Skip to main content
Log in

Quantum Walks, Weyl Equation and the Lorentz Group

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Quantum cellular automata and quantum walks provide a framework for the foundations of quantum field theory, since the equations of motion of free relativistic quantum fields can be derived as the small wave-vector limit of quantum automata and walks starting from very general principles. The intrinsic discreteness of this framework is reconciled with the continuous Lorentz symmetry by reformulating the notion of inertial reference frame in terms of the constants of motion of the quantum walk dynamics. In particular, among the symmetries of the quantum walk which recovers the Weyl equation—the so called Weyl walk—one finds a non linear realisation of the Poincaré group, which recovers the usual linear representation in the small wave-vector limit. In this paper we characterise the full symmetry group of the Weyl walk which is shown to be a non linear realization of a group which is the semidirect product of the Poincaré group and the group of dilations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. For example, if \(\Gamma \) is the one dimensional lattice which we identify with the set of integers \(\mathbb {Z}\), we may require \(|x-x'| \ge n \Rightarrow \langle x | \langle i |A | x' \rangle | i' \rangle = 0\) for some \(n\ge 1\). More synthetically we can say that the unitary matrix A is block-sparse.

References

  1. Alexandrov, A.D.: A contribution to chronogeometry. Can. J. Math. 19, 1119–1128 (1967)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proceedings of the thirty-third annual ACM symposium on Theory of computing, pp. 37–49. ACM (2001)

  3. Amelino-Camelia, G.: Relativity in spacetimes with short-distance structure governed by an observer-independent (Planckian) length scale. Int. J. Mod. Phys. D 11(01), 35–59 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Amelino-Camelia, G., Piran, T.: Planck-scale deformation of Lorentz symmetry as a solution to the ultrahigh energy cosmic ray and the TeV-photon paradoxes. Phys. Rev. D 64(3), 036005 (2001)

    Article  ADS  Google Scholar 

  5. Amelino-Camelia, G., Freidel, L., Kowalski-Glikman, J., Smolin, L.: Principle of relative locality. Phys. Rev. D 84, 084010 (2011). doi:10.1103/PhysRevD.84.084010

    Article  ADS  MATH  Google Scholar 

  6. Arnault, P., Debbasch, F.: Quantum walks and discrete gauge theories. Phys. Rev. A 93(5), 052301 (2016)

    Article  ADS  Google Scholar 

  7. Arnault, P., Di Molfetta, G., Brachet, M., Debbasch, F.: Quantum walks and non-abelian discrete gauge theory. Phys. Rev. A 94, 012335 (2016). doi:10.1103/PhysRevA.94.012335. http://link.aps.org/doi/10.1103/PhysRevA.94.012335

  8. Arrighi, P., Facchini, S., Forets, M.: Discrete Lorentz covariance for quantum walks and quantum cellular automata. New J. Phys. 16(9), 093007 (2014). http://stacks.iop.org/1367-2630/16/i=9/a=093007

  9. Arrighi, P., Nesme, V., Forets, M.: The Dirac equation as a quantum walk: higher dimensions, observational convergence. J. Phys. A 47(46), 465302 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Bialynicki-Birula, I.: Weyl, Dirac, and Maxwell equations on a lattice as unitary cellular automata. Phys. Rev. D 49(12), 6920 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  11. Bisio, A., D’Ariano, G.M., Perinotti, P.: Quantum cellular automaton theory of light. Ann. Phys. 368, 177–190 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Bisio, A., D’Ariano, G.M., Perinotti, P.: Quantum walks, deformed relativity and Hopf algebra symmetries. Philos. Trans. A Math. Phys. Eng. Sci. 374(2068). doi:10.1098/rsta.2015.0232 (2016)

  13. Bisio, A., D’Ariano, G.M., Perinotti, P.: Special relativity in a discrete quantum universe. Phys. Rev. A 94, 041210 (2016). doi:10.1103/PhysRevA.94.042120

    MathSciNet  Google Scholar 

  14. Bisio, A., D’Ariano, G.M., Tosini, A.: Quantum field as a quantum cellular automaton: the Dirac free evolution in one dimension. Ann. Phys. 354, 244–264 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  15. Chiribella, G., D’Ariano, G., Perinotti, P.: Informational derivation of quantum theory. Phys. Rev. A 84(012311), 012311–012350 (2011)

    Article  ADS  Google Scholar 

  16. Dakic, B., Brukner, C.: Quantum theory and beyond: is entanglement special? In: Halvorson, H. (ed.) Deep Beauty: Understanding the Quantum World through Mathematical Innovation, pp. 365–392. Cambridge University Press, Cambridge (2011)

    Chapter  Google Scholar 

  17. D’Ariano, G.M.: Physics as quantum information processing: quantum fields as quantum automata. Phys. Lett. A 376(697) (2011)

  18. D’Ariano, G.M., Perinotti, P.: Derivation of the Dirac equation from principles of information processing. Phys. Rev. A 90, 062106 (2014)

    Article  ADS  Google Scholar 

  19. D’Ariano, G.M., Khrennikov, A.: Preface of the special issue quantum foundations: information approach. Philos. Trans. R. Soc. Lond. A 374(2068) (2016). doi: 10.1098/rsta.2015.0244. http://rsta.royalsocietypublishing.org/content/374/2068/20150244

  20. Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21(6), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  21. Fuchs, C.A.: Quantum mechanics as quantum information (and only a little more). quant-ph/0205039 (2002)

  22. Gross, D., Nesme, V., Vogts, H., Werner, R.: Index theory of one dimensional quantum walks and cellular automata. Communications in Mathematical Physics pp. 1–36 (2012)

  23. Hardy, L.: Quantum theory from five reasonable axioms. quant-ph/0101012 (2001)

  24. Kempe, J.: Quantum random walks: an introductory overview. Contemp. Phys. 44(4), 307–327 (2003). doi:10.1080/00107151031000110776

    Article  ADS  Google Scholar 

  25. Khrennikov, A., Weihs, G.: Preface of the special issue quantum foundations: theory and experiment. Found. Phys. 42(6), 721–724 (2012). doi:10.1007/s10701-012-9644-x

    Article  ADS  MathSciNet  Google Scholar 

  26. Khrennikov, A., Raedt, H.D., Plotnitsky, A., Polyakov, S.: Preface of the special issue probing the limits of quantum mechanics: theory and experiment, volume 1. Found. Phys. 45(7), 707–710 (2015). doi:10.1007/s10701-015-9911-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Kowalski-Glikman, J., Nowak, S.: Doubly special relativity theories as different bases of \(\kappa \)-Poincaré algebra. Phys. Lett. B 539(1), 126–132 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Kowalski-Glikman, J., Nowak, S.: Non-commutative space-time of doubly special relativity theories. Int. J. Mod. Phys. D 12(02), 299–315 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Lloyd, S.: Programming the Universe: A Quantum Computer Scientist Takes on the Cosmos. Vintage Books, New York (2006)

    Google Scholar 

  30. Lukierski, J., Ruegg, H., Nowicki, A., Tolstoy, V.N.: \(q\)-deformation of Poincaré algebra. Phys. Lett. B 264(3), 331–338 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  31. Magueijo, J., Smolin, L.: Lorentz invariance with an invariant energy scale. Phys. Rev. Lett. 88, 190403 (2002)

    Article  ADS  Google Scholar 

  32. Magueijo, J., Smolin, L.: Generalized Lorentz invariance with an invariant energy scale. Phys. Rev. D 67(4), 044017 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  33. Majid, S., Ruegg, H.: Bicrossproduct structure of \(\kappa \)-Poincare group and non-commutative geometry. Phys. Lett. B 334(3), 348–354 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Meyer, D.: From quantum cellular automata to quantum lattice gases. J. Stat. Phy. 85(5), 551–574 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Meyer, D.A.: From gauge transformations to topology computation in quantum lattice gas automata. J. Phys. A 34(35), 6981 (2001). http://stacks.iop.org/0305-4470/34/i=35/a=323

  36. Schumacher, B., Werner, R.: Reversible quantum cellular automata. quant-ph/0405174 (2004)

  37. Snyder, H.: Quantized space-time. Phys. Rev. 71, 38–41 (1947)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Susskind, L.: Lattice fermions. Phys. Rev. D 16, 3031–3039 (1977). doi:10.1103/PhysRevD.16.3031

    Article  ADS  Google Scholar 

  39. Yepez, J.: Relativistic path integral as a lattice-based quantum algorithm. Quantum Inf. Process. 4(6), 471–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zeeman, E.C.: Causality implies the Lorentz group. J. Math. Phys. 5(4), 490–493 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This publication was made possible through the support of a grant from the John Templeton Foundation under the Project ID# 60609 Causal Quantum Structures. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Mauro D’Ariano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisio, A., D’Ariano, G.M. & Perinotti, P. Quantum Walks, Weyl Equation and the Lorentz Group. Found Phys 47, 1065–1076 (2017). https://doi.org/10.1007/s10701-017-0086-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-017-0086-3

Keywords

Navigation