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Abstract

Two approaches toward the arrow of time for scattering processes have
been proposed in rigged Hilbert space quantum mechanics. One, due to
Arno Bohm, involves preparations and registrations in laboratory opera-
tions and results in two semigroups oriented in the forward direction of
time. The other, employed by the Brussels-Austin group, is more gen-
eral, involving excitations and de-excitations of systems, and apparently
results in two semigroups oriented in opposite directions of time. It turns
out that these two time arrows can be related to each other via Wigner’s
extensions of the spacetime symmetry group. Furthermore, their are sub-
tle differences in causality as well as the possibilities for the existence and
creation of time-reversed states depending on which time arrow is chosen.

Acknowledgement 1 [ would like to thank I. Antoniou, H. Atmanspacher,
A. Bohm, R. De La Madrid and S. Wickramasekara for illuminating dis-
cussions. Any remaining confusions are my own.

1 Introduction

In the standard formulation of nonrelativistic quantum mechanics, the time
evolution of systems is governed by a one-parameter group of unitary operators

U(t) = e At (1)

on a Hilbert space (HS) [18], where H represents the Hamiltonian and Planck’s
constant has been set to one. Any evolution governed by (1) is time-reversal



invariant® and irreversibility? usually enters in due to an extrinsic act of mea-
surement or other interaction with an environment [19, 21]. This approach,
however, has some undesirable features: (1) the observed exponential decay in
various quantum experiments is considered as being only approximately expo-
nential; (2) no appropriate eigenvectors describing decaying states (e.g. Gamow
vectors and Dirac states) are elements of HS; (3) there is a tendency to treat
metastable states such as resonances or decaying states as transients rather
than as states of autonomous microphysical systems; (4) no intrinsic forms of
irreversibility—where irreversible behavior originates in the dynamics of a physi-
cal system without explicit reference to an environment [1]-can be appropriately
modeled nor can appropriate initial conditions for such irreversible processes be
formulated rigorously in HS.

For these, among other reasons [3, 4, 8|, theories of rigged Hilbert space
(RHS) quantum mechanics—a generalization of the HS version—were developed
[2, 4, 5]. A RHS, or Gel'fand triplet [12, 11], is the triple of spaces

dCHCD*, (2)

where H is a HS with the standard norm topology, 7, ® is a vector space
with a topology, ¢, stronger than 7 and ®* is the dual space of continuous
linear functionals on ®. A RHS provides an appropriate setting for studying
intrinsically irreversible processes because it naturally accommodates semigroup
evolutions and the initial and boundary conditions appropriate to such evolu-
tions [8].

In the context of scattering theory, two arrows of time intrinsic to the dynam-
ics of quantum systems have been proposed within RHS quantum mechanics.
One, due to Bohm [7,8], involves preparations and registrations in laboratory
operations, resulting in semigroups oriented in the forward direction of time.
The other, originally proposed by George [13] and employed by the Brussels-
Austin group, is more general involving excitations and de-excitations of sys-
tems, resulting in semigroups apparently oriented in opposite directions of time.
I will briefly review these two quantum arrows of time and then examine their
relationship under time-reversal.

2 States and Observables

A typical scattering experiment consists of an accelerator, which prepares a
projectile in a particular state, a target and detectors. The total Hamiltonian
modeling the interaction of the particle with the target is, therefore, H = H,
+ V, where H, represents the free particle Hamiltonian and V' the potential in
the interaction region. The vectors representing growing and decaying states

ITime-reversal invariance means that if ¢(¢) is a solution of the quantum mechanical equa-
tions of motion, then so is ¢(—t).

2 A process is reversible if the temporal succession of its states ¢1, ¢2,..., ¢n can occur in
the opposite order and irreversible otherwise.



are associated with the resonance poles of the analytically continued S-matrix
[14].

The preparation/registration arrow of time [8] is fundamental to Bohm’s
analysis of resonance states. The key intuition behind this arrow is that no ob-
servable properties of a state can be measured unless the state has first been pre-
pared. Following Ludwig [16, 17, 8], an in-state of a particular quantum system
(considered as an ensemble of individual systems such as elementary particles) is
prepared by a preparation apparatus (considered macrophysical). The detector
(considered classical) registers so-called out-states of post-interaction particles.
In-states are taken to be elements ¢ € ®_ and observables are taken to be ele-
ments ¢ € &;. (Decaying states, such as the Dirac, Lippman, Schwinger kets
and Gamow vectors, are elements of ®7). This leads to a distinction between
prepared states and observables, each described by a separate RHS [8]:

d_CHCPX (3a)
¢, CHCOPOY, (3b)

where ®_ is the Hardy space of the lower complex energy half-plane intersected
with the Schwartz class functions and @ is the Hardy space of the upper com-
plex energy half-plane intersected with the Schwartz class functions [8]. As
Bohm and Gadella [7] demonstrate, some elements of the generalized eigen-
states in ®* and @j_ correspond to exponentially growing and decaying states

respectively. The semigroups governing these states are?
(BUX|Z5) = e Frtest(¢|Z5) t <0, t: —00 — 0 (4a)
WU |Zg) = e Frte= 51 ()| Zp) t >0, ¢ : 0 — oo, (4b)

where Eg represents the total resonance energy, I' represents the resonance
width, Zr represents the pole at Er — ig, Z%, represents the pole at Eg + ig,
|Z},) € ®X represents a growing Gamow vector and |Zp) € P represents a
decaying Gamow vector. The ¢ < 0 semigroup is identified as future-directed
along with |Z}) as a forming/growing state. The ¢ > 0 semigroup is identified
as future-directed along with |Zg) as a decaying state®.

In their discussion of scattering and resonance phenomena, Antoniou and
Prigogine also apply the RHS framework, using the Hardy class functions as a
natural function space for their analysis [2]. Antoniou and Prigogine adopt a
time arrow somewhat different from Bohm [3]: excitations are interpreted as
events taking place before t = 0 while de-excitations are interpreted as events
taking place after ¢ = 0. This time arrow leads to a natural splitting of the RHS:

31f U(t) is a unitary operator on H and ® C ‘H C ®*, then UT can be extended to ®*
provided that (1) U leaves ® invariant, i.e. U: ® — ®, and (2) U is continuous on ® with
respect to the topology 7¢. The operator U* denotes the extension of the HS operator
Ut to ®% and is defined by (U¢|F) = (p|UXF) for all $ € & and F € ®*. When the
group operator UT is extended to ®*, continuity requirements force the operators U to be
semigroups defined only on the temporal half-domains [7].

4Note that the eigenvectors plus the semigroup property are insufficient to determine the
temporal direction of evolution. These identifications involve further physical justification.



excitations (e.g. formation of unstable states) are considered as past-oriented
and are associated with ¢4 € @JXF in the upper half-plane, while de-excitations
(e.g. decay of ustable states) are considered as future-oriented and are associated
with ¢_ € ®* in the lower half-plane.> The semigroups governing decaying
states as identified by the Brussels-Austin group are

(p4|UX|Z35) = ePrtes (g, |Z5) t <0, t: —00 — 0 (5a)
(p_|UX|ZR) = e Frte™31¢_|Zr) t >0, t: 0 — oo. (5b)

The Brussels-Austin Group identifies the ¢ < 0 semigroup as evolving states
into the past along with |Z}) as decaying states, and the ¢ > 0 semigroup as
evolving states into the future along with |Zg) as decaying states.

3 Time-reversal

Following Wigner [20], the time-reversal operator, R(t), is the HS representation
of the physical spacetime transformation

R:(Z,t) — (& —t). (6)

Therefore, R is an element of a co-representation of the extended Galilei sym-
metry group [10] for nonrelativistic spacetime (extended Poincaré group for rel-
ativistic spacetime). These representations must be unitary and linear except
for R, which is antilinear. With these properties, R fulfils

RPR™'=-P (7a)
RJI,R™' = —J; (7b)
RK;R™' = K, (7c)
RHR '=H (7d)
RSR™' =81 =571 (7e)

where P;, J;, K;, H and S are the momentum, angular momentum, Lorentz
boost, energy and S-matrix operators respectively [9]. The relation (7e) is ex-
perimentally tested in the form of the reciprocity relation, but it should be
pointed out that (7) is formulated in terms of observables, not states.
However, there is one more technicality to discuss before examining the ap-
plication of R to the states and observables of §2. Wigner originally derived the
properties of R for the spacetime symmetry group extended by time inversions
and studied the parity inversion operator > and the total inversion operator T'
in combination with R [20]. The parity inversion operator is unitary so its phase

5Note that the roles of the upper and lower Hardy class function spaces is reversed with re-
spect to Bohm’s approach. This has only mathematical import. The differences in phase
factors between (4) and (5) are due to the fact that in the former, states evolve in the
Schrédinger picture while observables evolve in the Heisenberg picture, while in the latter,
only the Schrédinger picture is used.



can be chosen such that $? = I (the identity operator), while 7" and R are both
anti-unitary, so that the associative law for group multiplication dictates that
R?2 = cpl and T? = e71, where eg = £1 and er = 1. The phase of T can be
chosen so that T'= X R (where the order of application of ¥ and R is physically
immaterial). The extension of the spacetime symmetry group is summarized in

Table 1.

€R er b)) R T

T Bt O AR
oo [ (% S (2 5)
o o [ (B ) (% 0
e o] () 0% (2 5)

Table 1. Properties of the spacetime symmetry group.

The index j refers to the spin of the particle being considered while C' is an
operator whose (2;j+41)-dimensional matrix has the elements ¢, , = (—1)77#6, ,,
where —j < p and v < j. In the first representation, where eg = e = (—1)%,
there are no changes to the underlying vector space. This is the typical case
discussed in quantum mechanics (and relativistic quantum field theory). The
other three representations, however, exhibit a doubling of the vector spaces.
In order to track this space doubling, let the index r = 0,1 label the rows and
columns of the operator matrices in Table 1.

4 Time-reversed States and Observables

Although no quantum fields have been constructed for representations two and
three of Table 1 (indeed they are highly problematic), Bohm and co-workers
have constructed models for the fourth representation by applying R to the
states and observables in (4) [6, 9]. First, consider the growing Gamow vectors
for, ¢7=0% € ®"=%*_ Applying R yields

R(bT:O’X _ wT:LX c q)1:17><- (8)
Similary for the decaying Gamow vectors, )" =%* ¢ @i:O’X, applying R yields

(9)

The transformation properties of R may be summarized as R : fI);:O’X —

RU)T:O’X — ¢r:1,>< c q)r:1,><

@;Zl’x. The temporal evolution of these time-reversed vectors is also given
by semigroups. Identify » = 0 with the scattering experiment as normally car-
ried out in the laboratory and r = 1 with the time-reversed situation. Then
U*(t)(p,r = 0|1Z%,r = 0) € =" a growing Gamow vector representing a
preparable state for ¢ < 0, is transformed under R into U* (—t){¢),r = 1|Zg,r =
1) € "%, where

ePrte=st )y r = 1|Zp,r = 1) (10)



is restricted to the time domain ¢ > 0 by continuity requirements. In the case
of |Z§,r = 0), time runs from —oo to 0; in contrast, for |Zr,r = 1), time
runs from oo to 0, meaning that it represents a Gamow vector that increases
as t decreases. Similarly, U*(¢t){¢,r = 0|Zg,r = 0) € @izo"x, a decaying
Gamow vector representing observables for ¢ > 0, is transformed under R into
U*(=t)(p,r = 1|Z%,7 = 1) € =" where

eiBrtest(p p = 1|25, r = 1) (11)

is restricted to the time domain ¢ < 0 by continuity requirements. In the case
of |Zr,r = 0), time runs from 0 to oo; in contrast, for [Z},r = 1), time runs
from 0 to —oo, meaning that it represents a Gamow vector that decays as -t
increases. These results are summarized in Table 2.

Growing | (¢,r =0|Z%,7r=0) | (¥,r =1|Zg,r = 1)
Vectors t<0,t:—0c0—0 t>0,t:0«— o0

Decaying | (¢,r =0|Zg,r =0) | (¢p,r =1|Z},,r=1)
Vectors t>0,t:0— 00 t<0,t:—0c0+«0
Table 2. Properties of the Bohm/Gadella Gamow vectors under R(t).

The time-reversed situation in the Brussels-Austin approach have not been
discussed in the literature. Using the transformation rules as appropriate, the
temporal evolution of the time-reversed vectors can be determined. However,
notice that the eigenvectors in (5) are identified with decaying states. It can
be easily seen that (5b) is the time-reversal of (5a) under R, but the label r
associated with vector space doubling remains to be identified. If we assume
that the preparation/registration arrow is a special case of the excitation/de-
excitation arrow—that is, that laboratory preparations are particular types of
excitations and the detections of decaying states are particular types of de-
excitations [3]-then (5a) can be identified with the » = 1 and (5b) with the
r = 0 regimes respectively (compare with (4b)).

What remains is to examine the eigenvectors representing growing states
in the Brussels-Austin approach. To each de-excitation in (5) there is a cor-
responding excitation represented by an eigenvector in the opposite temporal
half-plane. For the r = 0 regime, a growing eigenvector of the form

¢Prtett (g r = 0Z},r =0), (12)

corresponds to eigenstate (5b), where (12) is restricted to the time domain ¢ < 0
by continuity requirements. This state is represented by a Gamow vector that
grows as —t decreases. Similarly, for the » = 1 regime, a growing eigenstate of
the form

e Prle= S g = 1|Zp,r = 1), (13)

corresponds to eigenvector (5a), where (13) is restricted to the time domain
t > 0 by continuity requirements. This state is represented by a Gamow vector
that grows as t decreases. These results are summarized in Table 3.



Growing | (¢4,r=0[Z5,r=0) | (p_,r =1|Zp,r=1)
Vectors t<0,t:—00—0 t>0,t:0«—00

Decaying | (¢p_,r =0|Zr,7=0) | (¢4,r =1|Z},r=1)
Vectors t>0,1:0— o0 t<0,t:—0c0«0

Table 3. Properties of the Brussels-Austin Gamow vectors under R(t).

The Bohm and Brussels-Austin groups appear to be working with the same
eigenvectors and semigroups in their analyses of scattering. (5a) and (5b) are
time-reversed images of each other and, when paired with their corresponding
growing vectors, are easily related to those of Bohm and co-workers (compare
Tables 2 and 3), which is not immediately apparent when comparing (4) and
(5) without taking time reversal and vector space doubling into account.

5 The Possibility of Time-reversed States

It has been suggested that (5a) be disregarded because it is inconsistent with
observations or because of other consistency requirements such as the need for
devices to communicate [2, 3]. Does the consideration of time-reversed states in
the light of vector space doubling lead to new arguments for disregarding (5a)?

5.1 Physical Considerations

Lee [15] discusses the following problem with time-reversed quantum states.
Consider a fi-meson at rest with its spin s, in the up direction. It decays as

p—e (L)+ ve(R) +vu(L), (14)

where the electron, electron anti-neutrino and p neutrino are emitted with helic-
ities —1/2, 1/2 and —1/2 respectively, denoted by the letters L and R indicating
the helicities. Neglecting the electronic mass and assuming that the final mo-
menta of e”, 7. and v, are P., Py and P,, respectively, the time-reversed
process would be

e (L) + ve(R)+vu(L) — R, (15)

where the initial states of e~, 7, and v, have momenta —P., —P; and —P,
respectively. If time reversal holds, then (15) should lead to a final state with
at rest. Also (15) should produce a final spin s/H = —s,,, but this is not generally
the case in quantum mechanics. For example, if the momenta of 7. and v,, are
parallel in (14), then conservation of total angular momentum in (15) requires

/

that s, lie in the same direction as the initial electron spin, which is typically
different from that of —s,,. In the more general case, where the directions of the
momenta in (14) are arbitrary, the final spin s;L = —s,, in (15) is only possible
if the momentum and spin of all three leptons are simultaneously reversed in
all possible directions while maintaining the appropriate phase relations among

their wave amplitudes. The latter would require the creation of three perfectly



coherent incoming spherical waves in the midst of the many degrees of freedom
involved.

Producing such a state in laboratory situations (preparation/registration
arrow) is clearly impossible because the precision required to produce such co-
herent incoming spherical waves, as well as the control over the environment it
entails, exceeds our engineering capabilities (presuming we knew how to produce
such phase-related time-reversed waves). For more general unstable quantum
processes (excitation/de-excitation arrow), it is not clear that time-reversed
growing states associated with the r = 1 regime can be ruled out so easily.
Though highly improbable, perhaps some kinds of singular events can produce
the kinds of time-reversed processes meeting such stringent requirements.

There is a related question as to why we live in a universe where the over-
whelming proportion of processes are in the r = 0 regime [6]. This would be
the case if the initial explosion of the big bang singularity was a process of type
r = 0. All subsequent processes would then typically be of type » = 0 with
the possible exception of exceedingly rare, highly singular processes producing
a type r = 1 event. However, the sheer preponderance of r = 0 processes—
including the “master » = 0 process,” the cosmic arrow—implies an improbably
high entropy barrier that such rare » = 1 processes must overcome.

5.2 Causal Considerations

One might also argue against time-reversed processes by invoking a standard
formulation of the causal relation between events: causes must precede their
effects in temporal order. However, the more general form of the causal rela-
tion is that causes must precede their effects in logical order, leaving open the
possibility for backwards-in-time causation. For the preparation-registration
arrow, such causal considerations present problems for » = 1 type processes.
The preparation of states ¢ is required before observables ¥ can be measured
because observables logically presuppose states [4, 8]. The r = 1 regime appears
to contradict this causality requirement in that observables 1 are “prepared”
before states ¢ can be “measured.” This is to say, that R interchanges the roles
of states and observables. If observables are logically dependent on states, then
one might argue that there must be some kind of (strange) state in the r = 1
regime for ¢ > 0 unaccounted in Table 2, but the production of such states
presents insurmountable difficulties (§5.1).

For the more general case of the excitation/de-excitation arrow, causal con-
siderations do not necessarily rule out time-reversed states. For the r = 0
regime, excitations ¢4 lead to de-excitations ¢_ (e.g. by emitting some de-
cay product leading to de-excitation). In contrast for the r = 1 regime, the
transformation rules indicate that de-excitations ¢_ lead to excitations ¢, as
again the roles of the vector spaces become interchanged. That suggests the
identification of (5a) as a de-excitation into the past is not unique. If we keep
this latter identification of decay into the past, there is nothing more to be said,
as there is neither a temporal nor a logical relationship specifying the order of
excitation and de-excitation. There are only the improbability considerations



described above.

Even if we modify the identification as the r = 1 regime suggests, this does
not immediately lead to an argument ruling out » = 1 processes because again
the logical form of the causal relation does not foreclose the possibility that de-
excited states may become re-excited in a time reversed fashion. There are two
cases. First, the spontaneous excitation could be self-caused, but this violates
the causal relation in that all effects must have a cause. The only possibility
in this case is an uncaused event, sheer chance. Second, some process leads to
the spontaneous excitation of the de-excited state into the past. The Unruh
effect, where some kinds of ground states can be spontaneously excited even
when moving through vacuum, and pair production are possible mechanisms
in quantum field theory, but these effects are not immediately applicable if we
restrict ourselves to standard quantum mechanics.

5.3 “Weirdness” Considerations

However, it does appear that the r = 1 regime presents an interpretive difficulty.
Under the registration-preparation arrow, observables are now represented by
growing eigenvectors while states are represented by decaying eigenvectors. Un-
der the excitation/de-excitation arrow, if one follows what the transformation
rules suggest, de-excitations are represented by growing eigenvectors while exci-
tations are represented by decaying eigenvectors. These associations are clearly
not as natural as those in the » = 0 regime, perhaps suggesting some as yet
undiscovered problems with the fourth representation of Table 1.

6 Discussion

It appears that the time-reversal invariance of the dynamics in conventional
quantum mechanics is due to the underlying symmetries of the HS in which it is
formulated. This time-reversal symmetry is missing from the RHS generaliza-
tion for the case of resonance phenomena. Nevertheless, it may be possible to
restore some form of time-reversal symmetry in RHS quantum mechanics via the
extended spacetime symmetry group. For the registration/preparation arrow,
while the formalism allows states (and observables) to be distinguished from
their time-reversed counterparts, such counterparts are not physically possible.
For the more general excitation/de-excitation arrow, time-reversed counterparts
may also be distinguished, but appear to be only highly improbable.

However, there is something weird about the fourth extended spacetime
representation and the rareness of = 1 processes may be related to this weird-
ness. If there turns out to be a serious problem with this representation (e.g.
a problematic unexamined assumption) such that it must be discarded, then
time-reversed states would disappear from RHS quantum mechanics in the con-
text of resonance phenomena as unphysical, leaving a purely time-asymmetric
theory.
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