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evidence against the view that causal models of explanation can fully account for 

explanatory practices in science. I begin by discussing the problems faced by Hempel’s 

models and the causal models built to replace them. I then offer three everyday examples 

of non-causal explanation, citing sticks, pilots and apples. I suggest a general form for 

such explanations, under which they can be phrased as inductive-statistical arguments 

incorporating plausible assumptions. I then show the applicability of this form to 

explanatory practices in thermal physics. I explore the possibility that population genetics 

provides a similar form of explanation, and offer a novel defence of the statistical 

interpretation of population genetics proposed by Matthen and Ariew (2002). I close with 

remarks concerning how, when faced with competing causal and non-causal explanations 

of the same phenomenon, we can perform an Inference to the Best Explanation.  
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1. Introduction 
 

The search for an account of explanatory practices in science has spanned six decades1. 

One protagonist has cast a long shadow over all that has followed: Carl Hempel. Hempel 

thought that to give a scientific explanation2 (henceforth: explanation) is to give an 

argument. To Hempel, explanatory facts and laws serve as premises, from which we 

conclude that the thing to be explained was (at least) to be expected given the premises, 

and perhaps even followed from those premises with deductive certainty. Hempel took 

the concept of a law for granted, and stipulated that there must always be at least one law 

in an explanation. There was no explicit place for causation: causes may make their 

effects expectable, but, if so, it’s the expectability that matters, not the causation. Few 

would argue that Hempel’s models tell the whole story, and I am not among those few. I 

do, however, contend that certain philosophers have been too quick in their attempts to 

dismiss Hempel’s picture.  

 

Causal models, proposed as a consequence of widespread criticism of Hempel, have 

enjoyed popularity in recent years. Proponents of such models oppose the claim that 

explanations are arguments, taking them to be an assemblage of relevant causes of the 

thing to be explained. They aim to put the “cause” into “because” (Salmon 1977a, 215). 

Adopting a causal model of explanation raises the possibility of non-causal explanations 

(in which understanding intuitively appears to be reached without causes being given) 

serving as potent counterexamples. Such counterexamples are the primary focus of this 

paper. 

 

 
1 Salmon (1989) suggests Hempel and Oppenheim (1948) as the starting point. 
2 In this category, Hempel includes all explanations of empirical phenomena yielded by empirical inquiry 

(Hempel 1965, 333). It is a deliberately broad definition. We might, however, wish to exclude from the 

category, if they explain at all, mathematical proofs and philosophical arguments. 
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In this section, I discuss Hempel’s models and the causal models built to replace them3. I 

highlight the significance of non-causal explanations as counterexamples to causal 

models, and introduce the thesis I will defend. In Section 2, I offer three everyday, 

intuitively plausible examples of non-causal explanations, citing sticks, pilots and apples. 

I introduce a general form of non-causal explanation, in which contrastive questions are 

answered by inductive-statistical arguments incorporating plausible assumptions. In 

Section 3, I show how the conception of non-causal explanation established in Section 2 

illuminates explanatory practices in thermal physics. In Section 4, I explore the 

possibility that population genetics explains biological phenomena in a similarly 

statistical, non-causal manner. I offer a novel defence of the statistical interpretation of 

the theory as articulated by Mohan Matthen and André Ariew (2002) against the 

criticisms of Frédéric Bouchard and Alex Rosenberg (2004, 2005). In Section 5, I 

conclude that statistical explanations can be non-causal, that they can be arguments, and 

that our explanatory practices are more heterogeneous than is often acknowledged. I close 

with remarks concerning how, when faced with competing causal and non-causal 

explanations of the same phenomenon, we can perform an Inference to the Best 

Explanation. 

 
1.1 Why reject Hempel? 

 

Hempel’s two distinct models, as articulated in his 1965 landmark essay “Aspects of 

Scientific Explanation”, he named the deductive-nomological (D-N) model and the 

inductive-statistical (I-S) model. A proposed third model, the deductive-statistical, is 

essentially the D-N model as applied to the explanation of a statistical law, and I will not 

discuss this here.  

 

A D-N explanation takes the form of a deductive argument. The explanatory work is done 

by the premises, which must include at least one law. An explanation is any set of 

premises that entail that the phenomenon-to-be-explained occurred. For example, if asked 

 
3 My survey is purposely very limited in scope.  Significantly, I omit discussion of unification accounts of 

explanation (see Kitcher 1981). 
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to explain why Socrates was mortal, we could cite the particular fact that Socrates was a 

man, together with the law that all men are mortal. A note on terminology: Hempel 

(1965, 336) defines the term explanandum to refer either to the thing-to-be-explained (the 

explanandum-phenomenon) or the sentence describing that thing (the explanandum-

sentence). An explanandum, to Hempel, can be a particular fact or a general law, though 

the I-S model only deals in particular facts. 

 

We cannot give a D-N explanation of a particular fact if the fact is not deducible from 

any available information: perhaps it is fundamentally chancy, or appears chancy given 

our current knowledge. But, as Hempel observed, this need not prevent explanation, 

though the explanation offered might be less enlightening than the D-N ideal. His 

solution, inspired by the D-N model, was the I-S model. Like a D-N explanation, an I-S 

explanation is an argument. But it is inductive, not deductive. The premises, which must 

contain a statistical law, do not entail the conclusion, but they do give it high inductive 

support. The conclusion can be expected with a high probability (1965, 390).  

 

Say, for example, we are observing a radioactive decay and record 100 decays in a 

minute. We know the sample was of element X, and element X has a half-life λ such that 

there was a 90% statistical probability that 100 decays would occur during the minute. 

These considerations would have led us to expect 100 decays with high inductive 

probability. They thereby explain why 100 decays did indeed occur. The higher the 

inductive probability, the better the explanation, tending towards the ideal of 100% 

inductive probability.  

 

This example illustrates the two types of probability in an I-S explanation: the statistical 

probability in the law, and the inductive probability conferred on the conclusion by the 

premises. Hempel (1965, 387) suggests a deliberately vague finite-long-run relative 

frequency interpretation of statistical probability4. On this view, for example, to say a 

coin has a 50% probability of landing heads up is to say that, if you were to toss it a large 

 
4 Hempel remained undecided as to his preferred interpretation of probability throughout his career 

(Niiniluoto 1981, 143). 
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finite number of times, it would land heads-up 50% of those times. A statistical law need 

not govern an irreducibly indeterministic process (and indeed coin tosses are not such a 

process). The inductive probabilities, meanwhile, quantify our reasons to believe that the 

explanandum was to be expected. This does not necessarily mean that these probabilities 

are subjective. Hempel (1965, 385) follows Rudolf Carnap (1950) in maintaining that 

there is some objective logic regarding what probability a set of premises confers on a 

conclusion. Hempel’s 1965 conception of inductive probability is logical or epistemic.  

 

Why is this not enough? Why can we not end the discussion here? The D-N and I-S 

models are, alas, plagued with difficulties. Counterexamples to the D-N model are 

plentiful, and the problems are more than technicalities: they appear to result from the 

omission of causation from the theory. Say, for example, I plant a stick vertically in the 

ground on a sunny day (example adapted from Bromberger 1965). I want to know why its 

shadow has the length it has. A D-N explanation seems attractive: I can deduce the length 

of the shadow from the length of the stick, the position of the sun and the laws of 

trigonometry. So far so good. But what if I want to know why the stick has the length it 

has? According to the D-N model, I can explain the stick’s length by deducing it from the 

position of the sun, the length of the shadow and the laws of trigonometry. But this does 

not seem to yield any understanding at all!  

 

The D-N model faces a further problem of accounting for the intuitive distinction 

between the explanatory role of events that are causally active and those that are causally 

redundant. Jim, for example, is not pregnant. He is also male. Why is he not pregnant? 

We can construct a D-N explanation as follows (example adapted from Salmon 1989, 

50): 

 

Jim takes the contraceptive pill. (particular fact) 

No one who takes the pill gets pregnant. (law) 

_________________________________________ 

Jim is not pregnant.  
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Intuitively, the premises here fail to explain the conclusion, but not because the argument 

is unsound. Rather, the events we have cited are causally redundant. A correct 

explanation should cite the cause that Jim is a man. 

 

The I-S model inherits the weaknesses of the D-N model. It cannot distinguish the 

explanatory roles of cause and effect and it cannot separate the causal from the causally 

redundant. It also faces severe difficulties of its own. One problem arises from the 

structure of inductive arguments. The addition of a new premise can wreck an inductive 

argument; this is not the case with deductive arguments. Take the following inference: 

 

Socrates is a man. (particular fact) 

All men are mortal. (law) 

Socrates is 8ft tall. (new premise) 

_________________________________________ 

Socrates is mortal.  

 

The new premise (though strange and presumably false) has not weakened the support 

afforded to the conclusion. If my original premises are true, my conclusion cannot 

possibly be false. Contrast this with a typical inductive argument (adapted from Salmon 

1989, 54): 

 

Jim has infection X. (particular fact) 

Patients with infection X have a 90% chance of survival. (law) 

=====================================5 

Jim survives X.  

 

This appears to be a good I-S explanation of why Jim survived. But new information can 

change this: 

 

 
5 I follow Hempel (1965, 383) in using a double line to separate premises from conclusion in an inductive 

argument. 
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Jim has infection X.  

Patients with X have a 90% chance of survival.  

Jim has a new multi-drug resistant strain of X. (new premise) 

Patients with multi-drug resistant X have a 10% chance of survival. (more specific law) 

===================================== 

Jim survives X. 

 

In light of the new information, I cannot continue to maintain that my original argument 

still explains Jim’s survival. My knowledge no longer suggests that Jim’s survival was to 

be expected with high probability. How can the I-S model account for why we thought 

the argument explained, but have now decided that it doesn’t? Hempel’s solution is to 

impose a “requirement of maximal specificity” (1965, 400), an adaptation of Carnap’s 

“requirement of total evidence” (Carnap 1950, 211-213)6. Take the following candidate I-

S explanation: 

 

B  

P (A|B) = 0.9 (Given B, there is a high probability of A occurring) 

=====================================  

A 

 

This may or may not be an I-S explanation. It will not be an I-S explanation if the event 

of type B is also an event of type B1, where B1 is a subset of B (that is, where B1 is a 

more specific type of event), and we have formulated a law for the probability of A given 

B1. In such a scenario, Hempel stipulates that an I-S explanation of A must invoke the 

more specific law (1965, 400). This is what is meant by the “requirement of maximal 

specificity.” Whether or not an argument qualifies as an I-S explanation is thus 

relativized to what we know when we give it. Suppose that we don’t know of any law 

more specific than that relating A and B. In such a case, the argument above provides an 

I-S explanation. But if our knowledge situation had been different, and we’d been able to 

 
6 The requirement of total evidence is inappropriate here. Evidence that the explanandum occurred (e.g. I 

saw it) will not necessarily help show it was to be expected. 
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be more specific, the argument would not have been a correct explanation. It is therefore 

wrong to speak of an “absolutely true” I-S explanation. To give an I-S explanation is not 

to pick out any true causal or lawlike relations among real events. This admission is 

unsatisfying for those with an intuition that the correctness of an explanation is 

determined only by the world and not by the knowledge of the speaker giving the 

explanation. As Alberto Coffa notes bluntly, “what, then, is the interest of I-S 

explanations?” (1974, 158).  

 

This is a question to which we shall return in Section 2. For the moment, note also that, 

formally, the premises of an I-S argument must contain a statistical law, yet the use of the 

term “law” for the relationship between the probabilities in our example may sound 

implausible. For example, if we possessed fine-grained causal knowledge about Jim’s 

particular immune system and the particular organisms infecting him, we’d end up 

modifying our naïve probabilities considerably. The “law” does not appear to pick out 

underlying causal relations in the world. How then, to interpret the “law”? We have 

already conceded that I-S explanation is relativized to our current knowledge situation. 

We can take “law” here to mean a formulated statistical generalization involving the right 

kind of predicates7. It is merely the most specific generalization we have to hand; it is not 

a claim about the causal mechanisms of the world. This may sound like an inappropriate 

use of the word “law,” but scientists do on occasion use it in this sense. Take the Second 

“Law” of Thermodynamics: under the statistical interpretation of the theory, this is in fact 

a trend, and could (with negligibly small probability) be violated without any violation of 

dynamical laws (e.g. Elga 2000). Yet it still seems apt to call it a law. In this paper, I will 

retain Hempel’s terminology and take formulated statistical generalizations as “statistical 

laws”. 

 

A second problem with the I-S model lies in its demand for high probability. Can we 

never explain the improbable? Michael Scriven (1959) offers the example of paresis, a 

complication of syphilis, which develops in a small percentage of cases. Surely, for a case 

 
7 The problem of identifying the right kind of predicates for laws still needs to be addressed (see Goodman 

1983). I assume the generalizations in this paper involve appropriate predicates.  
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in which a syphilis patient contracts paresis, the syphilis explains the paresis, even though 

the syphilis did not make the paresis probable. Hugh Mellor (1976) considers such 

counterexamples inadequate for rejecting the high probability requirement for 

explanation.8 A proponent of the high probability requirement can claim that the syphilis 

could be an ingredient in an explanation, but would not in itself provide an explanation. 

The syphilis raises the probability of the paresis, but an explanation should invoke 

additional factors so that the final probability is made high. Finding factors that raise the 

probability of the thing to be explained is an important but insufficient step in making the 

probability high. In the paresis case, on Mellor’s view, there is no explanation.  

 

Richard Jeffrey (1969) claims that, intuitively, we can explain improbable outcomes as 

long as we know the law governing the stochastic process in question. If I toss a fair coin 

five times (example adapted from Jeffrey 1969), and each time it turns up heads, this does 

not defy explanation. If I know the coin was fair and that the probability of five heads, 

though small, was non-zero (it is 1/32), this explains the outcome as well as we could 

explain any outcome. To Mellor, however, an explanation of an explanandum, A, must 

explain why A better than it would explain why not-A (1976, 327). One way to achieve 

this is to insist that an explanation must show that A was to be expected with high 

probability. Mellor offers the example of a game of bridge. If I am dealt cards from a 

range of suits (the high probability outcome), the dealer could explain this by claiming 

she was dealing fairly. If I am dealt cards of just one suit, could the dealer explain this by 

claiming she was dealing fairly? It is certainly another possible outcome of a fair, 

randomly dealt hand. But such an explanation would have explained a mixed-suit hand 

much better than it explains a single-suit hand. In this improbable case, my suspicions are 

aroused and a better explanation seems to be called for.  

 

 
8 That is, with regard to the “good” explanations for which Mellor wants to account (1976, 241). The I-S 

model seems to imply a sliding scale, where very low probability gives an “explanation,” but it is poor and 

unsatisfactory. I hold that any scientific explanation should aim to be good, and so, like Mellor, seek to 

account for “good” explanations. Where Mellor says “good explanation,” I say “explanation.” 
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Nonetheless, though the dealer’s explanation may not intuitively be the best possible 

explanation, it is, if true, intuitively an explanation, so the I-S model does not wriggle out 

of the counterexample so easily. Mellor claims that Jeffrey’s coin explanation (and the 

dealer’s explanation of the single-suit deal) can intuitively explain something, but it 

cannot do the explanatory work Jeffrey requires of it. Jeffrey claims that the fairness of 

the coin explains why I got five heads in a row. Mellor suggests that the fairness actually 

explains why I did not get five tails in a row (or did not get any other specific outcome 

apart from the outcome obtained), since this latter event has high probability (31/32). It is 

possible to explain such facts about the trial even while we cannot explain the more 

“interesting” individual outcome (the five heads). The I-S model can evade Jeffrey’s 

objection. It remains, however, a respect in which Hempel’s I-S proposal struggles to 

match our intuitions. 

 

1.2 Trouble for the causal model 

 

A number of philosophers have in recent decades articulated causal models of 

explanation as alternatives to the traditional Hempelian theory (see especially Humphreys 

1981, Salmon 1984, Lewis 1986, Lipton 1990 and Woodward 2003)9. In this paper I will 

consider David Lewis’s model as adapted by Peter Lipton, with the expectation that the 

criticisms here raised will equally count against other models. For Lewis, a call for an 

explanation (typically a why-question, a question beginning with “why”10) is a call for 

information about the causal history of an event-to-be-explained. I will call this event the 

explanandum event; I assume that all explanandum events are acceptable explananda 

under Hempel’s permissive construal of the term. The explanation is not an argument. 

The amount of information needed to satisfy the person calling for the explanation will 

vary. The explanation will need to cite the right causes, and which causes these are will 

 
9 Several philosophers offer causal accounts of explanation together with accounts of causation. I do not 

here discuss causation, assuming that we can make sense of the idea of causal explanation without 

requiring an account of causation to plug into it (see Lipton 2004, 31). 
10 Perhaps not all calls for explanation can be put into this form (Salmon 1989, 137), but this is not the 

concern of this paper. 
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be highly context-sensitive. For example, if asked “Why are you in Cambridge today?” it 

would not appropriate to reply, “Because the Big Bang happened around 15 billion years 

ago,” even though this answer does indeed give a cause. It can be particularly easy to 

pick out the right causal information when the why-question is explicitly contrastive: 

“Why A rather than B?” (Lipton 1990). Lipton terms A the fact and B the foil: the 

contrasting event that did not occur. Causes of A that could otherwise have caused B are 

rendered irrelevant. In these cases, we must cite causes that are events in the causal 

history of A with absences of corresponding events in the causal history of B. Why did 

Lewis go to Monash rather than to Oxford? Because Monash invited him (relevant 

cause), and Oxford did not (corresponding absence) (Lipton 1990, 256). 

 

Hempel hoped to give models that accounted for all scientific explanations. If the causal 

model is to provide a credible alternative (enabling us to do away with Hempel’s 

models), it must account for all such explanations, or at least a great deal of them. Thus 

non-causal explanations, at least if they constitute a sizeable class of explanations, 

threaten to undermine this model seriously. Lewis confronts this, and denies that we can 

ever correctly give a non-causal explanation (1986, 221-224). I endorse Lewis’s 

criticisms but disagree with his conclusion. Lewis does not consider the type of candidate 

non-causal explanation I will discuss: that is, statistical explanation. Lipton is more 

conciliatory: some explanations, he concedes, are non-causal, but there is still an 

“overwhelming preponderance” of causal explanations (Lipton 1990, 248). Lipton 

suggests, for example, that philosophical arguments and mathematical proofs can offer 

non-causal explanation. I will not explore this possibility: even if they do offer 

explanation of a sort, it is not, I suggest, scientific explanation of physical phenomena, 

and this is my concern here. I aim to show that large classes of contrastive why-questions 

pertaining to physical phenomena can be answered wholly non-causally. I will articulate 

some everyday examples of non-causal explanation (including Lipton’s), and argue that 

similar explanations are often provided by science, notably in thermal physics, and 

perhaps in population genetics.  
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Figure 1: The sphere of possible stick 
orientations 

2. Everyday cases 
 

2.1 Spinning sticks: realizing the mean 

 

This example is adapted from Peter Lipton (1990, 

248). It will set the general format for the 

examples subsequently discussed. I throw a large 

number of sticks into the air. They all spin rapidly 

as they fall. I take a photo of the sticks in mid-air 

(the camera is on a tripod; it is exactly horizontal), 

and observe that, in the photo, the sticks are 

predominantly closer to the horizontal than to the 

vertical.  

 

Here is the explanation: I have no reason to 

believe that, for any one stick, any orientation is any more likely to be realized in the 

photo than any other. I assume that, for the average stick, all orientations are roughly 

equally likely to be realized (if any individual sticks are biased, the biases will roughly 

cancel out). There are more ways for a stick to be oriented closer to the horizontal than 

there are ways for the stick to be oriented closer to the vertical. Figure 1 shows this. Let 

every pair of diametrically opposite points on the sphere’s surface represent one possible 

orientation for the stick. The shaded area represents those orientations that are closer to 

the horizontal. The shaded area on the sphere’s surface is greater than the non-shaded 

area. It was therefore to be expected that most sticks would be oriented nearer the 

horizontal. 

 

What question does this explanation answer? It seems to me that, if we state the why-

question explicitly, it should be contrastive. It is: “Why did I observe most sticks to be 

closer to the horizontal, rather than observing most sticks to be closer to the vertical?” 

This contrastive question rules out answers like “because I took a photo” or “because I 

threw them.” Such answers do cite causes of the explanandum event, but they are not 
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relevant causes, because they would also have occurred in the causal history of the foil, 

had it occurred.  

 

The explanation is an argument to the effect that the explanandum event was to be 

expected. Though Lipton does not describe it as such, this is surely a great example of 

statistical explanation. Explanation is achieved through knowledge of the options 

available to each stick, knowledge of the states (of orientation) that are accessible to it. 

Of the two contrasting outcomes, the majority-horizontal outcome is statistically more 

probable than the majority-vertical outcome. It is the expected outcome, or the mean 

outcome, and it is expectable with high probability. 

 

The explanation is non-causal. This, at least, is Lipton’s claim, which he justifies with an 

assertion that “geometrical facts cannot be causes” (2004, 32). Here he presumably 

adopts Lewis’s (1973) doctrine that the correct relata of a cause-effect relation are events 

not facts, or the view that mathematical objects cannot be causes (Baker 2005, 234). 

Mellor (1995) argues that the relata of a cause-effect relation are facts, so this may (at a 

stretch) be a cause of controversy with the spinning stick example. Others may object that 

there is a hidden relevant cause: whatever event brought the geometrical facts into being 

(the Big Bang, presumably). I think, however, that the explanation remains non-causal 

irrespective of whether we take the view that geometrical facts cannot be causes. The 

reason is that, even if geometrical facts are causes of the outcome, they are causes that 

would feature equally in the causal history of the foil, had it occurred. There is no 

corresponding absence of geometrical facts in the causal history of not-B, where B is the 

event of most sticks appearing closer to the vertical. 

 

Having observed that the explanation is a statistical argument, we might wonder whether 

it fits Hempel’s I-S model for explanatory statistical arguments. If it does, it does so as 

follows: 

 

(1) The sticks spun in the air.  

(2) For each spinning stick, P (horizontal orientation) > ½   
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===================================== 

Most sticks were closer to the horizontal than to the vertical. 

 

The premise (2) is a statistical law that confers high probability on the conclusion. The 

probabilities in the “law” do not follow from any irreducible indeterminacy in the 

process: if we’d known everything there was to know about the causes influencing the 

sticks at a fine-grained level, we could have refined the probabilities. Rather, as in the 

case of infection X (see Section 1), the argument quantifies our reasons to expect certain 

possible outcomes, based on our knowledge situation. The statistical law is tacitly 

underwritten by an assumption which, given our current knowledge situation, we find 

plausible: that every orientation was roughly equally likely. The requirement of maximal 

specificity is fulfilled, because we did not know of any causes affecting the outcome (e.g. 

air currents). I conclude that the explanation is inductive-statistical. I also observe that, as 

Lipton notes, it is “a lovely explanation” (1990, 248). 

 

2.2 The Israeli Air Force: regression to the mean 

 

This example is from Daniel Kahneman and Amos Tversky, and is documented by 

Lipton (2004, 32). Trainee pilots in the Israeli air force were strongly praised after 

performing well, and strongly criticized after performing poorly. It was observed that the 

pilots tended to improve after receiving criticism, but tended to get worse after receiving 

praise. What explains this behaviour? Perhaps criticism was more effective than praise in 

causing improvement. But there is another explanation.  

 

It is based on the idea that a particular middling level of performance was the mean, or 

expected performance. But we need to make a plausible assumption that performance was 

a random variable distributed roughly symmetrically about this mean (the following 

argument fails for seriously skewed distributions). Let us say they follow a normal (bell-

shaped) distribution. It can then be argued that it was to be expected that the praised 

pilots would follow an unusually good performance with a poorer performance (a 

performance closer to the mean), and it was to be expected that the criticized pilots would 
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follow an unusually poor performance with a better one (also a performance closer to the 

mean).  

 

Again we can put the question in a specifically contrastive form: “Why did most pilots 

perform worse after praise, rather than better?” (A corresponding question could be posed 

with regard to the criticized pilots.) Again, the answer we are considering is statistical 

and is an argument. And again, it can be put into the form of an I-S explanation. Let x0 

represent each pilot’s initial performance, X represent the variable of subsequent 

performance, and μ represent the mean performance. 

 

(1) For all the praised pilots, x0 > μ.  

(2) If x0 > μ, P (X<x0) > ½ 

===================================== 

Most praised pilots subsequently performed at a level below x0. 

 

As in the spinning stick case, the probabilities do not follow from the irreducible 

indeterminacy of a pilot’s performance. This will be influenced by a huge range of factors 

(whether they concentrate, whether they went out drinking the night before, and so on). 

The argument quantifies the extent to which the outcome was to be expected given our 

knowledge situation. Maximal specificity is satisfied: we do not know anything about the 

pilots, other than that they were above average to begin with. Again, the statistical law is 

underwritten by a plausible assumption: that, in these circumstances, the performances 

roughly fit the right kind of probability distribution. We could obviously give a parallel 

explanation for the subsequent performance of the criticized pilots. 

 

Ultimately, this is a pleasing real-life illustration of a spinning-stick-style explanation. 

The only difference is that the fact and foil are defined relative to some fact previously 

obtained (initial performance), which must meet a certain criterion (viz. being above 

average). I follow Lipton in claiming that this too is “a lovely explanation” (2004, 32). 

The role previously played by geometrical facts in Section 2.1 is played in this example 

by facts about the normal distribution over all possible levels of performance. This 
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example is particularly interesting in so far as the I-S explanation competes with a 

plausible causal explanation (that criticism was more effective in causing improvement).  

 

2.3 Apples: standard deviation from the mean 

 

This example is adapted from Denis Walsh (2007, 283). Take three varieties of apple: 

Braeburn, Jonagold and Pippin. In mean mass, they rank as follows: Braeburn > Jonagold 

> Pippin. But in standard deviation (a measure of spread, how much they tend to deviate 

from the mean), they rank: Pippin > Jonagold > Braeburn. Braeburns are biggest on 

average, while Pippins are most variable on average.  

 

There are five markets nearby, and each market contains five fruit stalls. From each fruit 

stall I buy ten apples of each variety (that is, 750 apples overall; I like apples). I make an 

assumption that the mass of the apples I picked varied randomly according to roughly the 

same probability distribution at all stalls. I was not, for example, deliberately picking out 

the heavy ones at certain stalls, or the ripe ones or the pretty ones. For each sample of 50 

per variety from each market I calculate the mean mass of each variety. I discover that, 

for four of the markets, Braeburn had the highest mean mass, and, for the odd one out, the 

Jonagolds had the highest mean mass. I am not surprised. The order “Braeburn > 

Jonagold > Pippin” has been reflected in the number of markets where each variety came 

out heaviest.  

 

Next, I calculate the mean mass of each variety from each sample of ten per variety from 

each stall. Note that these batches are much smaller. This time I discover that Braeburns 

(unsurprisingly) come out heaviest for 14 stalls, but (surprisingly) the Pippins come out 

heaviest in seven, while the Jonagolds only come out heaviest in four. The number of 

stalls where each variety came out heaviest goes: “Braeburn > Pippin > Jonagold”. The 

rank order has changed. 

 

This is explained by the high standard deviation of the Pippins. They were smaller on 

average overall, but their high standard deviation meant it was to be expected that fluke 
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heavy Pippins would skew the sample mean of individual batches, pushing it above that 

of the other varieties fairly often. This effect was more marked in the smaller apple 

batches, because in a small batch a fluke heavy Pippin skews the sample mean more 

severely than in a large batch (and is less likely to be cancelled out by a fluke small 

Pippin). 

 

This boils down to a similar explanation to the two given above. It is different in so far as 

knowledge of standard deviations is needed. We ask: “Why did the rank deviate from the 

predicted rank when the sample size was decreased to ten, rather than when the sample 

size was 50?” The answer will be a statistical argument that can be framed in accordance 

with the I-S model as follows:  

 

(1) Sample sizes of ten and 50 were taken. 

(2) P (Rank deviates more in a smaller sample size) is high. 

===================================== 

The rank deviated more from the predicted rank when the sample size was ten rather than 

when the sample size was 50. 

 

The explanation is non-causal, because the facts about standard deviations, if they are 

causes at all, would have been causes in the causal history of the foil, had it occurred. 

Note also that, yet again, the statistical law is underwritten by a plausible assumption. I 

would know it to be false if I knew that I or someone else had (perhaps subconsciously) 

rigged the sampling in certain ways. Perhaps I let the mass of certain apples influence my 

decision to choose them, or perhaps the fruit sellers have a strange apple-size cartel in 

operation. In the absence of knowledge of any such circumstance, it sounds plausible to 

say that the mass of the sampled apples varied randomly under the same probability 

distribution at each stall. 

 

2.4 Where from here? 

 



“BECAUSE” WITHOUT “CAUSE” 

 18 

I have discussed three plausible everyday cases of non-causal explanations. I have shown 

that they are statistical in nature, and that they can be phrased as I-S arguments. In 2.2, 

we also saw how a real postulated non-causal explanation can conflict with a real 

postulated causal explanation. So far, there is not much to concern advocates of causal 

models. Like Lipton, they can concede that, in a handful of exceptional cases, there can 

be lovely non-causal explanations. As we will soon see, however, this handful typifies a 

form of explanation into which huge classes of explanations fit. 

 

We are now in a position to answer Coffa’s question: what is the interest of I-S 

explanations, when they are relativized to our knowledge? The answer, I think, is that 

they turn the unexpected into the expected. Without applying knowledge of the geometry 

of spheres, it would seem very strange that the sticks so often appeared closer to the 

horizontal. An intuitive response to the spinning stick observation is surprise: shouldn’t I 

have expected about half to be closer to the horizontal, given that there are only two 

options for each stick and I can’t help but be epistemically indifferent towards the two? 

The I-S explanation tells me otherwise: given the known facts and the assumptions I find 

plausible, I really should have expected the observed outcome. The I-S argument explains 

by transforming the unexpected into the expected, the surprising into the unsurprising. It 

does not matter that the premises of the argument fail to pick out true causal relations in 

the world. Nancy Cartwright (1983, 47-53) observes that the strict truth of a claim about 

an experimental setup is not a pre-requisite for its use in a good explanation of the 

outcome. A claim we suspect would prove strictly false given fine-grained detail of the 

setup, such as Snell’s Law, or our spinning stick generalization, can still explain.  

 

We can also, I think, put aside Jeffrey’s objection, at least in these specific cases. Can 

there be explanation without high probability? Let us specifically ask this question with 

respect to the spinning sticks: if most sticks had come out closer to the vertical, could the 

sphere of possible orientations still have explained why this occurred, rather than most 

sticks appearing closer to the horizontal? Intuitively, I suggest the answer is that it could 

not. We have two options: accept Jeffrey’s intuition and deny that the sphere of 

orientations can explain anything, or accept that this is a case where high probability 
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really does explain. Having already claimed that the explanation is “lovely,” I of course 

take the latter route.  

 

A common feature of all the non-causal explanations I have discussed is the role of 

plausible assumptions. We may ask: what makes them plausible? It is not that we are 

convinced of their strict truth. The answer, I think, lies in the principle of indifference: 

the view that, when faced with a range of possible outcomes, we should assign them 

equal probability unless we know of something to choose between them. The principle 

has met with strong criticism (e.g. Howson and Urbach 2006, 262-272), but it seems that 

the “plausible assumptions” involved in our examples employ appropriate applications of 

something like a principle of indifference. What makes these applications appropriate? It 

is that we have specified the possible options accessible to the sticks/pilots/apple samples 

in as much fine-grained detail as our knowledge allows. Knowing the stick orientation 

options, but knowing no better, we postulated that all were roughly equally likely to be 

occupied by the average stick. Knowing the performance options available to the pilots, 

but knowing no better, we postulated the performances varied randomly under a roughly 

symmetric probability distribution. Knowing there were twenty-five stalls, but knowing 

no better, we postulated that the mass of the apples followed roughly the same probability 

distribution at every stall. 

 

Coffa ends his 1974 paper with a discussion of whether philosophers can tell scientists 

what explains and what doesn’t. I think they can, but only if the proffered scientific 

explanation clashes with very strong everyday intuitions we all possess. As I have shown, 

I-S explanations relativized to a knowledge situation do not fall into this category. I 

suggest, then, that if they exist in science, we should defer to scientists and concede that 

they really are scientific explanations. I will now show that they do exist. 
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Figure 2 

Figure 3 

3. Thermal physics 
 

Consider an isothermal expansion. A body of gas is in a box with a partition (Figure 2). 

The partition is removed. At the instant after the partition has been removed, the gas sits 

in half the box. It is now physically possible for it to expand into the whole box. This 

possibility is quickly realized (Figure 3). The volume of the gas increases. The pressure 

decreases. Pressure and volume reach new equilibrium values and thereafter stay 

constant. 

 

We can ask two questions: 

(1) Why did the macroscopic variables of 

the system adopt the values we 

observed at equilibrium, rather than 

some other values? 

(2) Why did this process occur rather than 

not occur, given that no external factor 

caused the change after the partition 

was removed? (Alternatively: why did 

the process occur spontaneously?) 

 

I will suggest statistical-mechanical answers 

to (1) and (2). By drawing comparisons with the examples in Section 2, I will argue that 

explanations in statistical mechanics involve inductive-statistical, non-causal arguments. I 

will then remark on the broad applicability of this form of explanation with reference to 

the Second Law of Thermodynamics. 

 

3.1 Explaining at equilibrium 

 

Let us take (1) first. A causal explanation would have to cite fine-grained causal detail 

about how the particles of the gas cause each observation. We don’t know any such 

detail. But we can give an explanation. As a precursor to giving this explanation, I must 
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spell out some of the terms it invokes. I will discuss classical thermal physics and set 

aside the quantum formulation, as do most discussions of the philosophy of thermal 

physics, though the quantum version is widely applied by practising scientists. 

 

If we take the gas molecules to be classical-mechanical point particles bouncing around 

in a box, a snapshot at any moment of these particles would capture each particle with a 

particular position and momentum. All the particles together constitute a system. The 

snapshot shows the microstate of the system. On this view, the system can adopt a 

continuous range of microstates, with the constraint that the total energy of the system 

must be conserved. This range includes even wildly implausible microstates, such as the 

particles lining up to lap the edges of the container, or all the particles gathering into a 

tiny ball in the centre. All these possible microstates constitute a phase space: an abstract 

space in which each point represents one accessible microstate. This can be pictured as a 

vast set of possible systems, of which only one is the actual system. We can overlay the 

phase space with a probability distribution, assigning probabilities to every region. This 

set of systems, spanning a phase space, overlain by a probability distribution, is the 

ensemble. For our gas, it is conventional wisdom to say all phase space regions of equal 

volume are equally likely to be occupied (this assumption is controversial, see below): 

the resultant ensemble is the micro-canonical ensemble11. The actual system will only 

realize one microstate at any one instant, so the evolution of the system over time can be 

pictured as a dot touring around the phase space.  

 

So here is the explanation. Large numbers of microstates are very similar to each other. 

There are certain regions of the phase space that correspond to the same macroscopic 

properties. We can say the macroscopic property supervenes on regions of the phase 

space. Let us visualize this in terms of gas volume. The gas is observed to occupy the 

entire container (Figure 3; let us say the gas is coloured and the container is transparent, 

so this is very easy to observe). It need not do this. It could occupy half the container, or a 

 
11 There are two other important ensembles, the canonical and the grand canonical, which I do not discuss 

here; I assume the explanatory practices are the same in all cases. See Gibbs (1905) for the coining and 

defining of these ensembles.  
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quarter, or a tiny section. But these macroscopic possibilities are not of equal probability. 

The gas occupying the whole container is an option that is realized at the vast majority of 

points in the phase space. The gas occupying only a tiny section of its container can be 

realized only by a tiny region of the phase space. As far as we know, all regions of the 

phase space are equally likely to be occupied by the actual system when we make our 

observations. It is therefore to be expected with high probability that, when we observe it, 

the system will be in the region of the phase space corresponding to it occupying the 

whole volume of the container.12 

 

I have not yet used the term entropy: in statistical thermodynamics, this beautiful word 

denotes a measure of phase space volume. Entropy, S, is equal to klogW, where W is a 

number of microstates, or a volume of the phase space, and k is the Boltzmann constant. 

It follows that the gas occupying the entire volume of the container, which is the state 

corresponding to the largest region of the phase space, is the highest entropy state. The 

highest entropy state is the one that is to be expected, owing to the above considerations. 

 

Mathematicians have devoted a great deal of attention to one aspect of this form of 

explanation. It was assumed above that all regions of the phase space of equal phase 

space volume are equally likely to be occupied by the system when we make an 

observation. Recall that we can visualize the actual system as a dot moving through the 

phase space. There is a tension between these ideas. Ludwig Boltzmann postulated that, 

given infinite time, the system would in fact pass through all points of the phase space 

equally often, and that this justifies our assignment of probabilities (Sklar 1993, 44). This 

is the ergodic hypothesis. But why should the system explore all areas of the phase space 

equally? It could get stuck in certain stable regions of microstates. The ergodic 

hypothesis has thus spawned ergodic theory: the enterprise of trying to show it is correct. 

In any case, even if Boltzmann was right, long-run relative frequencies over infinite time 

do not strictly imply anything about what we should expect in observations carried out 

 
12 Such explanations are found in many scientific texts: for example, Chandler (1987, 54-62), Nash (1974, 

23-26). For alternative philosophical expositions, see Albert (2000, 35-51), van Fraassen (1980, 161-167). 
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over finite time. Infinite long-run relative frequency is thus the wrong interpretation of 

probability for I-S explanation (Hempel 1965, footnote 10). 

 

I do not think this problem damages the explanatory power of the explanation. Rather, it 

is part of an attempt to find some underlying dynamical process that will provide 

supplementary understanding. Recall that, in the spinning stick case, we assumed that, for 

the average stick, all orientations were roughly equally likely to be observed, even though 

fine-grained causal detail might have given us cause to alter our probabilities. The 

assignment of probabilities was plausible, and explanatorily permissible. The same goes 

here. Even if we believe that our idealized assumptions about probabilities over the 

microstate ensemble might well turn out to be strictly false given further evidence, they 

can still serve our explanatory needs. In our current knowledge situation, it is permissible 

and plausible to assume that every microstate is equally likely to be occupied.13 

 

It is worth dwelling on the comparison between thermodynamic processes and spinning 

sticks. In both cases, the explanation is an argument that shows the explanandum was to 

be expected with high probability14. In the thermodynamic case, the probabilities are 

typically very high. The probability of the body of gas not filling the container to any 

observable extent can be estimated and even calculated to be negligible. As with the 

spinning sticks, the probabilities we cite are based on our knowledge of the possibilities 

available. Intuitively, this knowledge of possibilities appears to rationalize our choice of 

probabilities. We can put the gas explanation in I-S form as follows15: 

 

(1) For the ensemble of microstates for this system, the probability of the body of gas 

filling the container is very high.  

 
13 Cartwright (1983, 153-155) defends a similar point. Sklar (1973) turns the point on its head. Arguing 

against narrow Hempelian conceptions of explanation, he suggests that, since real scientists want to 

supplement their knowledge with ergodic theory, some explanation must be possible over and above the 

basic statistical explanation. My aim is to point out that the basic explanation still explains. 
14 Strevens (2000) stresses the crucial importance of the high probability requirement in thermal physics. 
15 Clark (1990, 165) also suggests that statistical mechanics offers I-S explanations. 
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===================================== 

The gas was observed to fill the container. 

 

There is a slight disanalogy with the stick case. The possible orientations of the stick 

depend on geometrical facts, which cannot be explanatorily relevant causes. The possible 

microstates of a system in thermal equilibrium depend on the total energy available to the 

system, the degrees of freedom available to the molecules, and (in the more modern and 

versatile quantum formulation) on the discrete energy levels of the molecules. Why can’t 

these facts be relevant causes? To be able to say definitively that they are not, we need to 

specify the foil in the why-question very carefully. The foil cannot be a different 

macroscopic result (e.g. volume) emerging from a different microstate ensemble. We 

need to require that the ensemble is the same in the fact and foil cases. In short, if we 

want a wholly non-causal answer, the question must be specified as follows: Why did the 

macroscopic variables of the system adopt the values we observed at equilibrium, rather 

than some other values, for this particular microstate ensemble?  If we leave out the final 

clause, the answer could be part causal, part non-causal, if we allow that the parameters 

defining the ensemble might be causes of the equilibrium properties.  

 

This modified question may seem obscure. Do physicists and chemists really ask this 

type of question? They do, for both predictive purposes and explanatory purposes. The 

microscopic parameters (total energy, degrees of freedom, energy levels) that define the 

ensemble are measured by spectroscopy, the values of the macroscopic variables are 

calculated, and the observations tend to match the expected values to a high degree of 

accuracy. 

 

Lawrence Sklar (1993, 151) notes that this is a “curious” form of explanation. It is 

presupposed that the system is at equilibrium, and presupposed that the system has 

particular micro-properties. We then argue that, given all this, it was to be expected that 

the system displayed particular macro-properties. I reply that the curiosity Sklar identifies 

results from the fact that the explanation is a non-causal explanation. I also suggest that it 

is not that curious. As we have seen, similar considerations explain in everyday cases.   
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3.2 Explaining the approach to equilibrium 

 

Now I turn to question (2): why did this process occur rather than not occur, given that no 

external factor caused the change after the partition was removed? There is a short 

answer: regression to the mean.16 It was to be expected that a system not realizing its 

mean properties (not filling its container) would come to do so, as indeed any isolated 

system out of equilibrium will tend to move towards it. We can borrow the schema from 

Section 2.2, and again visualize the process in terms of volume. Let V represent the 

macroscopic variable volume (in physical space), v0 represent the initial volume, and μ 

represent the mean volume (where the mean is calculated by averaging over the phase 

space). 

 

(1) For the gas, at time t0, v0 < μ. 

(2) If v0 < μ, then at time t0+δ, P (V>v0) is high.  

===================================== 

V>v0 at time t0+δ 

 

We can thus explain why the gas expands in the small time interval after the partition is 

removed, and at every subsequent interval until V= μ. As in the case of the Israeli pilots, 

there is no cause, no push: the explanation is non-causal. Facts about the probability 

distribution over the phase space take on the role played by geometrical facts in the 

spinning stick case. 

 

One might reply, like Sklar (1993, 282), that this is unacceptably quick. It is plainly 

untrue that every microstate is equally likely to follow from a certain initial microstate. 

The system starts out at a certain point in the phase space and is constrained by 

dynamical laws to follow a subsequent path. Particles cannot jump instantaneously from 

one side of the box to the other: the laws of physics impose a strong restriction. But note 

 
16 For alternative expositions of the basic idea, see Price (1996, 30) and Albert (2000, 51-62). For a 

physicist’s perspective, see Nash (1974, 29-36). 
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that it is also plainly untrue that an individual pilot is equally likely to perform at any 

level following a good performance. Surely each such pilot is more likely to perform at a 

fairly high level: the causes that caused the initial good performance may well still be 

active (for example: quick reflexes, experience, technique), and the initial good 

performance itself might boost morale and cause a future good performance. But we 

dismissed all these unknown causal factors when offering a statistical explanation 

relativized to our knowledge. As in the equilibrium case, a lot of mathematicians have 

spent a lot of time looking for understanding of the underlying dynamical relations in the 

approach to equilibrium. This does not imply, however, that the simple explanation can’t 

explain. As in the equilibrium case, the assumption that all microstates are equally likely 

to be occupied is a plausible assumption that facilitates an explanation through which we 

transform the surprising into the unsurprising. 

 

3.3 Outside the box 

 

Statistical mechanics can of course explain far more than isothermal gas expansion inside 

a box. Clear analogies can be drawn with diffusion and osmosis, and notable explanatory 

work has been done with regard to chemical equilibria and rates of reaction. The famous 

Second Law of Thermodynamics states that not only will certain experimental setups 

move towards the highest entropy state, but so will the entire universe in any physical 

process. It is thought to be a statistical law, not a dynamical law. How, then, does it result 

from the statistics? According to conventional wisdom (e.g. Price 1996, 37), the answer 

in a nutshell is that we are living in a giant approach to equilibrium. The Big Bang was a 

low-entropy initial condition a long way from equilibrium for the system it created, and it 

is thus to be expected that the universe will keep heading towards that equilibrium. The 

Big Bang was like removing the partition in Figure 2, and we are still undergoing the 

long transition to Figure 3.  

 

The Second Law highlights the extraordinarily wide applicability of statistical-

thermodynamical explanation. We can explain many “spontaneous” events, especially 

approaches to equilibrium: from the expansion of a gas in a box to the cooling of the 
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Earth. As we have seen, the explanation is non-causal, and rather like the examples in 

Section 2. There is a vast class of non-causal explanations. 
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4. Population genetics 

 

Mohan Matthen and André Ariew, in a provocative 2002 paper, defend the claim that 

explanation in population genetics shows striking similarities to the type of explanation in 

thermal physics we saw in Section 3. Their motivation is a troubling problem in 

philosophy of biology: how to account for the “predictive fitness” values of traits (that 

feature in the equations of population genetics) in terms of the individual-level causal 

properties that go into “vernacular fitness,” a creature’s relative “adaptedness” to its 

environment (central to basic expositions of the theory of evolution). Their solution: 

claim that population genetics does not explain by appeal to vernacular fitness at all. My 

aim in this section is not to survey the large and growing literature on statistical and 

dynamical interpretations of natural selection. Rather, I briefly describe the 

Matthen/Ariew picture; and I suggest a novel interpretation of the interpretation, under 

which the explanations can be formulated as non-causal I-S arguments17.  I then evaluate 

the strength of the analogy between explanatory practices in thermal physics and 

population genetics, with particular reference to the criticisms of Frédéric Bouchard and 

Alex Rosenberg (2004, 2005). 

 

4.1 The Matthen/Ariew picture 

 

According to Matthen and Ariew (2002), the trait frequency changes we observe in 

populations are to be explained by appeal to the predictive fitness values of traits 

(henceforth: trait fitnesses), and the mathematical equations of population genetics that 

feature them. These trait fitnesses will be assigned on the basis of a range of facts, which 

might include information about trait frequencies in the past, or considerations of the 

competitive advantage of organisms with the trait (2002, 78)18. The trait fitnesses are “a 

 
17 Hempel (1965, 391-392) himself suggests that genetics provides exemplary I-S explanations. 
18 Walsh, Lewens and Ariew (2002) offer a similar picture, with a significant difference. They claim trait 

fitnesses are averages of (causal) propensities in individual organisms: “individual fitnesses.” Can we 

justify a propensity interpretation of individual fitness? How can we know these propensities? I leave aside 

these issues here. 
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measure of evolutionary change not a cause” (2002, 56). Yet they do play an 

indispensable explanatory role (Matthen, personal communication). If some why-

questions about trait frequencies can be answered solely by trait fitnesses and 

mathematical formulae, the explanation will, it seems, be non-causal. Population genetics 

will explain by tracking statistical trends and estimating the probability of an 

explanandum’s occurrence, given information about the state of the population prior to 

the explanandum event. 

 

An analogy between population genetics and thermal physics is central to the 

Matthen/Ariew thesis: “natural selection, like thermodynamic change of state, is a time-

asymmetric statistical trend instantiated by populations” (2002, 80). We saw in Section 3 

how no causal process (no “push”) need be cited in order to explain why gas in half a box 

will expand to fill it. We can show the expansion was expectable, and our reasons for 

believing it was expectable are not causes. In this section, I entertain the suggestion that 

the analogy is sufficiently close such that population genetics explanations follow the 

form discussed in Section 3. 

 

I suggest that population genetics explains via arguments to the effect that, given 

information about a population at time t0, subsequent patterns of growth in the frequency 

of traits were to be expected with high probability. Where does natural selection come 

into this? When the observed trait frequency growth pattern matches exactly that 

predicted by the fitness, we call the trend “pure natural selection”. The observed pattern 

may deviate from expectation to some extent in a finite population, and we call the 

statistical deviation “drift”. 

 

Consider a thought experiment, adapted from Matthen and Ariew (2002, 72), to which we 

can apply this kind of explanation. I put $100 in investment fund A, and $100 into 

investment fund B. I observe the money build up for a few years, and observe that A 

grows consistently at 6% while B grows consistently at 2%. I can start to make 

predictions about how the funds will fare in the future. Ten years later I find that nearly 

all my money is now in the A fund. It has grown far more than the B fund. But a quick 
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calculation reveals that this finding was to be expected with high probability given the 

steady growth rates I knew about ten years earlier. The A/B ratio has shifted towards the 

expected value, and this is just a trend, not a causal process. No one has donated money 

to my A fund, and I haven’t moved any money around. Roughly speaking, Matthen and 

Ariew want us to say A-dollars have been favoured by selection over B-dollars. If the 

actual value is exactly the expected value for this time, we can call the trend “pure 

selection”. If the actual value has deviated from the expected value, we call the trend 

“selection plus drift”. In either case, the explanation is non-causal.  

 

We can formalize the sort of I-S explanations population genetics may offer. First, let us 

set the question: Why did trait A increase in frequency in population P between time t0 

and time t0+δ, rather than decrease, given all known information about P at t0? The 

known information has to be held constant across fact and foil so as to isolate the non-

causal explanatory work than can be done, just as we held the ensemble constant in 

Section 3, and held the geometrical facts constant in Section 2.1. This is the simplest sort 

of question we might ask. Population genetics also explains, for example, variation in the 

rate of frequency increase. In more complex cases, more complex laws will replace 

premise (2), but the general form of explanation should still apply. The explanation is 

non-causal, provided that trait fitnesses cannot be causes. Let wi represent all relevant 

trait fitness values, and f2 and f1 represent final and initial frequencies of trait A 

respectively: 

 

(1) wi  

(2) If wi, P (f2>f1) is high.  

===================================== 

The trait frequency of A increased. 

 

4.2 Disanalogy 

 

Bouchard and Rosenberg (2004, 2005) aim to drag population genetics down to Earth. 

The Matthen/Ariew picture, they argue, offers explanations “that pass only the lowest of 
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stringency tests” (2004, 709). Good explanations in population genetics must be causal, 

and the causal relations must be at the level of individual organisms. Bouchard and 

Rosenberg do not aim to attack explanations in thermal physics, but they claim the 

explanatory practices we studied in Section 3 cannot apply in population genetics. Their 

argument is that a disanalogy results from the fact that explanations in thermal physics 

irreducibly explain at the level of ensembles. Their meaning is not clear here. They refer 

to an “ensemble of particles” (2004, 702), which differs from my usage of the term. They 

could mean “system of particles”, or they could mean “ensemble of microstates”. The 

former is more appropriate. Statistical mechanics takes probability distributions over the 

phase space, but the macroscopic physical properties it purports to explain (volume in our 

example) are properties of the system of gas particles in the actual world.  

 

Bouchard and Rosenberg suggest we simply cannot explain such properties in terms of 

the behaviour of particles: we must appeal to the “mysteries of the second law” (2004, 

702). This is false. As we saw in Section 3, we explain by appeal to the possible 

microstates open to the particles. The explanation is not causal, and leaves room for more 

understanding, but it is not mysterious either. Bouchard and Rosenberg’s objection to 

these explanations is that: 

 

Within any given region of space and range of momentum values for any 

one particle, the position and momentum of the particle can take up to a 

continuum of values. If the earlier “smaller” number of arrangements 

[microstates] compatible with a given distribution is infinite in number, 

and the later, larger “number” of arrangements is also infinite in number, 

we cannot appeal to differences in the number of arrangements on which 

given distributions supervene to explain the increase in entropy that the 

second law reports. (2004, 702) 

 

This argument fails for two reasons. First, the number of microstates is not infinite under 

the quantum picture, and this is the preferred formulation in many contexts. Second, even 

in the classical context, we can overcome the problem of all infinities being equal in size, 
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for we can integrate probabilities over regions of the phase space. Bouchard and 

Rosenberg’s claim about our inability to compare sizes of continuous ranges of values 

generalizes, absurdly, to any continuous probability 

distribution (so that no range of values in a normal 

distribution is any more likely than any other) and 

even to Cartesian space (Figure 4). Which is bigger: 

A or B? If Bouchard and Rosenberg are correct, 

nobody knows! They both contain a continuum of 

points in space. 

 

Why does this matter? It re-opens the possibility that statistical trends in thermal physics 

are not irreducible to individual-level causal processes. Rather, they do correspond to an 

underlying causal process, but, in the absence of fine-grained knowledge about this 

process, we can still explain the trend. This was the argument of Section 3. Having 

demystified statistical-mechanical explanation, we can use its plausibility to argue that, if 

similar explanations are indeed offered by biologists, they can explain without reference 

to causes. 

 

Bouchard and Rosenberg proceed to argue that phenomena in population genetics can 

and must be explained by individual-level causal explanations, in a way in which (on 

their view) phenomena in thermal physics cannot be explained. They offer coin tossing 

by way of analogy (2004, 705). Say I toss a coin ten times, and record six heads. I am 

surprised: I was expecting five heads. Let us assume that nothing about the processes 

involved is irreducibly indeterministic. Rather, for every toss the outcome followed 

necessarily from the initial conditions and the forces acting on the coin. According to 

Bouchard and Rosenberg, I fail to give an adequate explanation if I claim that, though 

five heads was the smart bet, the six heads can be explained as being statistical deviation 

from the expected value. I should instead say that something about the initial conditions 

and the forces in play caused the observed outcome, and to explain the outcome I should 

state that cause (2004, 706). Likewise, even if I observe five heads, my claiming it was 

the smart bet is not enough. I should say that something about the initial conditions and 

Figure 4 
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forces explains the five heads, even though the causes (and hence the explanation) is in 

practice epistemically inaccessible. When a causal explanation is available “in principle” 

(2004, 708), statistical explanation is not good enough. 

 

We can see why this might not be the case by returning to the thermal physics analogy. In 

thermal physics, we believe there is some true causal story about how a body of gas 

spreads from half a box to the whole box. If we knew it, we could explain our 

observations. But this causal story is to all intents and purposes inaccessible. We look for 

a statistical explanation not because the causal history is not there, but because we do not 

know it; and perhaps also because we want a different type of understanding: 

expectability, not knowledge of causes. We use our current knowledge and plausible 

assumptions to construct an explanation relativized to that knowledge. Biologists often 

find themselves in a similar predicament. They know enough to estimate trait fitnesses 

for traits in a population, but not nearly enough to piece together reliably the individual-

level processes that caused the evolutionary change. And even if they could look for an 

individual-level story, it might not provide the type of understanding they seek (Matthen 

and Ariew 2005, 363). 

 

4.3 High probability 

 

This much must be conceded to Bouchard and Rosenberg: we must avoid an account that 

suggests we can, from a position of near-total ignorance, explain everything. Intuitively, 

explanations that invoke extreme random drift are unsatisfying. And there are alternatives 

to drift: I may have misjudged the trait fitnesses, or my whole theory may be wrong 

(Bouchard and Rosenberg 2004, 708-709). How can we choose between the alternatives? 

Say that, for two traits A and B in a population P at ratio 50/50 at time t0, the trait 

fitnesses show it was to be expected that the A/B frequency ratio would converge to 

72/28 by some long-run limit-time, t1. In fact, I observe the ratio 15/85. I could hardly 

have been more wrong. Can I explain my observation by citing drift?  Surely not. This 

observation is a prompt to look for a miscalculation, or a flaw in the theory. There must 

be a limit on the explanatory power of statistical arguments in which drift is cited. 
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I propose that a suitable cut-off point for explanation is offered by Hempel’s high 

probability requirement (see Section 1.1, and Hempel 1965, 390). Suppose that, for traits 

A and B as described above, the observed A/B ratio actually becomes 68/32 at t1. There 

was drift from the expected value. If I ask why the ratio increased rather than decreased, I 

can give a statistical explanation. If I ask more specifically why the ratio was between 

60/40 and 80/20, rather than in some other region, I can explain this too. But as I narrow 

down the explanandum it will become less and less expectable. Plainly, if I ask why the 

observed frequency was exactly 68/32 and not 72/28, I will not be able to argue that the 

explanandum was to be expected with high probability. I will have to conclude that this 

explanandum cannot be explained by a statistical argument. But I can still offer 

explanations of the first two sorts. In the case of the 15/85 ratio, the high probability 

requirement blocks all attempts at statistical explanation. 

 

4.4 The bad news 

 

I have so far stressed the viability of the thermal physics analogy in spite of the attack by 

Bouchard and Rosenberg. Nonetheless, there remains a crucial limitation on the analogy. 

In Section 3, I stressed the importance of the assumption that every microstate is equally 

likely to be occupied. Only with this assumption in place could we use phase space 

regions as good guides to the probability of particular observations obtaining. Here, we 

take trait fitnesses as good guides to the probability of particular trait frequencies 

obtaining: but why? There is no ensemble (as defined in Section 3) in population 

genetics. There is no “counting the microstates” procedure to calculate the mean 

outcome. The statistical probabilities in population genetics do not arise from considering 

possibilities and applying a principle of indifference. So why are we prepared to believe 

them in explanations? I contend that, for population genetics to produce plausible 

statistical arguments, we must maintain that the probabilities in the theory supervene on 

individual-level causal properties. Recall our economics example: the 6% and 2% growth 

rates (analogous to trait fitnesses) were taken as good guides to future growth: but why? 

Because the trend picks out a causal process: the investment is on the way up because the 
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companies concerned are doing well – a causal matter of fact. Probabilities in population 

genetics supervene on individual-level causal properties19, while probabilities in thermal 

physics need not do so (though ergodic theory hopes to show that, at least in a cautious 

treatment of statistical mechanics, they do). 

 

If trait fitness supervenes on individual-level causal properties, we might at least wonder 

whether trait fitness itself can be a cause. Intuitively, a coin’s bias can be a cause despite 

its supervenience on fine-grained properties of the structure of the coin; gas pressure can 

be a cause despite its supervenience on the fine-grained properties of a gas; and perhaps 

mental states can be causes despite their supervenience on brain states (see especially 

Shapiro and Sober 2007). This raises a possibility that cannot be analogously sustained in 

the case of the gas expansion: the possibility that the theory, while dealing only with 

trends at the level of populations, explains via population-level causes. This is the view 

defended in a number of recent papers (e.g. Reisman and Forber 2005, Millstein 2006, 

Shapiro and Sober 2007). I will not survey their arguments in detail20. The key claim is 

that we can change natural selection outcomes by manipulating trait fitnesses21, and we 

can change drift outcomes by manipulating population sizes, since drift tends to be more 

marked in a smaller population. So, applying a manipulationist criterion for causation22 

(see Woodward 2003), natural selection and drift are causal processes. 

 

I concede that the non-causal statistical interpretation of natural selection faces 

difficulties. Nonetheless, it is relevant to our discussion of non-causal explanation. I 

 
19 Walsh et al. (2002, 460) accept this: see footnote 18 in this paper. 
20 Note that one hurdle they must overcome is Kim’s (1993) argument for epiphenomenalism (that is, the 

view that supervenient properties are causally inefficacious). 
21 Suppose, in a population of moths, a subpopulation has the trait “peppered colouration,” which provides 

camouflage against predators. If their tree environment was a different colour (e.g. black), all else being 

equal, their reproductive success would have been different. Fodor (2008) attacks the coherence of using 

counterfactuals and “all else being equal” clauses in biology. 
22 In short: an event X causes an event Y iff there exists a possible intervention on X that would be 

associated with a change in Y, or in the probability of Y (Shapiro and Sober 2007). Strevens (2007) 

criticizes this account. 
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submit that the apparent importance of statistical explanations in population genetics, the 

continuing debate over plausible non-causal interpretations of these explanations, and the 

possibility of formulating such explanations as I-S arguments, counts against the view 

that the causal model is all there is to explanation. I admit that it is far from established 

that evolutionary explanations are non-causal explanations, and far from established that 

the analogy between thermal physics and population genetics holds. The analogy, 

however, is promising, and is sufficiently robust to withstand the criticisms of Bouchard 

and Rosenberg. The debate continues, but the possibility that population genetics explains 

non-causally remains open. 
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5. Conclusion 

 
5.1 The best explanation? 

 

The form of non-causal explanation I have articulated in this paper is not a suitable form 

of explanation to plug into an Inference to the Best Explanation (IBE): the sort of 

inference, which, according to many recent accounts (e.g. Lipton 2004) lies at the heart of 

scientific practice. The conclusion of an Inference to the Best Explanation is that the best 

explanation is true. Under my account, the statistical explanations I have discussed 

cannot be conclusions of such an inference for a simple reason: they are not known to be 

true. Recall Coffa’s objection: I-S explanations are relativized to our current knowledge. 

As I have been emphasizing throughout this paper, the examples we have seen are 

examples of such relativized explanations.  

 

This does not mean that non-causal explanations are of no use to scientists who seek true 

explanations via IBE. We have seen that they transform the surprising into the 

unsurprising, and can, on occasion (see Section 2.2), remove the grounds we thought we 

had for inferring the truth of a causal explanation of the explanandum concerned. This is 

the role of statistical explanations in IBE: they block causal explanations.  

 

I suggest that, to be the “best explanation,” a causal explanation must explain something 

that cannot be explained non-causally. Before it is rational to believe that criticism causes 

improved performance in Israeli pilots, it is necessary to generate some phenomenon that 

criticism can explain and statistics cannot: perhaps, for example, small changes in the 

intensity of the criticism would be found to correlate very well with small variations in 

subsequent performance. Before it is rational to accept that some as yet unknown factor 

causally explains the behaviour of a gas, it is necessary to find some aspect of its 

behaviour that cannot be explained statistically. Non-causal explanations are not 

incompatible with IBE. They do not claim to be true, and they can guide our IBE 

practices. 
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5.2 Closing comments 

 

Large classes of explanations are non-causal. These explanations are statistical arguments 

that show the explanandum was to be expected with high probability. Thermal physics is 

a ripe source of such non-causal statistical explanations, often overlooked in the 

literature. But there are everyday cases too, and it is in these cases that the power of non-

causal explanation is most compelling. Moreover, population genetics offers up a second 

very large class of explanations where non-causal explanation might be more prevalent 

than is generally acknowledged. Attempts to draw parallels between population genetics 

and thermal physics are promising, but so far the picture of natural selection and drift as 

causal processes is yet to be refuted.  

 

The Lewis/Lipton causal model of explanation tells far from the whole story. In cases of 

clear contrastive why-questions, where the causal answer, if there was one, should have 

been clear, we have found no causal explanation and a satisfying non-causal explanation. 

I doubt that the explanations I have discussed can be brought under any umbrella of 

causal explanation. If this is the case, causal models in general cannot tell the whole story 

about our explanatory practices. I have suggested that Hempel’s I-S model may be able to 

account for the non-causal explanations. Though Coffa and Jeffrey’s objections to the I-S 

model as a complete account of all statistical explanation are plausible, they do not block 

the applicability of Hempel’s model to the non-causal explanations I have discussed.   

 

I do not, however, rule out the possibility that other models may suffice for this purpose. 

In particular, I have not discussed Philip Kitcher’s (1981) influential unification account 

of explanation. Michael Strevens (2004) hints at the possibility of a radically new causal 

model able to accommodate statistical explanations in thermal physics: the “kairetic” 

account. I await the full articulation of this model with both interest and scepticism. In the 

meantime, I will settle for the straightforward conclusion that Lewis was wrong: there are 

scientific explanations of physical phenomena that are not causal, and our explanatory 

practices are less uniform than he suggests. 
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