Skip to main content
Log in

Is the life-world reduction sufficient in quantum physics?

  • Published:
Continental Philosophy Review Aims and scope Submit manuscript

Abstract

According to Husserl, the epochè (or suspension of judgment) must be left incomplete. It is to be performed step by step, thus defining various layers of “reduction.” In phenomenology at least two such layers can be distinguished: the life-world reduction, and the transcendental reduction. Quantum physics was born from a particular variety of the life-world reduction: reduction to observables according to Heisenberg, and reduction to classical-like properties of experimental devices according to Bohr. But QBism has challenged this limited version of the phenomenological reduction advocated by the Copenhagen interpretation. QBists claim that quantum states are “expectations about experiences of pointer readings,” rather than expectations about pointer positions. Their focus on lived experience, not just on macroscopic variables, is tantamount to performing the transcendental reduction instead of stopping at the relatively superficial layer of the life-world reduction. I will show that quantum physics indeed gives us several reasons to go the whole way down to the deepest variety of phenomenological reduction, may be even farther than the standard QBist view: not only reduction to experience, or to “pure consciousness,” but also reduction to the “living present.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Bohr (1987, p. 41).

  2. Bohr (1987, p. 64).

  3. Heisenberg (1925).

  4. Perniola (2011).

  5. Boehm (1965).

  6. Husserl (1995, p. 20).

  7. Husserl (2016, §32).

  8. Such radical epochè, leading to an a-subjective phenomenology, was advocated by Jan Patočka. See J. Patočka, “Epochè et réduction,” in: Patočka (2002).

  9. Husserl (2016, §32).

  10. Husserl (2007).

  11. Husserl (2016, §33).

  12. Husserl (1976, p. 167).

  13. Husserl (1976, p. 139).

  14. Findlay (1948).

  15. Whitaker (1996, p. 166).

  16. Bohr (1987, p. 68).

  17. Bohr (1987, p. 80).

  18. E.g. Stapp (2007).

  19. Von Neumann (1955).

  20. Fuchs et al. (2014), Von Baeyer (2016).

  21. Fuchs (2010).

  22. Fuchs (2017).

  23. Henry (1991).

  24. Fink (1994, p. 120).

  25. Heidegger (1980, p. 109).

  26. Mermin (2014).

  27. Destouches-Février (1951).

  28. Fuchs (2010).

  29. Ibid.

  30. Zurek (2003).

  31. d’ Espagnat (2003).

  32. Husserl (2016, §76).

  33. Husserl (1995, First meditation §8).

  34. d’Espagnat, “Towards an empirical separable reality?,” Foundations of Physics, 20, 1147–1172 (1990).

  35. Brukner (2018).

  36. Bong et al. (2020).

  37. Brukner (2020).

  38. d’Espagnat (1975).

  39. Some authors have challenged the necessity of the first assumption. See Laudisa (2019). But even though realism about microproperties is not indispensible to derive Bell’s inequalities, a weaker form of realism (realism about laboratory “facts”) is needed. See Bell (1981). The recent burst of challenges of the concept of “intrinsic” fact is a good confirmation that “fact-realism” is indeed a problematic assumption despite its looking innocently commonsensical.

  40. Peres and Terno (2004).

  41. Bitbol (1983, 2015), Smerlak and Rovelli (2007).

  42. Fuchs et al. (2014).

References

  • Bell, J.S. 1981. Bertlmann Socks and the nature of reality. Journal de Physique. suppl. 42 (C2): 41–62.

    Google Scholar 

  • Bitbol, M. 1983. An analysis of the Einstein-Podolsky-Rosen correlations in terms of events. Physics Letters 96A: 66–70.

    Article  Google Scholar 

  • Bitbol, M. 2015. La pratique des possibles. Paris: Hermann.

    Google Scholar 

  • Boehm, R. 1965. Basic reflections on Husserl’s phenomenological reduction. International Philosophical Quarterly 5: 183–202.

    Article  Google Scholar 

  • Bohr, N. 1987. Atomic physics and human knowledge. New York: Wiley.

    Google Scholar 

  • Bong, K.-W., A. Utreiras-Alarcon, F. Ghafari, Y.C. Liang, N. Tischler, E.G. Cavalcanti, G.J. Pryde, and H.M. Wiseman. 2020. A strong no-go theorem on the Wigner’s friend paradox. Nature Physics. https://doi.org/10.1038/s41567-020-0990-x.

    Article  Google Scholar 

  • Brukner, Č. 2018. A No-Go theorem for Observer-Independent Facts. Entropy 20: 350.

    Article  Google Scholar 

  • Brukner, Č. 2020. Facts are relative. Nature Physics. https://doi.org/10.1038/s41567-020-0990-x.

    Article  Google Scholar 

  • d’ Espagnat, B. 1975. Use of inequalities for the experimental test of a general conception of the foundations of microphysics. Physical Review D 11: 1424–1435.

    Article  Google Scholar 

  • d’ Espagnat, B. 2003. Veiled reality. Boulder: Westview Press.

    Google Scholar 

  • Destouches-Février, P. 1951. La structure des théories physiques. Paris: Presses Universitaires de France.

    Google Scholar 

  • Findlay, J.N. 1948. Recommendations regarding the language of introspection. Philosophy and Phenomenological Research 9: 212–236.

    Article  Google Scholar 

  • Fink, E. 1994. Proximité et distance. Grenoble: Jérôme Millon.

    Google Scholar 

  • Fuchs, C.A. 2010. QBism, the perimeter of quantum Bayesianism. arXiv: 1003.5209 [quant-ph].

  • Fuchs, C.A. 2017. On participatory realism. In Information and interaction, ed. Ian Durham and Dean Rickles. Berlin: Springer.

    Google Scholar 

  • Fuchs, C.A., N.D. Mermin, and R. Schack. 2014. An Introduction to QBism with an Application to the Locality of Quantum Mechanics. American Journal of Physics 82: 749–754.

    Article  Google Scholar 

  • Heidegger, M. 1980. Introduction à la métaphysique. Paris: Gallimard.

    Google Scholar 

  • Heisenberg, W. 1925. Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Zeitschrift für Physik 33: 879–893.

    Article  Google Scholar 

  • Henry, M. 1991. Quatre principes de la phénoménologie. Revue de Métaphysique et de Morale 96: 3–26.

    Google Scholar 

  • Husserl, E. 1976. La crise des sciences européennes. Paris: Gallimard.

    Google Scholar 

  • Husserl, E. 1995. Cartesian meditations: an introduction to phenomenology. Dordrecht: Kluwer.

    Google Scholar 

  • Husserl, E. 2007. De la réduction phénoménologique (1926–1935). Grenoble: Jérôme Millon.

    Google Scholar 

  • Husserl, E. 2016. Ideas for a pure phenomenology and phenomenological philosophy. Indianapolis: Hackett.

    Google Scholar 

  • Laudisa, L. 2019. Counterfactual reasoning, realism and quantum mechanics: Much ado about nothing? Erkenntnis 84: 1103–1118.

    Article  Google Scholar 

  • Mermin, D. 2014. QBism puts the scientist back into science. Nature 507: 421–423.

    Article  Google Scholar 

  • Patočka, J. 2002. Qu’est-ce que la phénoménologie?. Grenoble: Jérôme Millon.

    Google Scholar 

  • Peres, A., and D.R. Terno. 2004. Quantum information and relativity theory. Review of Modern Physics 93–123.

  • Perniola, M. 2011. The expanded epochè. Iris 3: 157–170.

    Google Scholar 

  • Smerlak, M., and C. Rovelli. 2007. Relational EPR. Foundations of Physics 37: 427–445.

    Article  Google Scholar 

  • Stapp, H. 2007. Mindful universe: quantum mechanics and the participating observer. Berlin: Springer.

    Google Scholar 

  • Von Baeyer, H. 2016. QBism, the future of quantum physics. Cambridge: Harvard University Press.

    Book  Google Scholar 

  • Von Neumann, J. 1955. Mathematical foundations of quantum mechanics. Princeton: Princeton University Press.

    Google Scholar 

  • Whitaker, A. 1996. Einstein, Bohr, and the quantum dilemma. Cambridge: Cambridge University Press.

    Google Scholar 

  • Zurek, W.H. 2003. Decoherence, einselection, and the quantum origins of the classical. Review of Modern Physics 75: 715–775.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Agence Nationale pour la Recherche (ANR-16-CE91-0005-01). Funding was provided by Campus France (Grant No. ANR-16-CE91-0005-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Bitbol.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bitbol, M. Is the life-world reduction sufficient in quantum physics?. Cont Philos Rev 54, 563–580 (2021). https://doi.org/10.1007/s11007-020-09515-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11007-020-09515-8

Keywords

Navigation