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The demand of many scientific areas for the usage of fractional partial differential equations (FPDEs) to explain their real-world
systems has been broadly identified. The solutions may portray dynamical behaviors of various particles such as chemicals and
cells. The desire of obtaining approximate solutions to treat these equations aims to overcome the mathematical complexity of
modeling the relevant phenomena in nature.This research proposes a promising approximate-analytical scheme that is an accurate
technique for solving a variety of noninteger partial differential equations (PDEs).The proposed strategy is based on approximating
the derivative of fractional-order and reducing the problem to the corresponding partial differential equation (PDE). Afterwards,
the approximating PDE is solved by using a separation-variables technique.Themethod can be simply applied to nonhomogeneous
problems and is proficient to diminish the span of computational cost as well as achieving an approximate-analytical solution that
is in excellent concurrence with the exact solution of the original problem. In addition and to demonstrate the efficiency of the
method, it compares with two finite difference methods including a nonstandard finite difference (NSFD) method and standard
finite difference (SFD) technique, which are popular in the literature for solving engineering problems.

1. Introduction

Many anomalous diffusion processes which existed in some
physical and biological areas can be modeled by the time-
fractional reaction diffusion wave equation. In the past
few decades, high and rapid growing attention related to
partial differential equations (PDEs) which contain fractional
derivatives and integrals occurred due to their important
application in modeling of many anomalous diffusion pro-
cesses. Fractional partial differential equations (FPDEs) are
excellent instrument, bringing into a broader paradigm
concepts of science and engineering, such as fluid flow,
diffusive transport akin to diffusion, rheology, probability,
and electrical networks [1–16]. Consequently, the solution
of FPDEs represents nowadays a vigorous research area for
scientists and finding approximate and exact solutions to

FPDEs is an important task. However, PDEs are commonly
hard to tackle, and their fractional-order types are more
complicated [1, 2, 17, 18].

In recent years, several analytical and approximate tech-
niques such as the Adomian decomposition [19], homotopy
analysis [20], tau method [21], and variational iteration
method [22, 23] have been constructed for solving FPDEs.
Nevertheless, the study of PDEs with fractional derivative
has been impeded because of the nonappearance of low
cost and accurate techniques to deal with them. In addition,
the derivation of approximate solution of FPDEs remains a
hotspot and demands to endeavor some proficient and solid
plans are an issue of serious interest.

Based on the depiction above, we undoubtedly need to
explore new schemes that propose prompt and obvious typi-
cal terms of analytic solutions and additionally numerical
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approximate solutionswithout linearization or discretization.
Therefore, a sincere attempt has beenmade in this research to
implement relatively new approximate-analytical technique
for nonhomogeneous PDEs with a noninteger derivative of
order 𝛼 ∈ (0, 1] as
𝑐𝐷𝛼𝑡 𝑢 (𝑥, 𝑡) − 𝑢𝑥𝑥 (𝑥, 𝑡) = 𝑔 (𝑡) , 𝑥 ∈ [0, 𝐿] , 𝑡 > 0 (1)

subject to the initial and boundary conditions:

𝑢 (𝑥, 0) = 𝑓 (𝑥) , 0 < 𝑥 < 𝐿,
𝑢 (0, 𝑡) = 𝜃 (𝑡) ,
𝑢 (𝐿, 𝑡) = 𝜔 (𝑡) ,

𝑡 > 0.
(2)

The analytical solutions of the FPDEs were investigated
in literature by employing of Green’s functions or Fourier-
Laplace transforms [24–26]. However, explicit analytic solu-
tions of FPDEs are seldom obtainable in the literature due
to extra complexity of dealing with fractional derivative.
The aim of the current letter is to extend the application of
the separation-variables method to solve the approximating
PDE corresponding to the FPDE (1). In fact, we combine
an algorithm based on the Laplace transform method to
convert the FPDE to the relevant PDE [27] and a separation
of variables scheme to achieve the analytical solution of the
derived PDE which is close to the exact solution of the
original FPDE.

The separation of variables method, at least, in its most
basic structures, for example, in Cartesian, spherical, or
ellipsoidal coordinates, is a key part of the basicmathematical
modules. In short, the separation of variables can be por-
trayed as a tool to reduce a multidimensional problem to
series of one-dimensional ones. It behaves similar to most
of global numerical techniques for solving complex models
arising in real-world systems [28–31]. This urges us to exploit
the powerful properties of the separation-variables method
for solving FPDEs aswell as reducing the difficulty of working
with fractional derivatives.

In terms of numerical approach, this strategy provides
more efficient tool for computing approximate solutions of
FPDEs in comparison with the most common numerical
methods such as finite difference techniques.These stepping-
type techniques need to manage the matter of stability. In
either case, the base stride size for stability can be specified
analytically; yet ordinarily the step sizes are not large. Note
likewise that stability does not suggest exactness, particularly
while approximating noninteger derivatives. Other numer-
ical methods such as finite element methods [32–34] were
developed for numerically solving FPDEs but again such
a solution requires the discretization of domain into the
number of finite domains/points and their computational
difficulties increment quickly with the number of testing
nodes. Besides that, rounding-off errors solemnly influence
the solution precision in the numerical techniques with
complicatedness that also raise quickly with the number of
testing nodes [35]. To demonstrate our claims which partially
motivated us to develop the present scheme for FPDEs,

we compare it with a nonstandard finite difference (NSFD)
method and standard finite difference (SFD) algorithm [27].

To summarize, solving FPDEs with the proposed scheme
offers the solution without coordinate transformations and
computational cost does not grow immediately when the
quantity of sampling points raises. Moreover, the product
solutions constructed by the proposed methodology involve
single independent variables regardless of the dimension
of the problem and are continuous over all the domain of
integration. Our scope in this paper is to give a promising and
applicable algorithm for solving FPDEs to achieve an accurate
solution which takes conveniences of the characteristics of
the separation-variables scheme.

The organization of this letter is as follows. To have the
required mathematical background, in Section 2 we describe
some necessary definitions and mathematical preliminaries
of the fractional calculus theory. In Section 3, we explain how
the approximate-analyticalmethod admitted by nonhomoge-
neous PDEs with fractional derivatives can be implemented.
The usefulness of the above method has been illustrated
through a number of examples in Section 4. In Section 5, we
give a brief outline of our outcomes.

2. Notes on Fractional Calculus

Before embarking into the details of our method to FPDEs,
we might want to review some fundamental definitions,
results, and characteristics of the fractional calculus opera-
tors, utilized as a part of the remaining context of the report.
The interested readers are refereed for more details to the
following monographs [1, 2, 5, 17].

Definition 1. TheRiemann-Liouville fractional integral oper-
atorI𝛼 of order 𝛼 ≥ 0 is defined by

(I𝛼𝑡 𝑢) (𝑥, 𝑡) = 1
Γ (𝛼) ∫

𝑡

0
(𝑡 − 𝜏)𝛼−1 𝑢 (𝑥, 𝜏) 𝑑𝜏, 𝛼 > 0,

I
0𝑢 (𝑡) = 𝑢 (𝑡) ,

(3)

in which Γ(⋅) indicates the gamma function.

Definition 2. Let us assume 𝑛 is the smallest integer that is
greater than𝛼; theCaputo time-fractional derivative operator
of order 𝛼 > 0 is defined as follows:
𝑐
D
𝛼
𝑡 𝑢 (𝑥, 𝑡) = 𝜕

𝛼𝑢 (𝑥, 𝑡)
𝜕𝑡𝛼

=
{{{{{{{{{{{

1
Γ (𝑛 − 𝛼) ∫

𝑡

0
(𝑡 − 𝜏)𝑛−𝛼−1 𝜕𝑛 (𝑢, 𝜏)𝜕𝜏𝑛 𝑑𝜏, 𝑛 − 1 < 𝛼 < 𝑛,

𝜕𝑛 (𝑥, 𝑡)
𝜕𝑡𝑛 𝛼 = 𝑛 ∈ N.

(4)

The Caputo-type fractional derivative is also stated as
𝑐D𝛼𝑡 𝑢(𝑥, 𝑡) = I𝑛−𝛼𝑡 (𝜕𝑛(𝑥, 𝑡)/𝜕𝑡𝑛). Furthermore, Caputo’s
fractional derivatives are the linear operators given as follows:

𝑐
D
𝛼
𝑡 (𝜂𝑢 (𝑥, 𝑡) + 𝜆V (𝑥, 𝑡))
= 𝜂 𝑐D𝛼𝑡 𝑢 (𝑥, 𝑡) + 𝜆 𝑐D𝛼𝑡 V (𝑥, 𝑡) ,

(5)

in which 𝜂 and 𝜆 are constants.
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The Laplace transform of Caputo fractional derivative of
order 𝛼 > 0 is (as presented in [26, 27])

𝐿 {𝑐D𝛼𝑡 𝑓 (𝑡)} = 𝑠𝛼𝑓 (𝑠) −
𝑛−1∑
𝑘=0

𝑠𝛼−𝑘−1𝑓(𝑘) (0) ,
𝑛 − 1 ≤ 𝛼 ≤ 𝑛, 𝑛 ∈ N.

(6)

It is worthy to mention that

𝐿 {𝑐𝐷𝛼𝑡 𝑓 (𝑡)} = 𝑠𝛼𝑓 (𝑠) − 𝑠𝛼−1𝑓 (0) , 0 < 𝛼 ≤ 1, (7)

in which

𝐿 {𝑓 (𝑡)} = 𝑓 (𝑠) = ∫∞
0
𝑒−𝑠𝑡𝑓 (𝑡) 𝑑𝑡. (8)

3. Formulation of the Solution Method

In this section we illustrate the strategy that is proposed to
approximate the solution of the FPDEs with Caputo-type
derivative. In this regard, the FPDE is converted to a PDE by
approximating the fractional derivative using the approach
proposed in [27]; then, a variable-separation technique is
developed to achieve an approximate-analytical solution for
the nonhomogeneous FPDE. In fact, themodel reduction ful-
filled at the first step can enhance the computational produc-
tivity.

Let us consider the following Caputo-type FPDE as fol-
lows:
𝑐
D
𝛼
𝑡 𝑢 (𝑥, 𝑡) = 𝑢𝑥𝑥 (𝑥, 𝑡) + 𝑔 (𝑥, 𝑡) ,

0 < 𝑥 < 𝐿, 𝑡 > 0, 0 < 𝛼 < 1, (9)

𝑢 (𝑥, 0) = 𝑓 (𝑥) , 0 < 𝑥 < 𝐿,
𝑢 (0, 𝑡) = 𝜃 (𝑡) ,
𝑢 (𝐿, 𝑡) = 𝜔 (𝑡) ,

𝑡 > 0.
(10)

The Caputo fractional term 𝑐D𝛼𝑡 𝑢(𝑥, 𝑡) is approximated
by employing Laplace transform method and a linearization
method proposed by Ren et al. [22] which was developed for
interval arithmetic in [33] as follows:

𝐿 {𝑐D𝛼𝑡 𝑢 (𝑥, 𝑡)} = 𝑠𝛼𝑢 (𝑥, 𝑠) − 𝑠𝛼−1𝑢 (𝑥, 0) , (11)

in which 𝑢(𝑥, 𝑠) is the Laplace transform of 𝑢(𝑥, 𝑡). In this
study we assume that 0 < 𝛼 < 1, so the term 𝑠𝛼 is linearized
as

𝑠𝛼 ≈ 𝛼𝑠1 + (1 − 𝛼) 𝑠0 = 𝛼𝑠 + (1 − 𝛼) . (12)

By replacing (12) into (11) and using the inverse Laplace
transform we have

𝑐
D
𝛼
𝑡 𝑢 (𝑥, 𝑡) ≈ 𝛼𝑢𝑡 + (1 − 𝛼) [𝑢 (𝑥, 𝑡) − 𝑢 (𝑥, 0)] . (13)

By taking into account (13), the original FPDE (9) is simplified
to the following PDE:

𝛼𝑢𝑡 (𝑥, 𝑡) + (1 − 𝛼) 𝑢 (𝑥, 𝑡)
= 𝑢𝑥𝑥 (𝑥, 𝑡) + (1 − 𝛼) 𝑓 (𝑥) + 𝑔 (𝑥, 𝑡) ,

0 < 𝑥 < 𝐿, 𝑡 > 0, 0 < 𝛼 < 1,
(14)

𝑢 (𝑥, 0) = 𝑓 (𝑥) , 0 < 𝑥 < 𝐿,
𝑢 (0, 𝑡) = 𝜃 (𝑡) ,
𝑢 (𝐿, 𝑡) = 𝜔 (𝑡) ,

𝑡 > 0.
(15)

In this step the problem is converted to a PDE and the
fractional derivative is removed from the problem which can
extremely reduce the computation cost. Now, we present our
scheme to get the analytical solution of the PDE (14) which
leads to getting an approximate-analytical solution of the
FPDE (9).

3.1. Separation of Variables Method for Some PDEs. Let us
consider the following PDE:

𝑢𝑡 (𝑥, 𝑡) = 𝑐2𝑢𝑥𝑥 (𝑥, 𝑡) , 0 < 𝑥 < 𝐿, 𝑡 > 0,
𝑢 (0, 𝑡) = 𝑢 (𝐿, 𝑡) = 0,
𝑢 (𝑥, 0) = 𝑓 (𝑥) .

(16)

In order to find nontrivial solutions 𝑢(𝑥, 𝑡) for the PDE (16),
we should assume that 𝑢(𝑥, 𝑡) is a product of two functions
depending on two parameters 𝑡 and 𝑥 such that 𝑢(𝑥, 𝑡) =
F(𝑥)G(𝑡). Hence, we have 𝑢𝑡 = F(𝑥)Ġ(𝑡) and 𝑢𝑥𝑥 =
F󸀠󸀠(𝑥)G(𝑡). By substituting these products in (16) we have

FĠ = 𝑐2F󸀠󸀠G (17)

that is implied as follows:

F󸀠󸀠

F
= Ġ

𝑐2G . (18)

Since the left-hand side of (18) is a function of 𝑥 and the right
side is a function of 𝑡, so it can be concluded that (18) holds
such that

F󸀠󸀠

F
= Ġ

𝑐2G = 𝑘, (19)

in which 𝑘 is constant. Therefore, by considering the bound-
ary condition (16) we have

0 = 𝑢 (0, 𝑡) = F (0)G (𝑡) 󳨀→
F (0) = 0,
0 = 𝑢 (𝐿, 𝑡) = F (𝐿)G (𝑡) 󳨀→

F (𝐿) = 0.
(20)
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Note that if we assume G(𝑡) = 0 in the above equations, it
leads to a trivial solution 𝑢(𝑥, 𝑡) = 0. So, we have the next
relations forF(𝑥):

F
󸀠󸀠 − 𝑘F = 0,
F (0) = F (𝐿) = 0. (21)

Now we determine the nontrivial solutions for different
values of 𝑘. It is easy to find that (21) has a trial solution for 𝑘 =0 and 𝑘 > 0. We have only nontrivial solution for 𝑘 = −𝜆2 < 0
such that 𝜆 = 𝑛𝜋/𝐿 for all 𝑛 ∈ N; thus F𝑛(𝑥) = 𝑏𝑛 sin(𝜆𝑥)
is a solution for (21). By substituting 𝑘 = −𝜆2 = −(𝑛𝜋/𝐿)2 in
Ġ − 𝑘𝑐2G = 0, we obtain the solutionG𝑛(𝑡) = 𝑎𝑛exp(−𝜆2𝑐2𝑡)
for all 𝑛 ∈ N. Therefore, 𝑢𝑛(𝑥, 𝑡) = F𝑛(𝑥)G𝑛(𝑡), ∀𝑛 ∈ N is a
solution of PDE (16) and the general solution of the problem
can be formed as

𝑢 (𝑥, 𝑡) = ∑
𝑛=1

𝐴𝑛G𝑛 (𝑡)F𝑛 (𝑥)

= ∑
𝑛=1

𝐴𝑛exp(−(𝑛𝑐𝜋𝐿 )
2 𝑡) sin(𝑛𝜋𝐿 𝑥) .

(22)

By applying the initial condition 𝑢(𝑥, 0) = 𝑓(𝑥), we can
specify the coefficients 𝐴𝑛 as follows:

𝐴𝑛 = 2𝐿 ∫
𝐿

0
𝑓 (𝑥) sin(𝑛𝜋𝐿 𝑥)𝑑𝑥. (23)

Now let us consider the following problem:

𝑢𝑡 (𝑥, 𝑡) + 𝛼2𝑢 (𝑥, 𝑡) = 𝛽2𝑢𝑥𝑥 (𝑥, 𝑡) + 𝑔 (𝑥, 𝑡) ,
0 < 𝑥 < 𝐿, 𝑡 > 0,

𝑢 (0, 𝑡) = 𝑢 (𝐿, 𝑡) = 0,
𝑢 (𝑥, 0) = 𝑓 (𝑥) .

(24)

In order to solve problem (24), at first we should consider the
corresponding homogeneous equation 𝑢𝑡(𝑥, 𝑡) + 𝛼2𝑢(𝑥, 𝑡) =𝛽2𝑢𝑥𝑥(𝑥, 𝑡). Similar to the procedure for problem (16), we
assume the solution as 𝑢(𝑥, 𝑡) = F(𝑥)G(𝑡). Therefore, by
substituting 𝑢(𝑥, 𝑡) into (16) we have

FĠ + 𝛼2FG = 𝛽2F󸀠󸀠G 󳨀→
Ġ + 𝛼2G
𝛽2G = F󸀠󸀠

F
= 𝑘, (25)

where 𝑘 is a constant. By taking into consideration the
boundary condition F(0) = F(𝐿) = 0, it is proved that𝑘 = −𝜆2 < 0. Hence by solving the equation corresponding
to F(𝑥), it is implied that 𝜆 = 𝑛𝜋/𝐿 for all 𝑛 ∈ N and we
acquire F𝑛(𝑥) as F𝑛(𝑥) = 𝐵𝑛sin((𝑛𝜋/𝐿)𝑥). Now we can get
the solution of the nonhomogeneous problem (24) in a form
as

𝑢 (𝑥, 𝑡) = ∑
𝑛=1

G𝑛 (𝑡) sin(𝑛𝜋𝐿 𝑥) . (26)

By replacing (26) into problem (24) we have

∑
𝑛=1

(Ġ𝑛 + [𝛼2 + (𝛽𝑛𝜋𝐿 )
2]G𝑛) sin(𝑛𝜋𝐿 𝑥)

= 𝑔 (𝑥, 𝑡) .
(27)

Consequently, the coefficients (Ġ𝑛 + [𝛼2 + (𝛽𝑛𝜋/𝐿)2]G𝑛) are
the coefficients of Fourier sine series of 𝑔(𝑥, 𝑡) given by

(Ġ𝑛 + [𝛼2 + (𝛽𝑛𝜋𝐿 )
2]G𝑛)

= 2𝐿 ∫
𝐿

0
𝑔 (𝑥, 𝑡) sin(𝑛𝜋𝐿 𝑥) 𝑑𝑥.

(28)

In order to solve the above equation, we employ the initial
condition 𝑢(𝑥, 0) = 𝑓(𝑥) as follows:

𝑓 (𝑥) = 𝑢 (𝑥, 0) = ∑
𝑛=1

G𝑛 (0) sin(𝑛𝜋𝐿 𝑥) 󳨀→

G𝑛 (0) = 2𝐿 ∫
𝐿

0
𝑓 (𝑥, 𝑡) sin(𝑛𝜋𝐿 𝑥) 𝑑𝑥.

(29)

Hence, by solving (28) based on the initial condition (29), we
can obtain G𝑛(𝑡) and finally 𝑢(𝑥, 𝑡) is achieved, that is, the
solution of problem (24).

4. Numerical Experiments

To reveal the usefulness of the proposed plan for the non-
homogeneous PDEs with the Caputo-type derivative, we test
a number of FPDEs and compare with the NSFD method
and SFD technique [27]. The accuracy of these methods
is computed by a maximum norm relative error [27] and
error norm 𝐿∞. It is shown that the present technique is a
precise and cost efficient tool for the solution of FPDEs. The
numerical computations are implemented through Matlab
software, version R2010a, and the CPU of system is Intel(R)
core(TM) i3-4130 with RAM 4GB.

Remark 3. To have an accurate comparison with the tech-
nique presented in [27], we employ the nonstandard Crank-
Nicolson method as a NSFD method and standard Crank-
Nicolson method as a SFD technique with the formula
proposed in [27].

Example 4. Let us consider the following FPDE [27]:
𝑐
D
𝛼
𝑡 𝑢 (𝑥, 𝑡) = 𝑢𝑥𝑥 (𝑥, 𝑡)

+ ( 6
Γ (4 − 𝛼) 𝑡3−𝛼 + 𝑡3 + 1) sin𝑥,

𝑢 (𝑥, 0) = sin𝑥, 0 < 𝑥 < 𝜋, 0 < 𝛼 < 1,
𝑢 (0, 𝑡) = 𝑢 (𝜋, 𝑡) = 0.

(30)

The exact solution of the above problem is 𝑢(𝑥, 𝑡) =(𝑡3 +1) sin𝑥. By employing the technique introduced in [27],
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we approximate the Caputo fractional derivative; hence, the
problem (30) is converted to the following system:

𝛼𝑢𝑡 (𝑥, 𝑡) + (1 − 𝛼) 𝑢 (𝑥, 𝑡)
= 𝑢𝑥𝑥 (𝑥, 𝑡)
+ ( 6
Γ (4 − 𝛼) 𝑡3−𝛼 + 𝑡3 + 2 − 𝛼) sin (𝑥) ,

0 ≤ 𝑥 ≤ 𝜋, 𝑡 ≥ 0,
𝑢 (𝑥, 0) = sin (𝑥) ,
𝑢 (0, 𝑡) = 𝑢 (𝜋, 𝑡) = 0.

(31)

Since the boundary conditions are homogeneous, we can
obtain the solution of (31) by using the separation of variables
method. So, let us assume that

𝑢 (𝑥, 𝑡) = ∑
𝑛=1

G𝑛 (𝑡) sin (𝑛𝑥) , (32)

by replacing (32) in (31) we have

∑
𝑛=1

(𝛼Ġ𝑛 (𝑡) + (1 − 𝛼 + 𝑛2)G𝑛 (𝑡)) sin (𝑛𝑥)

= ( 6
Γ (4 − 𝛼) 𝑡3−𝛼 + 𝑡3 + 2 − 𝛼) sin (𝑥) ,

(33)

in which Ġ𝑛(𝑡) is the derivative ofG𝑛(𝑡) with respect to 𝑡.
Regarding the equivalency of the right-hand side of (33)

with the left-hand side, it can be implied that 𝛼Ġ𝑛(𝑡) + (1 −𝛼+𝑛2)G𝑛(𝑡) are the coefficients of the Fourier sin series of the
right-hand side function. So, we have for 𝑛 = 1

𝛼Ġ1 (𝑡) + (2 − 𝛼)G1 (𝑡)
= ( 6
Γ (4 − 𝛼) 𝑡3−𝛼 + 𝑡3 + 2 − 𝛼)

(34)

and for 𝑛 ≥ 2
𝛼Ġ𝑛 (𝑡) + (1 − 𝛼 + 𝑛2)G𝑛 (𝑡) = 0. (35)

From the initial condition of problem (31) we have

sin (𝑥) = 𝑢 (𝑥, 0) = ∑
𝑛=1

G𝑛 (0) sin (𝑛𝑥) 󳨐⇒
G1 (0) = 1,

∀𝑛 ≥ 0, G𝑛 (0) = 0.
(36)

By solving the two systems of equations,

𝛼Ġ1 (𝑡) + (2 − 𝛼)G1 (𝑡) = 6
Γ (4 − 𝛼) 𝑡3−𝛼 + 𝑡3 + 2 − 𝛼,

G1 (0) = 1,
𝛼Ġ𝑛 (𝑡) + (1 − 𝛼 + 𝑛2)G𝑛 (𝑡) = 0,
G𝑛 (0) = 0,

(37)

Table 1: Maximum norm relative errors of the proposed approxi-
mate-analytical solution, NSFD method, and SFD technique for
Example 4.

𝛼 Our scheme NSFD method SFD method [27]
0.01 0.002142897 0.001377269 0.002101727
0.1 0.019659612 0.019617338 0.019617785
0.3 0.045194043 0.045149718 0.045148926
0.5 0.051662902 0.051612374 0.051614489
0.7 0.041504057 0.041454967 0.041453574
0.9 0.017072953 0.017021427 0.017021427
0.99 0.001846904 0.001795412 0.001795165

we can find thatG1(𝑡) ̸= 0,G𝑛(𝑡) = 0 for 𝑛 ≥ 2 and
𝑢 (𝑥, 𝑡) = G1 (𝑡) sin (𝑥) . (38)

In [27], the authors employed the following SFD method
to approximate the solution of problem (31):

𝛼𝑢𝑛+1𝑖 − 𝑢𝑛𝑖Δ𝑡 + 1 − 𝛼2 (𝑢𝑛𝑖 + 𝑢𝑛+1𝑖 )

= 12 (
𝑢𝑛𝑖+1 − 2𝑢𝑛𝑖 + 𝑢𝑛𝑖−1Δ2𝑥 + 𝑢𝑛+1𝑖+1 − 2𝑢𝑛+1𝑖 + 𝑢𝑛+1𝑖−1Δ2𝑥 )

+ 𝑅𝑛𝑖 + 𝑅𝑛+1𝑖2 ,

(39)

in which

𝑅 (𝑥, 𝑡) = ( 6
Γ (4 − 𝛼) 𝑡3−𝛼 + 𝑡3 + 2 − 𝛼) sin (𝑥) . (40)

Now we solve problem (31) by using the NSFD method.
Note that the formula of NSFD method is similar to the SFD
method (39) with a difference thatΔ𝑡 is replacedwith 𝜙(Δ𝑡) =(exp(𝛽Δ𝑡) − 1)/𝛽, where 𝛽 = (𝛼 − 2)/𝛼. Hence, an algebraic
nonlinear equations system is obtained that can be solved by
LU decomposition method to get the approximate solution.
Then, the relative error in maximum norm between the
numerical solution and the exact solution of (31) is achieved
using the following formula:

𝐸 (Δ𝑥, Δ𝑡) = max
0≤𝑛≤𝑁

max1≤𝑗≤𝑀−1
󵄨󵄨󵄨󵄨󵄨𝑢 (𝑥𝑗, 𝑡𝑛) − 𝑢𝑛𝑗 󵄨󵄨󵄨󵄨󵄨

max1≤𝑗≤𝑀−1
󵄨󵄨󵄨󵄨󵄨𝑢 (𝑥𝑗, 𝑡𝑛)󵄨󵄨󵄨󵄨󵄨

. (41)

In Table 1 by using formula (41), the difference between
the approximate solutions of theNSFDmethod, SFDmethod,
and the proposed approximate-analytical solution is com-
pared with the exact solution of the original FPDE (30) forΔ𝑥 = 𝜋/100, Δ𝑡 = 1/100 on 𝑡 ∈ [0, 1]. A comparison of
the NSFD and SFD solutions based on the error norm 𝐿∞
for different values of 𝛼 at 𝑇 = 1 is shown in Table 2. The
numerical results illustrated that the present scheme works
very well for this problem, specially near 𝛼 = 1. The order
of accuracy is approximately the same for all the numeri-
cal methods. However, there is no requirement to check the
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Figure 1: The numerical solution (a) with the error function (b) of Example 4 for 𝛼 = 0.99 over 𝑡 ∈ [0, 1].

Table 2: Error norm 𝐿∞ for Example 4.

𝛼 Our scheme NSFD method SFD method [27]
0.01 0.003699 0.001490 0.003617
0.1 0.034897 0.033022 0.034801
0.3 0.084289 0.082783 0.084514
0.5 0.098251 0.098184 0.099550
0.7 0.078375 0.080241 0.081020
0.9 0.029823 0.033207 0.033430
0.99 0.000609 0.003509 0.003529

stability and consistency of the solution for the proposed
algorithm while for others it is critical. Moreover, the graphs
of the numerical solution (38) with the error function
between the exact and numerical solutions over 𝑡 ∈ [0, 1] for𝛼 = 0.99 are plotted in Figure 1.

Example 5. Let us consider the following FPDE [27]:
𝑐
D
𝛼
𝑡 𝑢 (𝑥, 𝑡) = 𝑢𝑥𝑥 (𝑥, 𝑡)

+ (16Γ (4 + 𝛼) 𝑡3 − 𝑡3+𝛼) sin𝑥,
𝑢 (𝑥, 0) = 1, 0 < 𝑥 < 𝜋,
𝑢 (0, 𝑡) = 𝑢 (𝜋, 𝑡) = 1.

(42)

The the exact solution is 𝑢(𝑥, 𝑡) = 𝑡3+𝛼 sin 𝑥+1. Similar to
problem (30), the above problem is converted to the following
PDE:

𝛼𝑢𝑡 (𝑥, 𝑡) + (1 − 𝛼) 𝑢 (𝑥, 𝑡)
= 𝑢𝑥𝑥 (𝑥, 𝑡) + (1 − 𝛼)
+ (Γ (4 + 𝛼)6 𝑡3 − 𝑡3+𝛼) sin (𝑥) , 0 < 𝑥 < 𝜋,

𝑢 (𝑥, 0) = 1,
𝑢 (0, 𝑡) = 𝑢 (𝜋, 𝑡) = 1.

(43)

To change the conditions of problem (43) to homogeneous
conditions, we replace 𝑢(𝑥, 𝑡) with V(𝑥, 𝑡) + 1. By substituting
this new variable in (43) we have

𝛼V𝑡 (𝑥, 𝑡) + (1 − 𝛼) V (𝑥, 𝑡)
= V𝑥𝑥 (𝑥, 𝑡) + (Γ (4 + 𝛼)6 𝑡3 − 𝑡3+𝛼) sin (𝑥) ,

0 < 𝑥 < 𝜋,
V (𝑥, 0) = 0,
V (0, 𝑡) = V (𝜋, 𝑡) = 0.

(44)

Similar to Example 4, we can get the general solution of
problem (44) according the boundary conditions as

V (𝑥, 𝑡) = ∑
𝑛=1

G𝑛 (𝑡) sin (𝑛𝑥) . (45)

By replacing (45) into (44) we have

∑
𝑛=1

(𝛼Ġ𝑛 (𝑡) + (1 − 𝛼 + 𝑛2)G𝑛 (𝑡)) sin (𝑛𝑥)

= (Γ (4 + 𝛼)6 𝑡3 − 𝑡3+𝛼) sin (𝑥) .
(46)

Hence, 𝛼Ġ𝑛(𝑡) + (1 − 𝛼 + 𝑛2)G𝑛(𝑡) are the coefficients of the
Fourier sin series of the right-hand side function and we have
for 𝑛 = 1

𝛼Ġ1 (𝑡) + (2 − 𝛼)G1 (𝑡) = (Γ (4 + 𝛼)6 𝑡3 − 𝑡3+𝛼) (47)
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and for 𝑛 ≥ 2
𝛼Ġ𝑛 (𝑡) + (1 − 𝛼 + 𝑛2)G𝑛 (𝑡) = 0. (48)

Regarding the initial conditions (43), we have

0 = V (𝑥, 0) = ∑
𝑛=1

G𝑛 (0) sin (𝑛𝑥) 󳨐⇒
G𝑛 (0) = 0 ∀𝑛.

(49)

By solving the systems of equations,

𝛼Ġ1 (𝑡) + (2 − 𝛼)G1 (𝑡) = Γ (4 + 𝛼)6 𝑡3 − 𝑡3+𝛼,
G1 (0) = 0,

𝛼Ġ𝑛 (𝑡) + (1 − 𝛼 + 𝑛2)G𝑛 (𝑡) = 0,
G𝑛 (0) = 0,

(50)

it is obtained thatG1(𝑡) ̸= 0,G𝑛(𝑡) = 0 for 𝑛 ≥ 2 and
V (𝑥, 𝑡) = G1 (𝑡) sin (𝑡) ,
𝑢 (𝑥, 𝑡) = G1 (𝑡) sin (𝑡) + 1. (51)

The exact solution of the original FPDE is 𝑡𝛼+3sin(𝑥) + 1. As
it is obvious, the difference between the exact solution and
the numerical solution 𝑢(𝑥, 𝑡) is the terms G1(𝑡) and 𝑡3+𝛼.
Jiang and Ma [27] approximated the solution using the SFD
method (39) such that

𝑅 (𝑥, 𝑡) = (1 − 𝛼) + (Γ (4 + 𝛼)6 𝑡3 − 𝑡3+𝛼) sin (𝑥) , (52)

and the error of themethod is analyzed by using relation (41).
Once again we employ NSFD method to have a comparison
among our proposed scheme, NSFD method, and SFD
technique. Indeed, the formula of NSFD method is similar
to the SFD method (39) with a difference that Δ𝑡 is replaced
with 𝜙(Δ𝑡) = (exp(𝛽Δ𝑡) − 1)/𝛽 in which 𝛽 = (𝛼 − 2)/𝛼. We
also employ (41) to compare the numerical solution 𝑢(𝑥, 𝑡)
with the the SFDmethod and NSFD techniques by assumingΔ𝑥 = 𝜋/100, Δ𝑡 = 1/100 on 𝑡 ∈ [0, 1] in Table 3. In addi-
tion, error norm 𝐿∞ is used to have a comparison from
another point of view that is illustrated in Table 4. From the
tables we can see that the order of accuracy for all the present
numerical techniques is the same. Besides, error norm 𝐿∞
for the approximate-analytical solution is plotted with 𝛼 =0.9, 0.99 and 0.999 at 𝑇 = 1 in Figure 2.

Remark 6. It is worth noting here that the results of this prob-
lem, by using the SFD method as it is shown in [27], are not
correct. Thereby, we modified the results to have a fair com-
parison for this example.

Example 7. Consider the following FPDE [27]:
𝑐
D
𝛼
𝑡 𝑢 (𝑥, 𝑡) = 𝑢𝑥𝑥 (𝑥, 𝑡)

+ ( 6
Γ (4 − 𝛼) 𝑡3−𝛼 − 𝑡3 − 1) 𝑒𝑥,

𝑢 (𝑥, 0) = 𝑒𝑥, 0 < 𝑥 < 1,
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Figure 2: Error norm 𝐿∞ for Example 5 (𝛼 = 0.9 − ◻;𝛼 = 0.99 − ∘,
and 𝛼 = 0.999 − ×) at 𝑇 = 1.

𝑢 (0, 𝑡) = 𝑡3 + 1,
𝑢 (1, 𝑡) = (𝑡3 + 1) 𝑒,

𝑡 > 0.
(53)

The analytical solution of problem (53) is 𝑢(𝑥, 𝑡) = (𝑡3 +1)𝑒𝑥 and 0 < 𝛼 < 1. Once again the Caputo-type derivative
is approximated by the described technique in the previous
section.Therefore, the problemchanges to the followingPDE:

𝛼𝑢𝑡 (𝑥, 𝑡) + (1 − 𝛼) 𝑢 (𝑥, 𝑡)
= 𝑢𝑥𝑥 (𝑥, 𝑡) + (1 − 𝛼) 𝑒𝑥
+ ( 6
Γ (4 − 𝛼) 𝑡3−𝛼 − 𝑡3 − 1) 𝑒𝑥, 0 < 𝑥 < 1,

𝑢 (𝑥, 0) = 𝑒𝑥,
𝑢 (0, 𝑡) = 𝑡3 + 1,
𝑢 (1, 𝑡) = (1 + 𝑡3) 𝑒.

(54)

In order to change Example (54) to a problem with the
homogeneous conditions, we use a change of variables as𝑢(𝑥, 𝑡) = V(𝑥, 𝑡) + (𝑡3 + 1)𝑒𝑥. Therefore, we have

𝛼V𝑡 (𝑥, 𝑡) + (1 − 𝛼) V (𝑥, 𝑡)
= V𝑥𝑥 (𝑥, 𝑡)
+ ( 6
Γ (4 − 𝛼) 𝑡3−𝛼 − (1 − 𝛼) 𝑡3 − 3𝛼𝑡2) 𝑒𝑥,

0 < 𝑥 < 1,
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V (𝑥, 0) = 0,
V (0, 𝑡) = 0,
𝑢 (1, 𝑡) = 0.

(55)

Analogously to the demonstration of the procedure for
the previous examples, we can consider the solution of (55)
as V(𝑥, 𝑡) = ∑𝑛=1G𝑛(𝑡)sin(𝑛𝜋𝑥). By substituting it into (55)
we have

∑
𝑛=1

(𝛼Ġ𝑛 (𝑡) + (1 − 𝛼 + 𝑛2𝜋2)G𝑛 (𝑡)) sin (𝑛𝜋𝑥)

= ( 6
Γ (4 − 𝛼) 𝑡3−𝛼 − (1 − 𝛼) 𝑡3 − 3𝛼𝑡2) 𝑒𝑥.

(56)

Therefore, we have

𝛼Ġ𝑛 (𝑡) + (1 − 𝛼 + 𝑛2𝜋2)G𝑛 (𝑡)
= 2∫1
0
( 6
Γ (4 − 𝛼) 𝑡3−𝛼 − (1 − 𝛼) 𝑡3 − 3𝛼𝑡2)

⋅ 𝑒𝑥sin (𝑛𝜋𝑥) 𝑑𝑥 = 2( 6
Γ (4 − 𝛼) 𝑡3−𝛼 − (1 − 𝛼) 𝑡3

− 3𝛼𝑡2) 𝑛𝜋 (1 − (−1)𝑛 𝑒)𝑛2𝜋2 + 1 .

(57)

Now by solving the above differential equation we can get
G𝑛(𝑡) and finally V(𝑥, 𝑡) as

V (𝑥, 𝑡) = ∑
𝑛=1

G𝑛 (𝑡) sin (𝑛𝜋𝑥) ,
𝑢 (𝑥, 𝑡) = ∑

𝑛=1

G𝑛 (𝑡) sin (𝑛𝜋𝑥) + (𝑡3 + 1) 𝑒𝑥.
(58)

From the exact solution of the original FPDE (53), it
can be seen that the only difference between the approx-
imate solution, (58), and exact solutions is V(𝑥, 𝑡) =∑𝑛=1G𝑛(𝑡)sin(𝑛𝜋𝑥). Table 5 depicts the maximum norm
relative error based on formula (41) for the approximate-
analytical solution (58), NSFD method, and SFD technique
at Δ𝑥 = 1/100, Δ𝑡 = 1/100 at 𝑇 = 1. Similar to the previous
examples, the authors in [27] solved problem (54) by using
the SFD method (39) such that

𝑅 (𝑥, 𝑡) = (1 − 𝛼) 𝑒𝑥 + ( 6
Γ (4 − 𝛼) 𝑡3−𝛼 − 𝑡3 − 1) 𝑒𝑥. (59)

Note that the NSFD method is similar to the SFD formula
(39) with a difference that Δ𝑥 is substituted by sin(𝜋Δ𝑥)/𝜋
and Δ𝑡 is replaced with 𝜙(Δ𝑡) = (exp(𝛽Δ𝑡) − 1)/𝛽 in which𝛽 = (𝛼 − 1 − 𝜋2)/𝛼.

In this experiment, maximum norm relative errors of the
numerical methods for different choices of 𝛼 on 𝑡 ∈ [0, 1] are
displayed in Table 5. Also, the comparison of the numerical
results by using the error norm 𝐿∞ at 𝑇 = 1 for different
values of𝛼 is illustrated inTable 6.We recall that the proposed

Table 3: Maximum norm relative errors of the proposed approxi-
mate-analytical solution, NSFD method, and SFD technique for
Example 5.

𝛼 Our scheme NSFD method SFD method [27]
0.01 0.4968555 0.0741259 0.4968554
0.1 0.4683680 0.3992456 0.4683675
0.3 0.4063310 0.3861797 0.4063114
0.5 0.3461901 0.3362421 0.3461852
0.7 0.2833040 0.2776980 0.2832938
0.9 0.2117990 0.2085503 0.2117820
0.99 0.1741744 0.1726555 0.1751539

Table 4: Error norm 𝐿∞ for Example 5.

𝛼 Our scheme NSFD method SFD method [27]
0.01 0.993711 0.080130 0.993710
0.1 0.936737 0.698034 0.936735
0.3 0.812629 0.738043 0.812623
0.5 0.692474 0.655328 0.692337
0.7 0.566690 0.546031 0.566587
0.9 0.423630 0.412194 0.423564
0.99 0.350385 0.341835 0.350307

Table 5: Maximum norm relative errors of the proposed approxi-
mate-analytical solution, NSFD method, and SFD technique for
Example 7.

𝛼 Our scheme NSFD method SFD method [27]
0.01 3.15𝑒 − 4 2.38𝑒 − 5 3.02𝑒 − 4
0.1 2.84𝑒 − 3 2.60𝑒 − 3 2.82𝑒 − 3
0.3 6.97𝑒 − 3 6.89𝑒 − 3 6.91𝑒 − 3
0.5 8.72𝑒 − 3 8.62𝑒 − 3 8.65𝑒 − 3
0.7 7.69𝑒 − 3 7.60𝑒 − 3 7.62𝑒 − 3
0.9 3.45𝑒 − 3 3.40𝑒 − 3 3.42𝑒 − 3
0.99 3.88𝑒 − 4 3.57𝑒 − 4 3.81𝑒 − 4

Table 6: Error norm 𝐿∞ for Example 7.

𝛼 Our scheme NSFD method SFD method [27]
0.01 1.416𝑒 − 3 2.385𝑒 − 5 1.413𝑒 − 3
0.1 1.310𝑒 − 2 8.690𝑒 − 3 1.309𝑒 − 2
0.3 3.169𝑒 − 2 2.919𝑒 − 2 3.168𝑒 − 2
0.5 3.897𝑒 − 2 3.770𝑒 − 2 3.896𝑒 − 2
0.7 3.367𝑒 − 2 3.316𝑒 − 2 3.365𝑒 − 2
0.9 1.475𝑒 − 2 1.460𝑒 − 2 1.474𝑒 − 2
0.99 1.630𝑒 − 3 1.512𝑒 − 3 1.620𝑒 − 3

technique has good accuracy and robustness for different
values of 𝛼 in comparison with others. Also, the error norm𝐿∞ of the proposed approximate-analytical solution is also
plotted for 𝛼 = 0.8, 0.9, and 0.99 at 𝑇 = 1 in Figure 3.
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Figure 3: Error norm 𝐿∞ for Example 7 (𝛼 = 0.8 −◻; 𝛼 = 0.9 − ∘,
and 𝛼 = 0.99 − +) at 𝑇 = 1.

Example 8. We consider the time-fractional PDE as follows
[27]:
𝑐
D
𝛼
𝑡 𝑢 (𝑥, 𝑡) = 𝑢𝑥𝑥 (𝑥, 𝑡)

+ ( 6
Γ (4 − 𝛼) 𝑡3−𝛼 + 𝑡3) cos𝑥 − 𝑒𝑥,

𝑢 (𝑥, 0) = 𝑒𝑥, 0 < 𝑥 < 1,
𝑢 (0, 𝑡) = 𝑡3 + 1,
𝑢 (1, 𝑡) = 𝑡3 cos 1 + 𝑒,

(60)

and the exact solution of the above problem is 𝑢(𝑥, 𝑡) =𝑡3cos(𝑥) + 𝑒𝑥.
In a similar fashion, we approximate the fractional deriva-

tive to covert the time-fractional PDE (60) to the following
PDE:

𝛼𝑢𝑡 (𝑥, 𝑡) + (1 − 𝛼) 𝑢 (𝑥, 𝑡)
= 𝑢𝑥𝑥 (𝑥, 𝑡) + ( 6

Γ (4 − 𝛼) 𝑡3−𝛼 + 𝑡3) cos𝑥 − 𝛼𝑒𝑥,
0 < 𝑥 < 1, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑒𝑥,
𝑢 (0, 𝑡) = 𝑡3 + 1,
𝑢 (1, 𝑡) = 𝑡3 cos 1 + 𝑒.

(61)

We define the change of variable 𝑢(𝑥, 𝑡) = V(𝑥, 𝑡) +(𝑡3 cos𝑥 + 𝑒𝑥) and replace it in the above system. Hence, we
need to solve the resulting system as follows:

𝛼V𝑡 (𝑥, 𝑡) + (1 − 𝛼) V (𝑥, 𝑡)= V𝑥𝑥 (𝑥, 𝑡)
+ ( 6
Γ (4 − 𝛼) 𝑡3−𝛼 − 3𝛼𝑡2 + (𝛼 − 1) 𝑡2) cos𝑥,

0 < 𝑥 < 1, 𝑡 > 0,

V (𝑥, 0) = 0,
V (0, 𝑡) = V (1, 𝑡) = 0.

(62)

According to the above system, we can assume the solution
of the problem in the form as V(𝑥, 𝑡) = ∑𝑛=1G𝑛(𝑡)sin(𝑛𝜋𝑥).
By substituting this product solution in system (62), we have

∑
𝑛=1

(𝛼Ġ𝑛 (𝑡) + (1 − 𝛼 + 𝑛2𝜋2)G𝑛 (𝑡)) sin (𝑛𝜋𝑥)

= ( 6
Γ (4 − 𝛼) 𝑡3−𝛼 − 3𝛼𝑡2 + (𝛼 − 1) 𝑡2) cos𝑥.

(63)

Therefore, we have

𝛼Ġ𝑛 (𝑡) + (1 − 𝛼 + 𝑛2𝜋2)G𝑛 (𝑡)
= 2∫1
0
( 6
Γ (4 − 𝛼) 𝑡3−𝛼 − 3𝛼𝑡2 + (𝛼 − 1) 𝑡2) cos (𝑥)

⋅ sin (𝑛𝜋𝑥) 𝑑𝑥 = ( 6
Γ (4 − 𝛼) 𝑡3−𝛼 − 3𝛼𝑡2

+ (𝛼 − 1) 𝑡2) 2𝑛𝜋
𝑛2𝜋2 − 1 (1 − (−1)𝑛 cos 1) .

(64)

Regarding the condition 0 = V(𝑥, 0) = ∑𝑛=1G𝑛(𝑡)sin(𝑛𝜋𝑥),
we have G𝑛(0) = 0. To obtain G𝑛 for 𝑛 ≥ 1, we need to solve
the following system:

𝛼Ġ𝑛 (𝑡) + (1 − 𝛼 + 𝑛2𝜋2)G𝑛 (𝑡)
= ( 6
Γ (4 − 𝛼) 𝑡3−𝛼 − 3𝛼𝑡2 + (𝛼 − 1) 𝑡2)

⋅ 2𝑛𝜋𝑛2𝜋2 − 1 (1 − (−1)𝑛 cos 1) ,
G𝑛 (0) = 0.

(65)

Note that the NSFD method here is the same as the
formula for Example 7.The accuracy of the proposedmethod
is tested by using the relative error formula (41) over 𝑡 ∈ [0, 1]
and error norm 𝐿∞ for different values of 𝛼 at 𝑇 = 1 in
Tables 7 and 8, respectively. Undoubtedly these results also
exhibit the accuracy and proficiency of the present method
for this problem. Also, the error norm 𝐿∞ was obtained
between the approximate-analytical solution and the exact
solution for various values of for 𝛼 at 𝑇 = 1 in Figure 4.
We see that we can accomplish a suitable approximation with
the analytical solution by applying the proposed method,
taking into account the computational costs of the discretiza-
tion of domain into finite points in the existing numerical
schemes.



10 Complexity

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

|U
？Ｒ

；
＝
Ｎ(
x
,1

)
−
u
(x

,1
)|

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10
x

 = 0.8

 = 0.9

 = 0.95

Figure 4: Error norm 𝐿∞ for Example 8 (𝛼 = 0.8 −◻; 𝛼 = 0.9 − ∘;
and 𝛼 = 0.95 − ×) at 𝑇 = 1.
Table 7: Maximum norm relative errors of the proposed
approximate-analytical solution, NSFDmethod, and SFD technique
for Example 8.

𝛼 Our scheme NSFD method SFD method [27]
0.01 2.29𝑒 − 4 2.38𝑒 − 5 2.21𝑒 − 4
0.1 2.13𝑒 − 3 1.54𝑒 − 3 2.05𝑒 − 3
0.3 5.17𝑒 − 3 4.87𝑒 − 3 4.98𝑒 − 3
0.5 6.40𝑒 − 3 6.15𝑒 − 3 6.17𝑒 − 3
0.7 5.57𝑒 − 3 5.35𝑒 − 3 5.37𝑒 − 3
0.9 2.47𝑒 − 3 2.36𝑒 − 3 2.37𝑒 − 3
0.99 2.66𝑒 − 4 2.46𝑒 − 4 2.63𝑒 − 4

Table 8: Error norm 𝐿∞ for Example 8.

𝛼 Our scheme NSFD method SFD method [27]
0.01 7.19𝑒 − 4 4.45𝑒 − 5 7.17𝑒 − 4
0.1 6.65𝑒 − 3 4.39𝑒 − 3 6.65𝑒 − 3
0.3 1.61𝑒 − 2 1.48𝑒 − 2 1.60𝑒 − 2
0.5 1.98𝑒 − 2 1.91𝑒 − 2 1.97𝑒 − 2
0.7 1.71𝑒 − 2 1.68𝑒 − 2 1.70𝑒 − 2
0.9 7.49𝑒 − 3 7.43𝑒 − 3 7.49𝑒 − 3
0.99 8.31𝑒 − 4 7.79𝑒 − 4 8.23𝑒 − 4

Example 9. Let us consider the FPDE as follows:

𝑐
D
1/2
𝑡 𝑢 (𝑥, 𝑡) = 𝑢𝑥𝑥 (𝑥, 𝑡) + 𝑥 (1 − 𝑥) 6𝑡

2.5

Γ (3.5)
+ 2 (𝑡3 + 1) , 𝑡 > 0

𝑢 (𝑥, 0) = 𝑥 (𝑥 − 1) , 0 < 𝑥 < 1,
𝑢 (0, 𝑡) = 𝑢 (1, 𝑡) = 0,

(66)

and the exact solution of the above problem is 𝑢(𝑥, 𝑡) = 𝑥(𝑥−1)(𝑡3 + 1).

Once again we approximate the fractional derivative
using the plan explained in Section 3. Therefore, the FPDE
(66) is converted to the following PDE:

𝑢𝑡 (𝑥, 𝑡) + 𝑢 (𝑥, 𝑡) = 2𝑢𝑥𝑥 (𝑥, 𝑡) + 𝑥 (1 − 𝑥)
+ 2𝑥 (1 − 𝑥) 6𝑡2.5Γ (3.5)
+ 4 (𝑡3 + 1) , 0 < 𝑥 < 1, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑥 (𝑥 − 1) ,
𝑢 (0, 𝑡) = 𝑢 (1, 𝑡) = 0.

(67)

Since the boundary conditions are homogeneous, we can
hypothesize the solution as 𝑢(𝑥, 𝑡) = ∑𝑛=1G𝑛(𝑡)sin(𝑛𝜋𝑥) and
replace it in the above system. So, we have

∑
𝑛=1

(Ġ𝑛 (𝑡) + (1 + 2𝑛2𝜋2)G𝑛 (𝑡)) sin (𝑛𝜋𝑥)

= 𝑥 (1 − 𝑥) + 2𝑥 (1 − 𝑥) 6𝑡2.5Γ (3.5) + 4 (𝑡3 + 1) .
(68)

Hence, we have

Ġ𝑛 (𝑡) + (1 + 2𝑛2𝜋2)G𝑛 (𝑡) = 2∫
1

0
(𝑥 (1 − 𝑥)

+ 2𝑥 (1 − 𝑥) 6𝑡2.5Γ (3.5) + 4 (𝑡3 + 1)) sin (𝑛𝜋𝑥) 𝑑𝑥

= 4 (1 − (−1)𝑛)𝑛3𝜋3 (1 + 12 𝑡2.5Γ (3.5))

+ 8 (1 − (−1)𝑛)𝑛𝜋 (𝑡3 + 1) .

(69)

By considering the assumption 𝑥(1 − 𝑥) = 𝑢(𝑥, 0) =∑𝑛=1G𝑛(0)sin(𝑛𝜋𝑥), we have
G𝑛 (0) = 2∫

1

0
𝑥 (1 − 𝑥) sin (𝑛𝜋𝑥) 𝑑𝑥 = 4 (1 − (−1)𝑛)𝑛3𝜋3 , (70)

and to findG𝑛(𝑡), the following system should be solved:

Ġ𝑛 (𝑡) + (1 + 2𝑛2𝜋2)G𝑛 (𝑡)
= 4 (1 − (−1)𝑛)𝑛3𝜋3 (1 + 12 𝑡2.5Γ (3.5))

+ 8 (1 − (−1)𝑛)𝑛𝜋 (𝑡3 + 1) ,

G𝑛 (0) = 4 (1 − (−1)
𝑛)

𝑛3𝜋3 .

(71)

It is easy to see thatG𝑛(𝑡) = 0 for 𝑛 is even.
It is worth noting that the demonstration of NSFD

method is analogous to the SFD formula (39) with a differ-
ence that Δ𝑡 is replaced with 𝜙(Δ𝑡) = (exp(𝛽Δ𝑡) − 1)/𝛽 in
which 𝛽 = (−1/2 − 𝑛2)/(1/2).
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Table 9: Maximum norm relative errors and error norm 𝐿∞ of the
proposed approximate-analytical solution, NSFD method, and SFD
technique for Example 9.

Our scheme NSFD method SFD method [27]
Relative error 0.01178 0.01158 0.01158
𝐿∞ 0.004797 0.004656 0.004795
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Figure 5: Absolute errors for different values of 𝑡, Example 9.

In Table 9, we compute the maximum norm rela-
tive errors and error norm 𝐿∞ for approximate-analytical
scheme, NSFD method, and SFD technique. The numerical
results demonstrate the appropriateness of the present tech-
nique for this case and good accuracy in comparison with the
others. Besides that, to observe the behavior of the approx-
imate solution over the time interval, we plot the absolute
error of the method for 𝑡 = 0.25, 0.5, 0.75, and 1 in Figure 5.
From the observation, the method has a smooth behavior
over the time domain and obtains a satisfactory result.

5. Concluding Remarks

This article deals with the numerical solution of nonhomo-
geneous time-fractional PDEs by an approximate-analytical
method based on a separation-variables technique. A com-
parative study is presented by applying two different finite
difference methods and the proposed techniques. The strat-
egy exploits an approximating process to reduce the FPDE
to the corresponding PDE. This combination is rational
and efficient, because, on one hand, the separation-variables
technique is very suitable to the homogeneous PDE and,
more importantly, can provide an exact solution and reduce
the computational cost by avoiding extra conditions on the
stability conditions of the method, and on the other hand the
adaptivemethod can cope with different kinds of FPDEs with
less effort. The utilization of approximating technique for the
fractional derivative radically decreases the computational
expense of this variable-separation algorithm. The results of

numerical examples demonstrate that thismethod is accurate
similar to finite difference methods.
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