The root of the misunderstanding is the point we emphasized in Section 2:

because the ϵW variable represents the residuals in a specified regression model, the

separation condition only has meaning relative to a specified regression model. When

Queller asserts that deviations from additivity lead to violations of the separation condi-

tion, we take him to be referring specifically to the separation condition as defined with

respect to a two-predictor regression model, whether of the inclusive fitness or multi-level

selection variety. Regardless of Queller’s original meaning, it is plain that only the sepa-

ration condition as defined with respect to a two-predictor regression model will help us

to identify the circumstances under which the standard inclusive fitness and multi-level

approaches cleanly separate the effects of selection and heritability.

In contrast to Queller, van Veelen et al. consider only whether or not the separation

condition is satisfied with respect to a one-predictor regression model. They argue

(correctly) that this has nothing to do with whether or not payoffs are additive, but

rather depends only on whether or not social partners are genetically related. This

8



point, although correct, was already noted by Queller (1992b, p. 545), and so it does

not constitute a refutation of his argument. Moreover, it implies nothing at all about the

conditions under which the separation condition is satisfied by a two-predictor regression

model, and so does not bear either way on the claim that a two-predictor regression

model fails the separation condition if and only if relatives interact non-additively.

Drawing attention to van Veelen and colleagues’ misconstrual of the separation con-

dition is enough to show that their alleged refutation of Queller does not succeed. How-

ever, it does not settle the question of whether or not Queller was actually correct

about the parallel limitations of inclusive fitness and multi-level selection, which is the

broader question at stake. To address this question, we here re-analyse van Veelen and

colleagues’ synergy game, this time evaluating the separation condition as defined with

respect to the two-predictor regression models that characterize the standard inclusive

fitness and multi-level selection approaches.

To say that the separation condition (SC) is satisfied by the standard inclusive

fitness approach in the context of the van Veelen et al. synergy game is to say that the

residuals in the two-predictor regression (6) do not co-vary with breeding value in this

game, and consequently that the quantitative-genetic separation envisioned in equation

(7) is indeed a correct statement about the evolutionary change in this game. Hence:

The SC is satisfied by the IF regression model ⇐⇒

Cov(W,G) = βWP.P ′Cov(P,G) + βWP ′.PCov(P
′, G) (9)

The simplest way to evaluate whether the inclusive fitness approach does indeed satisfy

the separation condition in this game is to express Cov(W,G) and βWP.P ′Cov(P,G) +

βWP ′.PCov(P ′, G) as functions of the parameters of the game, and use these expressions

to work out the parameter values for which these quantities are equal. The payoff

matrix (table A1) and the frequencies of the various possible interactions (given in the

Appendix) give us all the information we need to do this. We will not elaborate on

the steps in the computation here (see the Appendix for details). The bottom line is

that the separation condition is satisfied by the IF regression model only for parameter

values that satisfy the following equality:

P(r + (1− r)p)d = P

(
1 + r

1 + βP ′P

)
(r + (1− r)p)d (10)

When genetic relatives interact non-additively (so that d ̸= 0) and genotype does not

determine phenotype (implying that βP ′P ̸= r), this equality is not satisfied, and accord-

ingly the separation condition is not satisfied by the inclusive fitness regression model.

The equality is satisfied if payoffs are perfectly additive (such that d = 0), or if social

partners are genetically unrelated (such that r = 0), or if genotype unconditionally

determines phenotype (such that P = 1 or P = 0), but not otherwise. In short:
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The SC is satisfied by the IF regression model ⇐⇒

d = 0 or r = 0 or P = 1 or P = 0 (11)

In the Online Appendix, we further show that a two-predictor multi-level regression

model also satisfies the separation condition only if d = 0 or r = 0 or P = 1 or P = 0;

hence it too will violate the separation condition when genetic relatives interact non-

additively and genotype does not determine phenotype. We therefore verify both of

Queller’s key claims.

5 Conclusion

In sum, our re-analysis of the van Veelen et al. synergy game reveals that the game sup-

ports Queller’s central claim that the standard inclusive fitness and multi-level selection

approaches (conceptualized in terms of the two-predictor phenotypic regression models

they traditionally employ) both fail to separate the effects of selection and heritability

on behavioural evolution when relatives interact in ways that yield non-additive pay-

offs. Our analysis thus supports Queller’s broader thesis that the two approaches are

subject to the same limitations, arising from their fundamentally quantitative-genetical

character. Since deviations from payoff additivity are surely common in nature (Strass-

mann and Queller 2007), this underlines the value of developing extended formulations

of both approaches in which deviations from additivity are explicitly represented (Smith

et al. 2010; Queller 2011; Cornforth et al. 2012).

We should note that we do not take our results to imply that simple, two-predictor

phenotypic regression models of fitness should be completely discarded in social evolu-

tion theory. This is because there are conditions under which an additive model provides

a reasonable approximation of a more complex fitness structure. For example, it may

provide a reasonable approximation if selection is weak, depending on how the ‘weak se-

lection’ assumption is formulated (Uyenoyama and Feldman 1982; Michod 1982; Grafen

1985; Wild and Traulsen 2007). Nevertheless, our results do highlight the limitations of

two-predictor phenotypic regression models when payoffs deviate from additivity, and

they verify Queller’s claim (challenged by van Veelen et al.) that such models are subject

to the same limitations in both their inclusive fitness and multi-level selection guises.

Moreover, our analysis reinforces the value of Queller’s separation condition as a formal

tool with which to address such questions.
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Appendix: Regression Analysis of a Synergy Game with

Probabilistic Gene Expression

The basic setup for the van Veelen et al. synergy game with probabilistic gene expression

is described in the main text. For ease of reference, the payoff matrix is given in Table

A1 below. The frequencies of different possible interacting pairs in this game is given in

Table A2. Here we give technical details on the derivation of our results concerning the

parameter values for which two-predictor regression models (whether of the inclusive

fitness or multi-level variety) satisfy Queller’s separation condition.

P ′ = 1 P ′ = 0
P = 1 b− c+ d −c
P = 0 b 0

Table A1: Non-additive payoffmatrix as used in the probabilistic synergy game analysed
by van Veelen et al.. The game is symmetric; payoffs to the focal (row) individual are
shown in the table. As the table indicates, c denotes a payoff incurred by an agent if
and only if it cooperates; b denotes a payoff received by an agent if and only if its social
partner cooperates; and d denotes a ‘synergistic’ payoff that both players obtain if and
only if they both cooperate.

A. The inclusive fitness case

We start with the two-predictor inclusive fitness (IF) regression model (equation (6) in

the main text). To say that the separation condition (SC) is satisfied by this regression

model in the context of the van Veelen et al. synergy game is to say that the residuals in
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X ′ = 0, P ′ = 0 X ′ = 1, P ′ = 0 X ′ = 1, P ′ = 1
X = 0, P = 0 (r + (1− r)(1− p))(1− p) (1−P)p(1− p)(1− r) Pp(1− p)(1− r)
X = 1, P = 0 (1−P)p(1− p)(1− r) (1−P)2(r + (1− r)p)p P(1−P)(r + (1− r)p)p
X = 1, P = 1 Pp(1− p)(1− r) P(1−P)(r + (1− r)p)p P2(r + (1− r)p)p

Table A2: Frequencies of the different possible interactions between individuals having
different allelic values and expressed phenotypes, where X ′ and P ′ denote (respectively)
the allelic value and phenotypic value of the focal individual’s social partner.

the regression model do not co-vary with breeding value in this game, and consequently

that the quantitative-genetic separation envisioned in equation (equation (7) in the main

text) is indeed a correct statement about the evolutionary change in this game. Hence:

The SC is satisfied by the IF regression model ⇐⇒

Cov(W,G) = βWP.P ′Cov(P,G) + βWP ′.PCov(P
′, G) (A1)

The simplest way to evaluate when the inclusive fitness regression model does indeed sat-

isfy the separation condition in this game is to express Cov(W,G) and βWP.P ′Cov(P,G)+

βWP ′.PCov(P ′, G) as functions of the parameters of the game, and use these expressions

to work out the parameter values for which these quantities are equal. The payoff matrix

(Table A1) and the frequencies of the various possible interactions (Table A2) give us

all the information we need to do this. We start with the three covariances, which we

compute to be the following:

Cov(W,G) = (−c+ rb+P(r + (1− r)p)d)Pp(1− p) (A2)

Cov(P,G) = Pp(1− p) (A3)

Cov(P ′, G) = rPp(1− p) (A4)

To compute the two partial regression coefficients following the standard least-squares

method outlined by Gardner et al. (2011), we first compute the following quantities:

Cov(W,P ) = [−c+ rb+P(r + (1− r)p)d]Pp(1−Pp) (A5)

Cov(W,P ′) = [b− rc+P(r + (1− r)p)d]Pp(1−Pp) (A6)

Var(P ) = Pp(1−Pp) (A7)

from which we obtain the simple regressions of fitness on phenotype:
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βWP =
Cov(W,P )

Var(P )
= −c+ rb+P(r + (1− r)p)d (A8)

βWP ′ =
Cov(W,P ′)

Var(P )
= b− rc+P(r + (1− r)p)d (A9)

We then apply the formula for the partial regression coefficients in a two-predictor

regression model (Gardner et al. 2011):

βWP.P ′ =
βWP − βWP ′βP ′P

1− ρ2PP ′
(A10)

Since phenotypes can only take the values 1 or 0 in this game, the correlation coeffi-

cient ρPP ′ is equal to the regression coefficient βP ′P . Making this simplification, and

substituting in our values for the simple regressions, we obtain:

βWP.P ′ = −c+
P

1 + βP ′P
(r + (1− r)p)d (A11)

βWP ′.P = b+
P

1 + βP ′P
(r + (1− r)p)d (A12)

Combining our expressions from (A3), (A4), (A11) and (A12), we obtain:

βWP.P ′Cov(P,G) + βWP ′.PCov(P
′, G) =

[
−c+ rb+P

(
1 + r

1 + βP ′P

)
(r + (1− r)p)d

]
Pp(1− p) (A13)

Equations (A13) contains a placeholder for βP ′P , a measure of the statistical association

between our two phenotypic predictors. Computing βP ′P from the frequency table, we

find that:

βP ′P = P(r + (1− r)p)− Pp

1−Pp
[(1− p)(1− r) + (1−P)(r + (1− r)p))] (A14)

Note that βP ′P = r in the special case of P = 1, and consequently in this special case our

expressions for βWP ′.P and βWP.P ′ reduce (as they should) to those derived by Gardner

et al. (2007, 2011) for a synergy game in which genotype unconditionally determines

phenotype.

Taken together, these results vindicate Queller’s original claim about the inclusive

fitness regression model. For recall that the separation condition is satisfied by this

regression model if and only if our expression for Cov(W,G) (i.e. the right-hand side

of equation (A2)) is equal to our expression for βWP.P ′Cov(P,G) + βWP ′.PCov(P ′, G)

(i.e. the right-hand side of equation (A13)). Since the b and c terms in our two expres-

sions cancel, this boils down to the following:
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The SC is satisfied by the IF regression model ⇐⇒

P(r + (1− r)p)d = P

(
1 + r

1 + βP ′P

)
(r + (1− r)p)d (A15)

As stated in the main text, this implies that the separation condition is satisfied by

the IF regression if and only if payoffs are perfectly additive (such that d = 0), or

social partners are genetically unrelated (such that r = 0), or genotype unconditionally

determines phenotype (such that P = 1 or P = 0). In any other situation, they are not

equal, because βP ′P ̸= r. In short:

The SC is satisfied by the IF regression model ⇐⇒

d = 0 or r = 0 or P = 1 or P = 0 (A16)

B. The multi-level selection case

We turn now to the multi-level selection (MLS) approach. As a preliminary, we need

to give a formal characterization of the multi-level separation of selection gradients and

heritabilities that we described informally at the end of Section 2 in the main text. A

multi-level regression analysis first splits the overall evolutionary change into a between-

group component and a within-group component, and then seeks to separate the effects

of selection and heritability on each component.

There are two main ways to split the overall change into between- and within-group

components: one is to partition the covariance term of the simple Price equation through

recursive expansion in the manner of Price (1972); the other (known as ‘contextual

analysis’) is to partition the covariance term through multivariate regression (Heisler and

Damuth 1987). We focus on the first method here, in part because Queller (1992b) does,

and in part because the alternative ‘contextual analysis’ method is extremely similar to

the inclusive fitness method discussed above (see Okasha 2006 for a comparison of the

‘Price approach’ with ‘contextual analysis’; the parallels between the latter and inclusive

fitness are noted by Goodnight 2013).

We therefore start with the following multi-level version of the Price equation, orig-

inally derived by Price (1972):

W∆G = Cov(Wi, Gi) + E
[
Covi(Wij , Gij)

]
(B1)

in which Wi and Gi represent (respectively) the average fitness and breeding value of the

ith group, and Wij and Gij represent (respectively) the individual fitness and breeding

value of the jth member of the ith group. Accordingly, Cov(Wi, Gi) represents the

between-group covariance, while Covi(Wij , Gij) represents the within-group covariance

in the ith group. We then introduce two simple regression models to express a group’s

fitness as a function of its average phenotypic value (Pi), and an individual’s differential
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fitness relative to its local group mean as a function of its own phenotypic value (Pij):

Wi = α1 + βWiPiPi + ϵWi (B2)

Wij = α2 + βi
WijPij

Pij + ϵWij (B3)

On the assumptions firstly that Cov(Gi, ϵWi) = 0 and secondly that, for all i,

Covi(Gij , ϵWij ) = 0 (i.e. that the separation condition is satisfied for both the between-

group and within-group regressions), we can use these two simple regressions to derive

the following decomposition of evolutionary change:

W∆G = βWiPiCov(Gi, Pi) + E
[
βi
WijPij

Covi(Gij , Pij)
]

(B4)

To say that the separation condition (SC) is satisfied by this approach in context of

the van Veelen et al. synergy game is to say that the residuals in the two multi-level

regressions (equations (B2) and (B3) above) do not co-vary with breeding value in this

game, and consequently that the quantitative-genetic separation envisioned in equation

(B4) is a correct statement about the evolutionary change in this game. Hence:

The SC is satisfied by the MLS regression model ⇐⇒

Cov(W,G) = βWiPiCov(Gi, Pi) + E
[
βi
WijPij

Covi(Gij , Pij)
]

(B5)

By focussing only on the between-group component of the overall covariance, and by

noting that (by definition) βWiPi = Cov(Wi, Pi)/Var(Pi), we can obtain the following

necessary condition for the SC to be satisfied:

The SC is satisfied by the MLS regression model =⇒

Cov(Wi, Gi) =
Cov(Gi, Pi)Cov(Wi, Pi)

Var(Pi)
(B6)

This is only a necessary condition for the SC to be satisfied by our multi-level regression

model; it is not a sufficient condition, since the within-group component of the co-

variance must also be separable into a (within-group) heritability and a (within-group)

selection gradient. But a necessary condition is enough to draw relevant conclusions as

to what the satisfaction of the SC requires.

Using van Veelen and colleagues’ own computations of the relevant covariances for

their synergy game, we can show that our MLS regression model will tend to fail the

separation condition when payoffs deviate from additivity. Here are their results:

Cov(Wi, Pi) = Pp

[(
b− c

2

)
(1 + rP) +P(r + (1− r)p)d

]

−(Pp)2
[(

b− c

2

)
(1 + r) +P(r + (1− r)p)d

]
(B7)
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Cov(Gi, Pi) =
1

2
Pp(1− p)(1 + r) (B8)

Cov(Wi, Gi) = Pp(1− p)

[
(b− c)

2
(1 + r) +P(r + (1− r)p)d

]
(B9)

These are (respectively) results (B.18), (B.15), and (B.10) in their (2012) paper. To as-

sess whether or not the condition expressed in equation (B5) is satisfied in this model, we

need one more quantity—the variance in group phenotype, Var(Pi)—which we compute

to be the following:

Var(Pi) =
1

2

[
Pp(1 + rP)− (Pp)2(1 + r)

]
(B10)

The above results jointly imply the following:

Cov(Wi, Gi) =
Cov(Gi, Pi)Cov(Wi, Pi)

Var(Pi)
⇐⇒ (B11)

Pp(1− p) [P(r + (1− r)p)d] =
[Pp(1− p)]2 (1 + r)

Pp(1 + rP)− (Pp)2(1 + r)
· [P(r + (1− r)p)d]

from which we conclude that the SC can be satisfied by the MLS approach only in

the special cases of d = 0, r = 0, P = 1, or (applying l’Hôpital’s rule) in the limit as

P → 0. In other words, in the special cases of perfectly additive payoffs or unconditional

determination of phenotype by genotype, a two-predictor multi-level selection regression

model meets our necessary condition for a clean quantitative-genetic separation. But

in the more general case of d ̸= 0, r ̸= 0 and 0 < P < 1, the two sides of the above

equation are not equal, and the SC cannot be satisfied. In short:

The SC is satisfied by the MLS regression model =⇒

d = 0 or r = 0 or P = 1 or P = 0 (B12)

This result confirms Queller’s original claim that both two-predictor regression models

fail to satisfy the separation condition when relatives interact socially and payoffs deviate

from additivity, except in the special cases of zero relatedness or unconditional determi-

nation of phenotype by genotype. In either case, the way to overcome the problem is to

add more predictors to the regression model in order to take deviations from additivity

explicitly into account (Queller 1992b; Smith et al. 2010; Cornforth et al. 2012).
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