Anaphora without indices: Dynamics of centering

MARIA BITTNER

Abstract

The standard way to represent anaphoric dependencies is to co-index the anaphor with its antecedent in the syntactic input to semantic rules, which then interpret such indices as variables. Dynamic theories (e.g. Kamp's DRT, Heim's File Change Semantics, Muskens's Compositional DRT, etc) combine syntactic coindexation with semantic left-to-right asymmetry. This captures the fact that the anaphor gets its referent from the antecedent and not vice versa. Formally, a text updates the input state of information to the output state. In particular, an indexed antecedent updates the entity assigned to its index, and the output entity is then picked up as the referent by any subsequent co-indexed anaphor.

The elephant in the room is that the all-important indices have no audible reflex in any natural language-e.g. no language contrasts $h e_{17}$ vs. $h e_{123}$. Adding to the embarrassment, actual anaphoric contrasts are not interpreted like contrasting variables in formal logics-e.g. zero (i.e. missing argument) vs. pronoun tā in Mandarin Chinese; or proximate vs. obviative 3rd person in languages with grammatical obviation (e.g., -ni vs. $-a$ in Kalaallisut). Yet actual anaphoric systems render anaphora unambiguous (Mandarin, Kalaallisut), or much less ambiguous than predicted (English), by mechanisms that index-based theories have no tools to explicate. A yet another mystery for index-based theories is why anaphora resolution does not get increasingly harder as discourse progresses, since every sentence adds to the set of potential antecedents. Yet, intuitively, in a long novel a pronoun at the end is just as easy to resolve as a pronoun in paragraph one.

Intuitively, this is because a pronoun refers to a salient antecedent, and the set of currently salient antecedents changes but does not grow. Previous attempts to implement this common-sense idea (centering theory of Grosz et al 1995 and related work) have been criticized into oblivion (see e.g. Kehler 1997). But the basic idea still makes intuitive sense. In this talk, I use formal tools of update semantics to propose a new implementation, which fits both the facts of actual anaphoric systems and the assumptions of directly compositional theories (e.g. CCG).

Outline

1. Grammatical centering systems
2. Mandarin in Update with Centering
3. Kalaallisut in Update with Centering
4. English in Update with Centering
5. Conclusion

1 GRAMMATICAL CENTERING SYSTEMS

- Tentative Universals

Obs. 1 Centering systems disambiguate anaphora by grammatically tracking the current center \& background of attention. (cf. focal vs. peripheral vision).

Obs. 2 Anaphors refer to the top-ranked discourse referent on the relevant tiere.g. top-ranked center-stage ($\mathrm{T}-d r e f$) or top-ranked in the background ($\perp-d r e f$).

Obs. 3 Nominal centering distinguishes subcategorized arguments-i.e. subjects, objects, and possessors. (Optional adjuncts are not eligible for top rank on any tier)

- Mandarin Chinese: main unit of discourse is a topic chain-i.e. chain of clauses sharing the same topic (T-dref)—not a sentence (Tsao 1979, Chu 1998, Li 2005).
(1) $\left[\left[i \mathrm{i}\right.\right.$ topic-update $\left(\underline{n p}^{\top}\right)$, comment $\left._{1}\left({ }_{T} \mathrm{n}\right)\right]$
${ }_{\text {ii }}$ comment $_{2}\left({ }_{T} \mathrm{~V}\right)$, comment $\left._{3}\left(_{T} \mathrm{~V}\right)\right]_{\text {T-chain }}$
i. Xiăoli niánqīng piàoliang, gōnzuò yĕ hăo. Xiaoli ${ }^{\top}$ young pretty , , job also good Xiaoli^{\top} is young and pretty. She ${ }_{T}$ has a good job, too.
ii. Suïrán yŏu ge nánpéngyou, kĕshì bù xiăng jié.hūn. although ${ }_{T}$ have CL boyfriend , but ${ }_{T}$ NOT wish get.married She $_{T}$ has a boyfriend, but ${ }_{T}$ doesn't wish to get married.
 $\left[\right.$ Sii $\operatorname{comment}_{4}\left({ }_{\perp} \mathrm{v}_{\mathrm{T}}\right)$, comment $_{5}\left({ }_{\perp} \mathrm{V}_{\mathrm{T}}\right)$, comment ${ }_{6}\left({ }_{\perp} \mathrm{v}_{\mathrm{T}}\right)$, comment $\left.\left.{ }_{7}\left({ }_{\perp} \mathrm{v}_{\mathrm{T}}\right)\right]\right]_{\mathrm{T} \text {-chain }}$

1. Nà-liàng chē, jiàqián tài guì, yánsè yĕ bù hăo , Lisi bù xĭhuan. that-CL $\mathrm{car}^{\top},{ }_{T}$ price too high, ${ }_{T}$ color also NOT good, Lisi $^{\perp}$ NOT like ${ }_{T}$ That car ${ }^{\top}$ is too expensive and i_{T} 's an ugly color. Lisi $^{\perp}$ doesn't like it $_{T}$.
ii. Zuótiān qù kàn-le , hái kāi-le yíhuìr, háishì bù xĭhuan, yesterday ${ }_{\perp}$ go $\operatorname{look}_{T}-\mathrm{PNC}$, even ${ }_{\perp}$ drive $_{T}-\mathrm{PNC} \mathrm{M}_{\text {a.while }}$, still NOT ${ }_{\perp}$ like $_{T}$, méi măi.
NOT $_{\perp}{ }^{\text {buy }}$
Yesterday he \perp_{\perp} went to take a look at $\mathrm{it}_{T} . \mathrm{He}_{\perp}$ even took it_{T} out for a spin, but he ${ }_{\perp}$ still didn't like it $_{T}$. He $_{\perp}$ didn't buy it_{T}.
$[\mathrm{Li}: 2]+[\mathrm{fw}]$

- KALAALLiSUT: arguments expressed as pronominal affixes (pn); two forms of 3rd person pn-arguments: proximate for T v. obviative for \perp (e.g. $-n i$ ' $3 \mathrm{~S}_{\top}$ ' $\mathrm{v} .-a^{\prime} 3 \mathrm{~S}_{\perp}$ '); full np's interpreted as re-centering updates, setting local context for pn-arguments.

Context for (3)-(3'): Yesterday the children ${ }^{\top}$ had a dog-sled race.
(3) Ole-p ikinnguta-a ajugaa-ga-mi nuannaar-pu-q. Ole-ERG ${ }^{\perp} \quad\left[\text { friend }-3 S_{\perp}\right]^{\top}$ win- $\mathrm{FCT}_{T}-3 \mathrm{~S}_{T}$ happy-DEC ${ }_{T}-3 \mathrm{~S}$ Ole $^{\perp}$'s friend ${ }^{\top}$ won, so she ${ }_{T}$ (= friend) was happy.
(3') Ole-p ikinngun-ni ajugaa-mm-at nuannaar-pu-q. Ole-ERG ${ }^{\top} \quad\left[\text { friend- } 3 \mathrm{~S}_{\mathrm{T}}\right]^{\perp}$ win- $\mathrm{FCT}_{\perp}-3 \mathrm{~S}_{\perp}$ happy- $\mathrm{DEC}_{\mathrm{T}}-3 \mathrm{~S}$ Ole $^{\top}$'s friend ${ }^{\perp}$ won, so she ${ }_{T}(=$ Ole) was happy.
(4)i. Ilaanni anguti-tuqa-p nulia-ni kisimi-i-qatig(i-p)a-a once man-old-ERG ${ }^{\top}$ [wife- $\left.3 \mathrm{~S}_{\mathrm{T}}\right]^{\perp}$ alone-be-with-DEC ${ }_{T \perp}-3 \mathrm{~S} .3 \mathrm{~S}$
Once an old man ${ }^{\top}$ was alone with his $_{T}$ wife $^{\perp}$,
irnir-tik piniar-riar-sima-mm-at.
[son- $\left.3 \mathrm{P}_{\mathrm{T}+}\right]^{\perp}$ hunt-go-prf-FCT ${ }_{\perp}-3 \mathrm{~S}_{\perp}$
because their ${ }_{T+\perp}$ son $^{\perp}$ was away on a hunting trip.
ii. Aavi-rsuaq isissaa-lir-mm-at
walrus-big ${ }^{\perp}$ visible-begin- $\mathrm{FCT}_{\perp}-3 \mathrm{~S}_{\perp}$
When a big walrus ${ }^{\perp}$ showed up,
piniar-niar-llu-qu qain-ni atir-vigi-lir-pa-a.
hunt-intend-ELA $T_{T}-3 \mathrm{~S}_{\perp}$ kayak- $3 \mathrm{~S}_{T}$ go.down-to-begin-DEC ${ }_{T \perp}-3 \mathrm{~S} .3 \mathrm{~S}$
(ELA_{T} : elaboration of T)
he $_{T}$ headed down to his ${ }_{T}$ kayak to go after it ${ }_{\perp}$ (lit. ${ }_{\top}$ intending to ...).
iii. Nuli-ata inirtir-aluar-pa-a
${\text { [wife- } 3 \mathrm{~S}_{\perp} \cdot \text { ERG] }}^{\top}$ forbid-in.vain-DEC T」 -3 S .3 S
His $^{\perp}$ wife ${ }^{\top}$ tried to stop him ${ }_{\perp}$,
kisimi-i-mm-at avala-qqu-na-gu.
alone-be-FCT ${ }_{\perp}-3 \mathrm{~S}_{\perp}$ set.out-tell-not.ELA ${ }_{T}-3 \mathrm{~S}_{\perp}$
begging $_{\top}$ him $_{\perp}$ not to set out because he \perp_{\perp} was alone.
iv. Ui-ata=li tusar-uma-na-gu
[husband-3 $\left.\mathrm{S}_{\perp} . E R G\right]^{\top}$ listen-want-not-not.ELA $A_{T}-3 \mathrm{~S}_{\perp}$
But he ${ }^{\top}$ (lit. her ${ }^{\perp}$ husband ${ }^{\top}$) refused to listen to her ${ }_{\perp}$ and
aavi-rsuaq nalip-pa-a.
walrus-big ${ }^{\perp}$ harpoon- DEC $_{T \perp}-3 \mathrm{~S} .3 \mathrm{~S}$
${ }_{T}$ harpooned the great walrus ${ }^{\perp}$.
v. Nali-mm-a.ni upa-annar-pa-a qaja-a tulur-lu-qu.
harpoon- $-C_{C_{\perp}}-3 \mathrm{~S}_{\perp} .3 \mathrm{~S}_{\mathrm{T}}$ turn.on-just-DEC $\mathrm{T}_{\perp}-3 \mathrm{~s} .3 \mathrm{~s}$ kayak- $3 \mathrm{~S}_{\perp}$ gore-ELA $\mathrm{A}_{\mathrm{T}}-3 \mathrm{~S}_{\perp}$ As soon as he ${ }^{\perp}$ hit $^{\perp}{ }^{\top}$, it $_{\top}$ turned on him ${ }_{\perp},{ }_{\top}$ goring his ${ }_{\perp}$ kayak $^{\perp}$ with its tusks

2 MANDARIN IN UPDATE WITH CENTERING

- Update with Centering (e.g. UC C_{0} in Appendix)
- Update semantics (Veltman 1996):
"You know the meaning of a sentence if you know the change it brings about in the information state of anyone who accepts the news conveyed by it."
- Centering-based anaphora (Bittner 2011; cf. Dekker '94, Groenendijk et al '95)
(a) update keeps track of current perspective $=$ center-stage + background
(b) persp. concepts for top four drefs: T (ctr), $\top^{\prime}\left(2\right.$ ry ctr),\perp (bck), $\perp^{\prime}(2$ ry bck $)$
(c) otherwise descriptive anaphora via $T \Rightarrow$ (ctr-stage set) $\& \perp \Rightarrow$ (background set)

$$
\underbrace{\left\langle\begin{array}{l}
\text { center-stage }
\end{array}\right.}_{\mathrm{T}^{\Rightarrow}} \begin{array}{c}
\begin{array}{l}
\left\langle\underline{\mathrm{a}}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{n}\right\rangle \\
\mathrm{T} \mathrm{~T}^{\prime}
\end{array}
\end{array}, \begin{array}{c}
\text { background } \\
\left.\left\langle\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots, \mathrm{~b}_{m}\right\rangle\right\rangle \\
\perp \perp^{\prime}
\end{array}]
$$

- Mandarin Chinese: From discourse (2) to UC_{0} (see also Bittner 2011b)
(5) i. That car ${ }^{\top}$ is too expensive and it $_{T}$'s an ugly color. Lisi $^{\perp}$ doesn't like it ${ }_{T}$.
(input)
that-CL car
, ${ }_{T}$ price too high
${ }^{\top}\left[x \mid \operatorname{car}\langle x\rangle, x \in \perp^{\Rightarrow}\right] ;[x \mid$ price $\langle x, \top\rangle$, too.high $\langle x\rangle] ;$
$\left\langle\left\rangle,\left\langle\ldots,{ }_{-}\right\rangle\right\rangle\left\langle\langle\underline{e}\rangle,\left\langle\ldots, \varepsilon^{\rho}\right\rangle\right\rangle\right.$
$\left\langle\langle\underline{e}\rangle,\left\langle \$, \ldots,{ }^{-}\right\rangle\right\rangle$
${ }_{\top}$ color also not good \quad Lisi ${ }^{\perp}$ NOT like $_{T}$
$[x \mid \operatorname{color}\langle x, \top\rangle, \sim \operatorname{good}\langle x\rangle] ; \quad[x \mid$ lisi $\langle x\rangle, x \in \perp \Rightarrow, \sim \operatorname{like}\langle x, \top\rangle]$;
$\langle\langle\underline{e},\langle\bullet, \$, \ldots, \sigma\rangle\rangle\langle\langle\varepsilon\rangle,\langle\otimes, \bullet, \$, \ldots,=\rangle\rangle$
ii. (Yesterday) he ${ }_{\perp}$ went to take a look at it $_{\top}$. He_{\perp} even took it out for a spin, \ldots
${ }_{\perp}$ go look $_{\mathrm{T}}-\mathrm{PNC}$
, even ${ }_{\perp}$ drive $_{T}-$ PNC $_{\text {M.while }} \quad, \quad \ldots$
[go.look.at $\langle\perp, \top\rangle]$
; [drive.a.while $\langle\perp, \top\rangle$]

(6) i. Jiajia bing le, zuotian wanshang jiu fa.shao. Jiajia ${ }^{\top}$ sick SFP, yesterday night then ${ }_{\top}$ run.a.fever Jiajia $^{\top}$ is sick. She ${ }_{T}$ ran a fever last night.
ii. Lisi zhidao ta-de mama hen mang, mei gan gaosu ta, Lisi $^{\top}$ know $3 \mathrm{~S}_{\mathrm{T}},-$'s mom ${ }^{\perp}$ very busy, NOT ${ }_{T}$ dare tell $3 \mathrm{~S}_{\perp}$, dai ta qu kan-le jizhen, da-le zhen.
${ }_{T}$ take $3 \mathrm{~S}_{\mathrm{T}^{\prime}}$ go see-PNC ER ${ }^{\perp}$, ${ }_{\perp}$ do-PNC injection
Lisi ${ }^{\top}$ knew her ${ }_{T}$ mom $^{\perp}$ was busy, so he e_{T} didn't want to tell her ${ }_{\perp}$. He T_{T} just took her ${ }_{T^{\prime}}$ to the ER^{\perp} (lit. to see ER^{\perp}) and they ${ }_{\perp}$ gave $^{\text {her }} \mathrm{T}_{\mathrm{T}^{\prime}}$ an injection.
- Toward CCG $+\mathrm{UC}_{0}$ Fragment of Mandarin
- basic entries for verbs, e.g.

bìng	$\mid-$	$\operatorname{sinp}: \lambda \underline{x}_{s e}[\operatorname{sick}\langle\underline{x}\rangle]$
xĭhuan	$\mid-$	$\operatorname{sinp} / \mathrm{np}: ~$
$y_{s e}$	$\lambda \underline{x}_{s e l}[l i k e\langle\underline{x}, \underline{y}\rangle]$	

(intransitive verb)
(transitive verb)

- lexical centering operators

$\top(\cdot)$	$-\mathcal{s} /(\mathrm{s} \backslash \operatorname{lnp}): \lambda \underline{P}(\underline{P} \top)$	(missing T-subject)
$\perp(\cdot)$	$-\mathrm{s} /(\mathrm{s} \operatorname{lnp}): \lambda \underline{P}([\top \neq \perp] ; \underline{P} \perp)$	(missing \perp-subject)
$(\cdot)_{\top}$	$-(\mathrm{s} \operatorname{np}) /(\mathrm{s} \operatorname{lnp} / \mathrm{np}): \lambda \underline{R} \lambda \underline{x}_{s e}([\underline{x} \neq \top] ; \underline{R} \top \underline{x})$	(missing T-object)
$(\cdot)_{\perp}$	$-(\mathrm{s} \operatorname{lnp}) /(\mathrm{s} \ln p / \mathrm{np}): \lambda \underline{R} \lambda \underline{x}_{s e}([\underline{x} \neq \perp] ; \underline{R} \perp \underline{x})$	(missing \perp-object)

(missing T-object)
(missing \perp-object)

- Hence derived entries for verbs with 'missing arguments', e.g.

${ }_{\text {Txĭhuan }}$	$\mid-\mathrm{s} / \mathrm{np}: \lambda \underline{y s e}_{\text {se }}[$ like $\langle\top, \underline{y}\rangle]$	(missing T-subject)
$x^{\text {xihuan }}$	$\mid-\mathrm{s} \backslash \mathrm{np}: \lambda \underline{x}_{\text {se }}([\underline{x} \neq \mathrm{T}] ;[\operatorname{like}\langle\underline{x}, \mathrm{~T}\rangle])$	(missing T-object)

xihuan $_{T} \mid-\quad \mathrm{s} \operatorname{lnp}: \lambda \underline{x}_{s e}([\underline{x} \neq \mathrm{T}] ;[\operatorname{like}\langle\underline{x}, \top\rangle]) \quad$ (missing T-object)
${ }_{\perp}\left(\right.$ xĭhuan $\left._{T}\right) \mid-\mathrm{s}:([\top \neq \perp] ;[$ like $\langle\perp, T\rangle]) \quad$ (missing \perp-subject \& T-object)

3 KALAALLISUT IN UPDATE WITH CENTERING

- Kalaallisut: From discourse (4) to UC_{0} (see also Bittner 2011a)
(7)i. Once an old man ${ }^{\top}$ was alone with his wife $^{\perp}$,
once man-old-ERG ${ }^{\top}$ [wife- $\left.3 \mathrm{~S}_{\mathrm{T}}\right]^{\perp}$ alone-with- $\mathrm{DEC}_{\mathrm{T} \perp}-3 \mathrm{~s} .3 \mathrm{~S}$
${ }^{\top}[x \mid$ old.man $\langle x\rangle] ;[x \mid$ wife. of $\langle x, \top\rangle] ; \quad[$ alone.with $\langle\top, \perp\rangle]$
$\langle\langle\odot\rangle,\langle \rangle\rangle \quad\langle\langle\Theta\rangle,\langle\boldsymbol{\varphi}\rangle\rangle$
$\left\langle\left\langle\Theta_{n}\right\rangle,\langle \rangle\right\rangle$
because their ${ }_{T^{+} \perp}$ son $^{\perp}$ was away on a hunting trip. [son-3 $\left.\mathrm{P}_{\mathrm{T}+}\right]^{\perp}$ hunt-go-prf- $\mathrm{FCT}_{\perp}-3 \mathrm{~S}$ $[x \mid$ son.of $\langle x, T+\perp\rangle] ; \quad[$ gone.hunting $\langle\perp\rangle]$ $\langle\langle 仓\rangle,\langle\oplus, \bullet\rangle\rangle$
ii. When a big walrus ${ }^{\perp}$ showed up,
[walrus-big ${ }^{\perp}$ be.visible-begin- $\mathrm{FCT}_{\perp}-3 \mathrm{~S}_{\perp}$]
$[x \mid$ big.walrus $\langle x\rangle] ; \quad[$ show.up $\langle\perp\rangle] ;$
$\langle\langle 仓\rangle,\langle\wedge, \uparrow, \downarrow\rangle\rangle$
he ${ }_{T}$ went down to his ${ }_{T}$ kayak to go after it $_{\perp}$.
hunt-intend-ELA $-3 \mathrm{~S}_{\perp}$ kayak- $3 \mathrm{~S}_{T}$ go.down-to-begin-DEC ${ }_{T \perp}-3 \mathrm{~s} .3 \mathrm{~S}$
$[$ intend.to.hunt $\langle\top, \perp\rangle] ;[x \mid$ kayak.of $\langle x, T\rangle] ;[$ go.down.to $\langle T, \perp\rangle]$
$\langle\langle\Theta\rangle,\langle\underset{-}{\bullet}, N, \uparrow\rangle\rangle$
iii. His^{\perp} wife ${ }^{\top}$ tried to stop him
[wife- $3 \mathrm{~S}_{\perp}$. ERG]
forbid-in.vain-DEC -3 s .3 s
$[x \mid x=\mathrm{T}] ;{ }^{\top}[x \mid$ wife.of $\langle x, \perp\rangle, x \in \perp \Rightarrow] ;[\top \neq \perp] ;[$ try.to.stop $\langle\top, \perp\rangle]$;
$\langle\langle\underline{\boldsymbol{\varphi}}, \odot\rangle,\langle\odot, \underset{\sim}{\infty}, \boldsymbol{N}, \boldsymbol{\uparrow}, \boldsymbol{\varphi}\rangle\rangle$
begging $_{\top}$ him $_{\perp}$ not to set out because he ${ }_{\perp}$ was alone.
alone-be- $\mathrm{FCT}_{\perp}-3 \mathrm{~S}_{\perp} \quad$ set.out-tell-not.ELA $A_{T}-3 \mathrm{~S}_{\perp}$
[alone $\langle\perp\rangle$; $\quad[$ beg.not.to.set.out $\langle T, \perp\rangle]$
iv. But he ${ }^{\top}$ (lit. her ${ }^{\perp}$ husband $^{\top}$) refused to listen to her ${ }_{\perp}$ and $\begin{array}{lr}\left.\text { [husband- } 3 \mathrm{~S}_{\perp} \cdot \mathrm{ERG}\right]^{\top} & \text { listen-want-not.ELA } \mathrm{A}_{\top}-3 \mathrm{~S}_{\perp} \\ {[x \mid x=\mathrm{T}] ;{ }^{\top}[x \mid \text { husband }\langle x, \perp\rangle, x \in \perp \Rightarrow] ;[\text { refuse.to.listen.to }\langle\mathrm{T}, \perp\rangle]}\end{array}$
$\langle\langle\oplus, \boldsymbol{\bullet}, \odot\rangle,\langle\bullet, \odot, \ldots, N, \uparrow, \vee\rangle\rangle$
harpooned the great walrus ${ }^{\perp}$.
walrus-big ${ }^{\perp}$
harpoon- DEC $_{\text {T }}-3 \mathrm{~s} .3 \mathrm{~S}$
$[x \mid$ big. walrus $\langle x\rangle, x \in \perp \Rightarrow$;
$[\top \neq \perp] ;[$ harpoon $\langle T, \perp\rangle]$

 harpoon- $\mathrm{FCT}_{\perp}-3 \mathrm{~S}_{\perp} .3 \mathrm{~S}_{\mathrm{T}}$
turn.on-just-DEC ${ }_{T \perp}-3 \mathrm{~S} .3 \mathrm{~S}$
${ }^{\top}[x \mid x=\perp] ;\left[x \mid\right.$ harpoon $\left.\langle x, \top\rangle, x \in \mathrm{~T}^{\Rightarrow}\right]$; [$\mathrm{T} \neq \perp] ;[$ turn.on $\langle\mathrm{T}, \perp\rangle]$;
$\langle\langle\underline{\mathcal{N}}, \odot, \boldsymbol{\bullet}, \odot\rangle,\langle\odot, \boldsymbol{N}, \boldsymbol{\vee}, \odot, \boldsymbol{\epsilon}, \boldsymbol{N}, \uparrow, \boldsymbol{\nabla}\rangle\rangle$
${ }_{\top}$ puncturing his ${ }_{\perp}$ kayak $^{\perp}$ with its ${ }_{\top}$ tusks.

- Toward CCG $+\mathrm{UC}_{0}$ Fragment of Kalaallisut (as in Bittner 2011a)
- verb roots, e.g.
naparsima- $\mid-\mathrm{s} \backslash \mathrm{pn}: \lambda \underline{x}_{s e}[\operatorname{sick}\langle\underline{x}\rangle] \quad$ (intransitive verb)
nuannari- $\quad \mid-\mathrm{s} \backslash \mathrm{pn} \backslash \mathrm{pn}: \lambda \underline{x}_{s e} \lambda \underline{y}_{s e}[l i k e\langle\underline{x}, \underline{y}\rangle] \quad$ (transitive verb)
- inflectional centering by MOOD +pn -arguments, e.g.
$\begin{array}{ll}-\mathrm{DEC}_{\mathrm{T}}-3 \mathrm{~s} & \mid-\mathrm{s} \backslash(\mathrm{s} \backslash \mathrm{pn}): \lambda \underline{P}(\underline{P} \top) \\ -\mathrm{DEC}_{\mathrm{T}}-3 \mathrm{~s} .3 \mathrm{~s} & \mid-\mathrm{s} \backslash(\mathrm{s} \backslash \mathrm{pn} \backslash \mathrm{pn}): ~ \\ \underline{R}([\mathrm{~T} \neq \perp] ; \underline{R} \mathrm{~T} \perp)\end{array}$
$\begin{array}{lll}-\mathrm{DEC}_{\mathrm{T}}-3 \mathrm{~s} .3 \mathrm{~S} & -\mathrm{s} \backslash(\mathrm{s} \backslash \mathrm{pn} \backslash \mathrm{pn}): ~ & \lambda \underline{R}\left([\top \neq \perp] ; \underline{R}{ }^{\top} \perp\right) \\ -\mathrm{FCT}_{-}-3 \mathrm{~S}_{\mathrm{T}} & -(\mathrm{s} / \mathrm{s}) \backslash(\mathrm{s} \backslash \mathrm{pn}): \lambda \underline{P} \lambda K(P \mathrm{~T} ; K)\end{array}$ $(\mathrm{s} / \mathrm{s}) \backslash(\mathrm{s} \backslash \mathrm{pn}): \lambda \underline{P} \lambda K\left({ }^{\top}[x \mid x=\perp] ; \underline{P} \top ; K\right)$ (ctr fact about T)
$-\mathrm{FCT}_{\mathrm{T}}-3 \mathrm{~S}_{\mathrm{T}} \quad \mid-(\mathrm{s} / \mathrm{s}) \backslash(\mathrm{s} \backslash \mathrm{pn}): \lambda \underline{P} \lambda K(\underline{P} \mathrm{~T} ; K)$ (ctr fact about $\langle T, \perp\rangle$) (bck fact abt input T)
(... output T)
$-\mathrm{FCT}_{\perp}-3 \mathrm{~S}_{\perp} \quad \mid-(\mathrm{s} / \mathrm{s}) \backslash(\mathrm{s} \backslash \mathrm{pn}): \lambda \underline{\bar{P}} \lambda K(\underline{P} \perp ; K ;[\top \neq \perp]) \quad$ (bck fact abt input \perp) $(\mathrm{s} / \mathrm{s}) \backslash(\mathrm{s} \backslash \mathrm{pn}): \lambda \underline{P} \lambda K([x \mid x=\mathrm{T}] ; \underline{P} \perp ; K ;[\mathrm{T} \neq \perp]) \quad(\ldots$ output $\perp)$

4 ENGLISH IN UPDATE WITH CENTERING

- Approaches to Pronoun Interpretation

- coherence-driven (Hobbs 1979)
(8) The city council denied the demonstrators a permit because ...
a. ... they feared violence.
(they = the city council)
b. ... they advocated violence.
(they = the demonstrators)
- parallelism-driven (Sidner 1983). Kehler's (9) shows the strength of this effect.
(9) Margaret Thatcher admires Hilary Clinton,
and George W. Bush absolutely worships her. \quad (her = Hilary Clinton)
- attention-driven (Sidner '83, Kameyama '86, Brennan et al '87, Grosz et al '95)
(10) a. John hit Bill. Mary told him to go home. (him = John)
b. Bill was hit by John. Mary told him to go home.
(him = Bill)
- attention+coherence-driven (Kehler 2002: Ch. 6)
"My analysis of pronoun interpretation [is] based on the interaction of two aspects of interpretation:
(i) the linguistic properties of the linguistic form in question, and
(ii) the properties of the process of establishing coherence for my three types of relations [causal, e.g. (8); resemblance, e.g. (9); contiguity, e.g. (10)]
\ldots [re (i)] pronouns [are] linguistic devices ... that encode signals to the hearer
about the degree of salience the referent holds within the current discourse state
...[i.e. signals] that this level of salience is high." (Kehler 2002:156)
- Attention + Coherence in UC 0 :

Causal relation (Explanation): signaled by the complementizer because
(8') The city council ${ }^{\top}$ denied the demonstrators ${ }^{\perp}$ a permit because ...
${ }^{\top}\left[x \mid\right.$ city.council $\left.\langle x\rangle, x \in \perp^{\Rightarrow}\right] ;\left[x \mid\right.$ demonstrators $\left.\langle x\rangle, x \in \perp^{\Rightarrow}\right] ;[$ deny $\langle\top, \perp\rangle] ;$
a. ... they ${ }_{T}$ feared violence. [fear.violence $\langle T\rangle$]
(T : the city council)
b. ... they ${ }_{\perp}$ advocated violence.
[advocate.violence $\langle\perp\rangle$]
(\perp : the demonstrators)
Resemblance rel. (Parallel): signaled by and \& near synonyms admire...worship
(9') Margaret Thatcher ${ }^{\top}$ admires Hilary Clinton ${ }^{\perp}$, and ...
${ }^{\top}\left[x \mid\right.$ margaret $\left.\langle x\rangle, x \in \perp^{\Rightarrow}\right] ;\left[x \mid\right.$ hilary $\left.\langle x\rangle, x \in \perp \stackrel{ }{ }{ }^{\prime}\right] ;[$ admire $\langle\top, \perp\rangle] ;$
... George W. Bush ${ }^{\top}$ absolutely worships her ${ }_{\perp}$.
${ }^{\top}[x \mid$ george $\langle x\rangle, x \in \perp \Rightarrow] ;[\top \neq \perp] ;[$ worship $\langle\top, \perp\rangle]$
(\perp : Hilary Clinton)

Contiguity relation (Occasion): default in story telling
Kehler's (11), problem for static centering theory ([BFP], [GJW]), but not UC:

$$
\langle\rangle,\langle\ldots, \oplus, \oplus\rangle\rangle \quad \text { (initial input: } \odot=\text { Terry, } \Theta=\text { Tony })
$$

(11) i. Terry ${ }^{\top}$ set out for an outdoor excursion on Monday.
${ }^{\top}\left[x \mid\right.$ terry $\left.\langle x\rangle, x \in \perp{ }^{\Rightarrow}\right] ; \quad{ }^{\top}\left[t_{\tau} \mid\right.$ set.out $\langle\top, t\rangle$, monday $\left.\langle t\rangle, \ldots\right] ;$

ii. $I t_{T \tau}$ was a beautiful day, hovering around 83 degrees. [beautiful.day $\langle\tau \tau\rangle, . .$.$] ;$
iii. He ${ }_{\top}$ was excited about trying out his ${ }_{\top}$ new sailboat ${ }^{\perp}$. $[x \mid$ new.sailboat.of $\langle x, \top\rangle] ;[$ excited.about.trying.out $\langle\top, \perp\rangle]$ $\langle\langle\Theta\rangle,\langle\ldots, \ldots, \odot, \oplus\rangle\rangle \quad$ (entity dref's only)
iv. $\mathrm{He} \mathrm{T}_{\mathrm{T}}$ wanted Tony ${ }^{\perp}$ to join him ${ }_{\mathrm{T}}$ on a sailing expedition. $\left[x \mid\right.$ tony $\left.\langle x\rangle, x \in \perp^{\Rightarrow}\right] ;[\top \neq \perp] ;[$ want.to.join.on.sailing.exp $\langle\top, \perp\rangle] ;$ $\langle\langle\Theta\rangle,\langle\Theta,-, \ldots, \odot, \oplus\rangle\rangle$
v. The ${ }_{\mathrm{T}}$ marina $^{\perp} \ldots$
${ }^{\top}[x \mid$ marina $\langle x\rangle$, use $\langle\top, x\rangle]$;
$\left.\left\langle\langle\square, \oplus\rangle,\langle\boldsymbol{\Theta},-, \ldots,)_{,}, \oplus\right\rangle\right\rangle$
\ldots is actually very close to Tony's house
$[$ tony $\langle\perp\rangle, \perp \in \perp \Rightarrow] ;[x \mid$ house.of $\langle x, \perp\rangle] ;[$ very.close.to $\langle T, \perp\rangle]$
$\langle\langle\underline{\square}, \odot\rangle,\langle\boldsymbol{\oplus}, \boldsymbol{\oplus},-, \ldots, \oplus, \oplus\rangle\rangle$
vi. $\mathrm{He}_{\mathrm{T}^{\prime}}{ }^{\top}$ called him $\perp_{\perp^{\prime}}^{\perp}$ at 6 AM .
${ }^{\top}\left[x \mid x=\top^{\prime}\right] ;\left[x \mid x=\perp^{\prime}\right] ;[\top \neq \perp] ;[$ call.at. $6 A M\langle\top, \perp\rangle] ;$
$\langle\langle\Theta, \square, \odot\rangle\rangle,\langle\boldsymbol{\oplus}, \boldsymbol{\oplus}, \boldsymbol{\oplus}, \ldots, \ldots, \odot, \oplus\rangle\rangle$
vii. He_{T} was sick and furious with him ${ }_{\perp}$ for waking him he $_{\top}$ up so early. ??! $[$ sick $\langle T\rangle] ;[T \neq \perp] ;[$ furious.with $\langle\top, \perp\rangle$, wake.up $\langle\perp, \top\rangle]$ garden path!

5 CONCLUSION

- NL anaphors refer to perspective-dependent entities (e.g. \perp for 'top-ranked entity in the background'), where the curr. discourse perspective is an empirical notion.
- The clearest and most direct evidence comes from centering systems, which grammatically track the current discourse perspective and make use of top-level anaphors (e.g. Mandarin ' ${ }_{\perp}$ like ${ }_{T}$ ', Kalaallisut ' like $-\mathrm{FCT}_{\perp}-3 \mathrm{~s}_{\perp}-3 \mathrm{~S}_{\mathrm{T}}$ ')
- English pronouns can refer to any of the top four drefs (i.e. $T, \top^{\prime}, \perp, \perp^{\prime}$). Still, coherence relations and/or gender presuppositions usu. successfully disambiguate
- All languages use full $n p$'s for descriptive anaphora (to $T \Rightarrow$-set or $\perp \Rightarrow$-set). In UC only this form of anaphora is available for lower-ranked drefs (below $\mathrm{T}^{\prime}, \perp^{\prime}$).

APPENDIX: Update with Nominal Centering $\left(\mathrm{UC}_{0}\right)$

$\mathrm{D} 1\left(\mathrm{UC}_{0}\right.$ types $\left.\Theta\right)$.
i. $t, e, s \in \Theta$
(truth values, entities, perspectives)
ii. $(a b) \in \Theta$, if $a, b \in \Theta$
$\mathrm{D} 2 \mathrm{~A} \mathrm{UC}_{0}$-frame is a set $\left\{\mathcal{D}_{a} \mid a \in \Theta\right\}$ of non-empty a-domains \mathcal{D}_{a} such that
i. $\mathcal{D}_{t}=\{1,0\}$ and \mathcal{D}_{e} are non-empty disjoint sets
$\mathcal{D}_{s}=\cup_{n \geq 0, m \geq 0}\left\{\left\langle\left\langle\mathrm{a}_{1}, \ldots, \mathrm{a}_{n}\right\rangle,\left\langle\mathrm{b}_{1}, \ldots, \mathrm{~b}_{m}\right\rangle\right\rangle: \mathrm{a}_{i}, \mathrm{~b}_{j} \in \mathcal{D}_{e}\right\}$
ii. $\mathcal{D}_{(a b)}=\left\{f \mid \operatorname{Dom} f \subseteq \mathcal{D}_{a} \& \operatorname{Ran} f \subseteq \mathcal{D}_{b}\right\}$

D3 A UC 0_{0}-model is a pair, $\mathcal{M}=\langle\mathcal{D}, \llbracket \cdot \mathbb{}\rangle$ such that $\mathcal{D}=\left\{\mathcal{D}_{a}: a \in \Theta\right\}$ is a $\mathrm{UC}_{0}-$ frame and $\llbracket \cdot \rrbracket$ maps any $A \in \operatorname{Con}_{a}$ to $\llbracket A \rrbracket \in \mathcal{D}_{a}$. Moreover, for all $\mathrm{i}=\left\langle\mathrm{i}_{1}, \mathrm{i}_{2}\right\rangle \in \mathcal{D}_{s}$:
$\llbracket T \rrbracket(i) \doteq\left(\mathrm{i}_{1}\right)_{1}$
$\llbracket \perp \rrbracket(\mathrm{i}) \doteq\left(\mathrm{i}_{2}\right)_{1}$
(${ }^{\prime}$, for ' $=$, if defined')
$\llbracket T \mathbb{T}(\mathrm{i}) \doteq\left(\mathrm{i}_{1}\right)_{2}$
$\llbracket \perp \Uparrow(i) \doteq\left(i_{2}\right)_{2}$
$\llbracket \mathrm{T}^{\Rightarrow} \rrbracket(\mathrm{i})=\chi_{\left\{\left(\mathrm{i}_{1}\right)_{n}: n \geq 1\right.}$
$\llbracket \perp \Rightarrow \rrbracket(\mathrm{i})=\chi^{\chi}\left\{\left(\mathrm{i}_{2}\right)_{n}: n \geq 1\right\}$
(${ }^{\chi}$ for char. function)

D4.1 (UC_{0} syntax) For any type $a \in \Theta$, we define the set of a-terms, Trm_{a} :

b. $A \in \operatorname{Trm}_{a}$	if $A \in \operatorname{Con}_{a} \cup \operatorname{Var}_{a}$
a. $B A \in \operatorname{Trm}_{b}$	if $B \in \operatorname{Trm}_{(a b)} \& A \in \operatorname{Trm}_{a}$
$\lambda . \lambda u_{a}(B) \in \operatorname{Trm}_{(a b)}$	if $u_{a} \in \operatorname{Var}_{a} \& B \in \operatorname{Trm}_{b}$
$=.(A=B) \in \operatorname{Trm}_{t}$	if $A, B \in \operatorname{Trm}_{a}$
$\neg . \neg A \in \operatorname{Trm}_{t}$	if $A \in \operatorname{Trm}_{t}$
$\wedge .(A \wedge B) \in \operatorname{Trm}_{t}$	if $A, B \in \operatorname{Trm}_{t}$
-. $\left(A{ }^{\mathrm{\top}} \cdot B\right),(A \cdot B) \in \operatorname{Trm}_{s}$	if $A \in \operatorname{Trm}_{e} \& B \in \operatorname{Trm}_{s}$

D5 (Truth). For any ($s t$)st-term K, model \mathcal{M}, and info-state $\mathrm{c} \in \mathcal{D}_{s t, \mathcal{M}}$:
K is true in \mathcal{M} given c , iff $\forall g: \llbracket K \rrbracket^{g}(\mathrm{c}) \neq{ }^{\chi} \varnothing$

AbBREVIATIONS

A1 (implication \& quantifiers)
i. $\left(\varphi_{t} \rightarrow \psi_{t}\right) \quad:=\neg(\varphi \wedge \neg \psi)$
ii. $\forall u_{a} \varphi_{t} \quad:=\left(\lambda u_{a}(\varphi)=\lambda u_{a}(u=u)\right)$
$\exists u_{a} \varphi_{t} \quad:=\neg \forall u \neg \varphi$
A2 (DRT-notation).
Example/description
i. perspectival concepts (type se)
$:=\lambda i_{s}(A)$
$:=\lambda i(A i)$
i. conditions (type $s t$)
$B\left\langle A_{1}, \ldots, A_{n}\right\rangle \quad:=\lambda i_{s}\left(B A_{1}{ }^{\circ} i, \ldots, A_{n}{ }^{\circ} i\right.$
$\left(A={ }_{i} B\right) \quad:=\lambda i_{s}\left(A^{\circ} i=B^{\circ} i\right)$
$(\mathrm{T}=x):=\lambda i(\mathrm{~T} i=x)$
ii. updates (type ($s t) s t$)

$\left[C_{s t}\right]$	$:=\lambda I_{s t} \lambda j_{s}(I j \wedge C j)$	\quad (test)
$\left[x_{e} \mid C_{s t}\right]$	$:=\lambda I_{s t} \lambda j_{s}\left(\exists x_{e} \exists i_{s}(I i \wedge C i \wedge j=x \bullet i)\right.$	(\perp-update with test)
${ }^{\top}\left[x_{e} \mid C_{s t}\right]$	$:=\lambda I_{s t} \lambda j_{s}\left(\exists x_{e} \exists i_{s}\left(I i \wedge C i \wedge j=x^{\top} \bullet i\right)\right.$	(T-update with test)
$\left(K_{(s t) s t} ; K_{(s t) s t)}^{\prime}\right)$	$:=\lambda I_{s t} \lambda j_{s}\left(K^{\prime} K I j\right)$	(sequencing)

REFERENCES

Bittner, M. 2011a. Time and modality without tenses or modals.
Bittner, M. 2011b. From Mandarin texts to Update with Centering.
Brennan, S. et al. 1987. A centering approach to pronouns. ACL-87.
Chu, C. 1998. A Discourse Grammar of Mandarin Chinese. P. Lang: New York
Dekker, P. 1994. Predicate Logic with Anaphora. SALT IV.
Groenendijk, J. et al 1995. Coreference and contextually restricted quantification.
Grosz, B. et al. 1995. Centering: A framework for modeling the local coherence of discourse. Computational Linguistics 21:203-225.
Hobbs, J. 1979. Coherence and coreference. Cognitive Science 3:67-90.
Kameyama, M. 1986. A property-sharing constraint in centering. ACL-86.
Kamp, H. and C. Rohrer 1993. From Discourse to Logic. Kluwer: Dordrecht.
Kehler, A. 1997. Current theories of centering for pronoun interpretation: A
critical evaluation. Computational Linguistics 23:467-475
Kehler, A. 2002. Coherence, Reference, and the Theory of Grammar. CSLI
Li, W. 2005. Topic Chains in Chinese. Lincom: München.
Sidner, C. 1983. Focusing in the comprehension of definite anaphora
Tsao, F. 1979. A Functional Study of Topic in Chinese. Student Book: Taiwan
Veltman, F. 1996. Defaults in update semantics. J. of Phil. Logic 25:221-261.

