Dynamic Semantics (2) Anaphora

Maria Bittner, Rutgers
http://www.users.cloud9.net/~mbittner
NASSLLI 2016
Rutgers, New Brunswick NJ

About this course

introduction to dynamic semantics, which seeks to explicate the idea that saying something changes the context for what follows (in contrast to static semantics, which ignores context change, viewing it as irrelevant to truth conditions.)

\square core questions

- What kinds of phenomena in natural languages motivate dynamic semantics?
- Based on cross-linguistic evidence, how should we implement the key conceptsesp. information state, update, discourse referent-to represent such phenomena?
\square topics
- M: Overview
- T: Anaphora
- W: Indexicality
- Th: Temporality
- F: Quantification
course page: http://www.users.cloud9.net/~mbittner/nasslli-2016.html

Theoretical background

The standard way to represent anaphora, in static as well as dynamic semantics, is to co-index the anaphor with the antecedent (e.g. A man ${ }^{x 1}$ came in. $\mathrm{He}_{x 1}$ sat down.) Semantic rules interpret such indices as variables.

The asymmetric ${ }^{\text {superscript }} \ldots$ subscript ${ }^{\text {. }}$ notation (e.g. a man $^{x 1} \ldots$ he ${ }_{x 1}$) reflects the fact that the anaphor $\left(\mathrm{he}_{x 1}\right)$ is referentially dependent on the antecedent (a man ${ }^{x 1}$), not vice versa. English-based dynamic theories (e.g. DRT, FCS, DPL, KPL, ...) capture this asymmetry as follows:

- an indexed indefinite description (e.g. a man ${ }^{x 1}$) updates the input value of its index to an output value that satisfies the description (e.g. a man ${ }^{x 1}$ updates the value of x_{1} to a man)
- an indexed anaphor refers to the input value of its index set by the co-indexed antecedent (e.g. in the above discourse the anaphoric pronoun he ${ }_{x 1}$ refers to the man introduced by the co-indexed antecedent indefinite a $\operatorname{man}^{x 1}$).

\square Prediction

Natural language anaphors refer to (input) values of variables.

Some problems

Problem 1. The supposedly ubiquitous variable-like indices have no audible reflex in any natural language, e.g. no language contrasts he $\mathrm{x}_{x 17} \mathrm{~V}$. $\mathrm{he}_{x 123}$.

Problem 2. Natural languages do have contrasting anaphors, including grammatical systems with unambiguous anaphora, e.g.

Mandarin TOPIC CHAINING contrasts 3 rd person zero v. pronoun (e.g. _ v. tā)
\square Kalaallisut OBVIATION contrasts $3^{\text {rd }}$ person proximate v. obviative infl. (e.g. -ni v. -at) However, such unambiguous anaphors are not interpreted like variables in formal logic. That is, actually attested anaphors are rendered unambiguous by mechanisms that semantic theories which represent drefs as variables have no logical tools to explicate.

Problem 3. Since every sentence adds to the set of potential antecedents, variablebased anaphora resolution (i.e. identifying the intended antecedent variable) should get more complex as discourse progresses. But in fact, there is no increasing complexity. Even in a long text the last pronoun is just as easy to resolve as the first.

Today's lecture

Basic Idea: Anaphora resolution is always easy because DEFAULT ANAPHORS (e.g. English anaphoric pronouns, Kalaallisut anaphoric inflections, Mandarin zero anaphors) refer to currently salient discourse entities. This is a small set of entities that changes but does not grow (like the set of currently salient objects viewed from a moving train).
Early attempts to implement this common-sense idea (CENTERING THEORY developed by Sidner 1983, Kameyama 1986, Brennan et al. 1987, Grosz et al. 1995, and others) have been criticized into oblivion, for good reasons (see e.g. Kehler 1997). However, the basic idea still makes intuitive sense.
Update with Centering (Bittner 2001ff) is a typed dynamic logic with centering-based anaphora to ranked discourse entities (building on Veltman 1990, 1996; Dekker 1994; Muskens 1995, 1996). This dynamic logic can represent anaphora in diverse languages (e.g. Mandarin, Kalaallisut, English). Moreover, UC representations can be derived by type-driven directly compositional rules (e.g. in Categorial Grammar).

Predictions

U Unambiguous default anaphors refer to top-ranked entities (e.g. Kalaallisut, Mandarin).
U Universally, default anaphors refer to top-ranked or just demoted entities (e.g. English)

Outline

> Grammatical centering systems
> Simple Update with Centering $\left(\mathrm{UC}_{0}\right)$
> Mandarin zero anaphora
> Kalaallisut anaphoric inflections
> English anaphoric pronouns
> Conclusion

Outline

> Grammatical centering systems
> Simple Update with Centering (UC_{0})
> Mandarin zero anaphora
> Kalaallisut anaphoric inflections
> English anaphoric pronouns
> Conclusion

Grammatical centering: Universals

Universal 1 (grammatical centering)

A grammatical centering system disambiguates anaphora by keeping track of currently top-ranked discourse referents (drefs) in the center and background of attention (linguistic analog of focal and peripheral vision).

Universal 2 (top-level anaphora)

Key role in grammatical centering is played by top-level anaphors, i.e. anaphors that can only refer to top-ranked drefs, e.g.
\square topic anaphor $\left(\ldots{ }_{\top}\right)$ refers to the top-ranked dref entity in the center
\square background anaphor ($\ldots \perp$) refers to the top-ranked dref entity in the background

Universal 3 (nominal centering)

In nominal centering systems, top-level anaphors always saturate nominal arguments (subjects, objects, or possessors) of predicates. They do not function as nominal modifiers (e.g. oblique dependents).

Mandarin：Zero anaphora

Mandarin Chinese discourse consists of topic chains（Tsao 1979，Chu 1998，Li 2005， a．m．o）．Typically，a topic chain begins with a topic update（．．．${ }^{\top}$ ），which introduces a topical individual $\left({ }^{\top}\right)$ ．This is followed by one or more clauses that comment on this topic by means of a zero anaphor（missing argument）which refers to the topical individual（e．g． missing possessor（ ${ }_{T} n$ ）in（1i），missing subject（ T_{T} ）in（1ii），missing object（ v_{T} ）in（2i－ii））．A Mandarin topic chain may span more than one sentence（as（1）and（2）illustrate）．
（1）$\left[\left[i_{i}\right.\right.$ topic update $\left(\mathrm{np}^{\top}\right)$ ， comment $\left._{1}(\mathrm{~T} \mathrm{n})\right]$ 。
［ii comment ${ }_{2}(\mathrm{~T} \mathrm{~V})$ ， comment $_{3}(\mathrm{~T} \mathrm{~V})$ ］。］
i．Xiăoli niánqīng piàoliang，gōnzuò yě hăo 。 Xiaoli ${ }^{\top}$ young pretty ，„job also good 。 Xiaoli ${ }^{\top}$ is young and pretty． She $_{T}$ has a good job，too．
ii．Suīrán yŏu ge nánpéngyou，kěshì bù xiăng jiéhūn 。 although „have CL boyfriend ，but not ${ }_{\top}$ wish get．married 。 Although she e_{T} has a boyfriend，she e_{T} doesn＇t wish to get married．

Mandarin：Topic－zero v．background－zero

（2）［［itopic－update $\left(n p^{\top}\right)$ ，comment ${ }_{1}\left({ }_{T} n\right)$ ，comment ${ }_{2}\left({ }_{T} n\right)$ ，comment $\left.{ }_{3}\left(n p^{\perp} V_{T}\right)\right]$ 。 $\left[{ }_{\mathrm{ij}}\right.$ comment $_{4}\left({ }_{\perp} \mathrm{v}_{\mathrm{T}}\right)$ ，comment ${ }_{5}\left({ }_{\perp} \mathrm{v}_{\mathrm{T}}\right)$ ，comment ${ }_{6}\left({ }_{\perp} \mathrm{v}_{\mathrm{T}}\right)$ ，comment $\left.\left.{ }_{7}\left({ }_{\perp} \mathrm{v}_{\mathrm{T}}\right)\right]\right]$ 。
i．Nà－liàng chē，jiàqián tài guì ，yánsè yě bù hăo ， that－CL car ${ }^{\top}$ ，${ }_{\top}$ price too high，${ }_{T}$ color also not good，
Lisi bù xǐhuan 。
Lisi $^{\perp}$ not like ${ }_{T}$ 。
That car ${ }^{\top}$ is too expensive and $i t_{T}$ has an ugly color．Lisi ${ }^{\perp}$ doesn＇t like $i t_{T}$ ．
ii．Zuótiān qù kàn－le ，hái kāi－le yíhuìr ，
yesterday ${ }_{\perp}$ go look $_{T}-$ PNC，even ${ }_{\perp}$ drive $_{T}-$ PNC $M_{\text {a．while }}$ ，
háishì bù xǐhuan，méi măi 。
still not ${ }_{\perp}$ like ${ }_{T}$ ，not ${ }_{\perp}$ buy $_{T}$ 。
Yesterday he ${ }_{\perp}$ went to look at it_{T} and even ${ }_{\perp}$ took it_{T} out for a spin．
He_{\perp} still didn＇t like it_{T} ，（so）he ${ }_{\perp}$ didn＇t buy it_{\top} ．

Kalaallisut: Anaphoric inilections

In Kalaallisut pronominal arguments (subjects, objects, and possessors) are expressed by means of person inflections. For anaphoric inflections, the antecedent is the currently top-ranked individual in the center or background of attention (traditionally, currently 'proximate' or 'obviative' individual), as specified by three grammatical systems:
\square form of $3^{\text {rd }}$ person inflection specifies centering status of antecedent, e.g.

- -ni ‘ $3 \mathrm{~s}_{\mathrm{T}}$ ' $\mathrm{v} .-\mathrm{a}(\mathrm{t})$ ' $3 \mathrm{~s}_{\perp}$ ' \quad anaphora to topical v . background 3 rd person
matrix clause moods specify illocutionary force in relation to T-subject, e.g.
- -pu 'DEC ${ }_{T}$
- -pa 'DEC \quad ' assertion of at-issue fact about 〈T-subject, \perp-object〉
\square dependent clause moods specify centering status of dependent subj., e.g.
- -ga 'FCT T_{T} V. -mm ' $F C T_{\perp}$ ' not-at-issue fact about T-subject v . \perp-subject
- -llu 'ELA ${ }_{T}$ ' v. -tu 'ELA ${ }_{\perp}$ elaboration of T-subject $v . \perp$-subject
$3^{\text {rd }}$ person noun phrases are interpreted as recentering updates, i.e. updates that (re)introduce T - or \perp-antecedents for anaphoric 3_{T} or 3_{\perp} inflections.

Kalaallisut: Centering-based anaphora

(3) i. Ilaanni anguti-tuqa-p nulia-ni kisimi-i-qatig(i-p)a-a
once man-old-ERG ${ }^{\top}\left[\text { wife- }^{2} S_{T}\right]^{\perp}$ alone-be-with-DEC T $-3 s .3 \mathrm{~S}$
Once an old man ${ }^{\top}$ was alone with $\left[h^{\top} s_{T}\right.$ wife] ${ }^{\perp}$,
irni-ni piniar-riar-sima-mm-at.
[son-3s T $^{\perp}{ }^{\perp}$ hunt-go-prf-FCT $\perp_{\perp}-3 S_{\perp}$
because $\left[\right.$ his $_{T}$ son] ${ }^{\perp}$ had gone hunting.
ii. Aavi-rsuaq isissaa-lir-mm-at
walrus-big ${ }^{\perp}$ be.visible-begin-FCT ${ }_{\perp}-3 S_{\perp}$
Suddenly a big walrus ${ }^{\perp}$ showed up, so
piniar-niar-lu-gu qain-ni atir-vigi-lir-pa-a.
hunt-intend-ELA $T_{T}-3 S_{\perp}\left[k a y a k-3 S_{T}\right]^{\perp}$ go.down-to-begin-DEC $T_{\perp \perp}-3 s .3 S$

Kalaallisut: Recentering \& anaphora

(3) iii. Nuli-ata inirtir-aluar-pa-a
$\left[\text { wife }-3 S_{\perp} . E R G\right]^{\top}$ forbid-in.vain-DEC T $-3 S .3 S$
$\left[\mathrm{His}_{T^{+}}\right.$wife] $^{\top}$ tried to stop him ${ }_{\perp}$,
kisimi-i-mm-at avala-qqu-na-gu.
alone-be-FCT $\perp_{\perp}-3 S_{\perp}$ set.out-tell-not.ELA $-3 S_{\perp}$
${ }_{\top}$ begging him ${ }_{\perp}$ not to set out because he ${ }_{\perp}$ was alone.
iv. Ui-a.ta=li tusar-uma-na-gu
[husband- $\left.3 S_{\perp} . E R G\right]^{\top}=$ but listen-want-not.ELA $T_{T}-3 S_{\perp}$
But he \perp^{\top} (lit. [her ${ }_{\top}{ }^{\perp}$ husband] ${ }^{\top}$) wouldn't listen to her ${ }_{\perp}$ and aavi-rsuaq nalip-pa-a.
walrus-big ${ }^{\perp}$ harpoon-DEC T -3 S .3 s
${ }_{\top}$ harpooned the great walrus ${ }^{\perp}$.

Outline

> Grammatical centering systems

$>$ Simple Update with Centering $\left(\mathrm{UC}_{0}\right)$
> Mandarin zero anaphora
> Kalaallisut anaphoric inflections
> English anaphoric pronouns
> Conclusion

Simple Update with Centering $\left(\mathrm{UC}_{0}\right)$

Update semantics (Veltman 1990/1996):
"You know the meaning of a sentence if you know the change it brings about in the information state of anyone who accepts the news conveyed by it."

Centering-based anaphora (Bittner 2001ff; cf. Grosz et al 1995, Dekker 1994)
update keeps track of ranked dref entities in the center and background of attention
\square entity-level anaphoric terms: T (ctr), T^{\prime} (2nd ctr), \perp (bck), $\perp^{\prime}\left(2^{\text {nd }} \mathrm{bck}\right)$
\square set-level anaphoric terms: $T \Rightarrow$ (ctr set), $\perp \Rightarrow$ (bck set)

central drefs backgr. drefs

$\left\langle\left\langle\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{n}\right\rangle,\left\langle\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots, \mathrm{~b}_{m}\right\rangle \quad\right\rangle \quad$ structured list

Info-state (about current dref entities \& current ranking) is a set of structured lists

I minimal info-state (no drefs) $\{\langle\rangle,\langle \rangle\rangle\}$
absurd info-state (e.g. false discourse) \varnothing

Update and anaphora in UC_{0}

Sample model, \mathcal{M} :
$\llbracket m a n \rrbracket=\{\oplus, \boldsymbol{\oplus}\}$
\llbracket come.in】 $=\{\odot, \cdot(\cdot\}$

$$
\begin{aligned}
& \llbracket \text { friend } \rrbracket=\{\langle\Theta, \oplus\rangle,\langle\triangleq, \odot\rangle,\langle\oplus, \Delta\rangle\} \\
& \llbracket \text { see } \rrbracket=\{\langle\Theta, \oplus\rangle\}
\end{aligned}
$$

Updates of minimal info-state, by discourse (4i-ii) on model \mathcal{M} : $\langle\rangle,\langle \rangle\rangle$
(4) i. A^{\top} man came in

${ }^{\top}[x \mid \operatorname{man}\langle x\rangle] ;$	$[$ come.in $\langle\top\rangle] ;$
$\langle\langle\odot\rangle,\langle \rangle\rangle$	$\langle\langle\odot\rangle,\langle \rangle\rangle$
$\langle\langle\Theta\rangle,\langle \rangle\rangle$	

ii. He_{T} saw a^{\perp} friend $_{T}$.
a^{\perp} friend $_{\mathrm{T}} \quad \mathrm{He}_{\mathrm{T}}$ saw \ldots
$[x \mid$ friend $\langle x, T\rangle] ; \quad[$ see $\langle T, \perp\rangle]$
$\langle\langle\oplus\rangle,\langle\oplus\rangle\rangle \quad$ final output is not the absurd info-state \varnothing,
$\langle\langle\oplus\rangle,\langle\Theta\rangle\rangle \quad\langle\langle\oplus\rangle,\langle\Theta\rangle\rangle \quad$ so discourse (4i-ii) is true on \mathcal{M}

Outline

> Grammatical centering systems
> Simple Update with Centering (UC_{0})
> Mandarin zero anaphora
> Kalaallisut anaphoric inflections
> English anaphoric pronouns
> Conclusion

Mandarin in UC_{0} : Topic chain (2i-ii)

(2') i. That car ${ }^{\top}$ is too expensive ...

(input list)	that-CL car ${ }^{\top}$,	${ }^{\text {price }}{ }^{\perp}$ too high
	${ }^{\top}[x \mid \operatorname{car}\langle x\rangle, x \in \perp \Rightarrow] ;$	$[x \mid$ price $\langle x, \top\rangle$, too.high $\langle x\rangle] ;$
$\langle\rangle,\langle\ldots,=\rangle\rangle$	$\langle\langle\Leftrightarrow\rangle,\langle\ldots, \varepsilon\rangle\rangle$	$\langle\langle\Leftrightarrow\rangle,\langle \$, \ldots, \Leftrightarrow\rangle\rangle$

\ldots and it_{T} has an ugly color. Lisi ${ }^{\perp}$ doesn't like it_{T}.
${ }_{T}$ color $^{\perp}$ also not good, \quad Lisi $^{\perp}$ not like ${ }_{T}$
$[x \mid \operatorname{color}\langle x, \top\rangle$, not.good $\langle x\rangle] ; \quad[x \mid$ lisi $\langle x\rangle, x \in \perp \Rightarrow$, not.like $\langle x, \top\rangle]$;
$\langle\langle 气\rangle,\langle\bullet, \$, \ldots, \curvearrowleft\rangle\rangle\langle\langle 气\rangle,\langle\bullet, \bullet, \$, \ldots, \curvearrowleft\rangle\rangle$
ii. (Yesterday) he ${ }_{\perp}$ went to look at it_{T} and even took it_{T} out for a spin. ...

Mandarin in UC_{0} : Topic shift

(5) i. Jiajia ${ }^{\top}$ is sick. She ${ }_{T}$ ran a fever last night.

```
Jiājiā bìng le,
Jiajia}\mp@subsup{}{}{\top}\mathrm{ sick PNC,
'}[x|\mathrm{ jiajia }\langlex\rangle,x\in\perp=>, sick\langlex\rangle]
<<2\rangle,\langle\ldots..\rangle\rangle
```

ii. Lisi ${ }^{\top}$ knew $\left[h^{\prime} r_{T}, ~ m o m\right]^{\perp}$ was busy, so he ${ }_{T}$ didn’t want to tell her ${ }_{\perp}$.
Lǐsī zhīdào tā-de mama hěn máng, méi gǎn gàosu tā

${ }^{\top}[x \mid$ lisi $\langle x\rangle, x \in \perp \Rightarrow] ; \quad\left[x \mid \operatorname{mom}\left\langle x, \top^{\prime}\right\rangle\right.$, know.busy $\left.\langle\top, x\rangle\right] ; \quad[\sim$ dare.tell $\langle\top, \perp\rangle]$
$\langle\langle\odot, 2\rangle,\langle\ldots\rangle\rangle \quad\langle\langle\odot, 2\rangle,\langle\|, \ldots\rangle\rangle$

Toward a fragment of Mandarin

Sample lexical entries for Mandarin items (represented by English glosses):
\square basic entries for verbs, e.g.

```
sick |- s\np: \lambda\underline{x}sd}[\operatorname{sick}\langle\underline{x}\rangle
like |- (s\np)/np: \lambda\mp@subsup{y}{s\delta}{}\mp@subsup{\lambda}{\}{\prime}\mp@subsup{\underline{x}}{[}{}[like\langle\underline{x},\underline{\nu}\rangle]
```

\square lexical centering operators saturate argument np's with top-level anaphors (\top or \perp) and simultaneously eliminate these argument np's from the derived category:

Hence derived entries for verbs with missing arguments ('zero anaphors'), e.g.
$\begin{array}{lll}\text { like }_{T} & \mid- & \mathbf{s} \backslash \mathbf{n p}: \lambda \underline{x}_{s \delta}[\text { like }\langle\underline{x}, \top\rangle] \\ { }_{\perp}\left(\text { like }_{T}\right) & - & \text { s: }([\top \neq \perp] ;[\text { like }\langle\perp, T\rangle])\end{array}$
(zero T-object)
(zero \perp-subject, T-object)

Outline

> Grammatical centering systems
> Simple Update with Centering $\left(\mathrm{UC}_{0}\right)$
> Mandarin zero anaphora
> Kalaallisut anaphoric inflections
> English anaphoric pronouns
> Conclusion

Kalaallisut in UC_{0} : 3_{T} V. 3_{\perp}

$\left(3^{\prime}\right)$ i. Once an old man $^{\top}$ was alone with $\left[\text { his } S_{\top} \text { wife }\right]^{\perp}, \ldots$

once	man-old-ERG ${ }^{\top}$	[wife-3 $\left.\mathrm{S}_{\mathrm{T}}\right]^{\perp}$	alone-be-with-DEC ${ }_{\text {T }}-3 \mathrm{~S} .3 \mathrm{~S}$
	${ }^{\top}[x \mid$ old.man $\langle x\rangle] ;$	[$x \mid$ wife $\langle x, \top\rangle]$;	[alone.with $\langle\top, \perp\rangle$]
	$\langle\langle\oplus\rangle,\langle \rangle\rangle$	$\langle\langle\oplus\rangle,\langle\boldsymbol{\varphi}\rangle\rangle$	

... because $\left[\text { his }_{\top} \text { son }\right]^{\perp}$ had gone hunting. [son-3S $]^{\perp} \quad$ hunt-go-prf-FCT ${ }_{\perp}-3 \mathrm{~S}_{\perp}$ $[x \mid \operatorname{son}\langle x, \top\rangle] ; \quad[$ gone.hunting $\langle\perp\rangle]$ $\langle\langle\oplus\rangle,\langle\uparrow, \boldsymbol{\varphi}\rangle\rangle$

Kalaallisut in UC_{0} : Background update

(3') ii. Suddenly a big walrus ${ }^{\perp}$ showed up, so ...
walrus-big ${ }^{\perp}$
be.visible-begin $-\mathrm{FCT}_{\perp}-3 \mathrm{~S}_{\perp}$
$[x \mid$ big.walrus $\langle x\rangle] ; \quad[$ show.up $\langle\perp\rangle]$; $\langle\langle\oplus\rangle,\langle N, \uparrow, \downarrow\rangle\rangle$
$\ldots{ }_{\top}$ to go after it ${ }_{\perp}$, hunt-intend-ELA ${ }_{T}-3 \mathrm{~S}_{\perp}$ [intend.to.hunt $\langle\top, \perp\rangle$]; $\langle\langle\odot\rangle,\langle\boldsymbol{\varepsilon}, \boldsymbol{N}, \boldsymbol{\uparrow}, \boldsymbol{\varphi}\rangle\rangle$
$\left[\text { kayak- } 3 \mathrm{~S}_{\mathrm{T}}\right]^{\perp}$ go.down-to-begin- $\mathrm{DEC}_{\mathrm{T}_{\perp}-3 \mathrm{~s} .3 \mathrm{~S}}$ $[x \mid \operatorname{kayak}\langle x, \top\rangle] ; \quad[$ head.down.to $\langle\top, \perp\rangle]$
he $_{T}$ headed down to $\left[\right.$ his ${ }_{T}$ kayak] ${ }^{\perp}$.

Kalaallisut in UC_{0} : Topic shift

$\left(3^{\prime}\right)$ ii. $\langle\langle\Theta\rangle,\langle\varepsilon, N, \mathbb{N}, \boldsymbol{\varphi}\rangle$
iii. $\left[\mathrm{His}_{\top}{ }^{\perp}\right.$ wife] ${ }^{\top}$...

> (T -to- \perp recentering)
> $\left[\text { wife-3s }{ }_{\perp} . E R G\right]^{\top}$
> [$x \mid x=\mathrm{\top}]$;
> ${ }^{\top}[x \mid$ wife $\langle x, \perp\rangle, x \in \perp \Rightarrow]$;
\ldots. Tried to stop him ${ }_{\perp}$,
forbid-in.vain-DEC $T_{T \perp}-3 \mathrm{~S} .3 \mathrm{~S}$
[try.to.stop $\langle T, \perp\rangle$];
$\ldots,{ }_{\uparrow}$ begging him ${ }_{\perp}$ not to set out because he \perp_{\perp} was alone.
alone-be-FCT ${ }_{\perp}-3 \mathrm{~S}_{\perp}$ set.out-tell-not.ELA $\mathcal{T}_{\top}-3 \mathrm{~S}_{\perp}$
$[$ alone $\langle\perp\rangle] ; \quad[$ tell.not.to.set.out $\langle\top, \perp\rangle]$

Toward a fragment of Kalaallisut

Sample lexical entries for Kalaallisut items (represented by English glosses):
\square lexical entries for verb roots, e.g.

```
sick- |- s\pn: \lambda\mp@subsup{x}{x\delta}{}[\operatorname{sick}\langle\underline{\lambda}\rangle]
like- |- (s\pn)\pn: \lambda\underline{x}
```

intransitive verb root
transitive verb root
\square centering inflections saturate argument pn's with top-level anaphors e.g.

$$
\begin{aligned}
& -\mathrm{DEC}_{T}-3 \mathrm{~S} \quad \mid-\mathbf{s} \backslash(\mathrm{s} \backslash \mathrm{pn}): \lambda \underline{P}(\underline{P} T) \\
& -\mathrm{DEC}_{\mathrm{T} \perp}-3 \mathrm{~s} .3 \mathrm{~s} \mid-\mathbf{s} \backslash(\mathrm{s} \backslash \mathrm{pn} \backslash \mathrm{pn}): \lambda \underline{R}([\top \neq \perp] ; \underline{R} \top \perp) \quad \text { at-issue fact about }\langle\top, \perp\rangle \\
& -\mathrm{FCT}_{T}-3 \mathrm{~S}_{\mathrm{T}} \quad \mid-(\mathbf{s} / \mathbf{s}) \backslash(\mathrm{s} \backslash \mathrm{pn}): \lambda \underline{P} \lambda \underline{q}(\underline{P} T ; q) \quad \text { not-at-issue fact about } T \\
& \left.(\mathbf{s} / \mathbf{s}) \backslash(\mathrm{s} \backslash \mathrm{pn}): \lambda \underline{P} \lambda q{ }^{\top}[x \mid x=\perp] ; \underline{P} \top ; q\right) \\
& -\mathrm{FCT}_{\perp}-3 \mathrm{~S}_{\perp} \quad \mid-(\mathbf{s} / \mathbf{s}) \backslash(\mathrm{s} \backslash \mathrm{pn}): \lambda \underline{P} \lambda q(\underline{P} \perp ; q ;[\top \neq \perp]) \\
& (\mathrm{s} / \mathbf{s}) \backslash(\mathrm{s} \backslash \mathrm{pn}): \lambda \underline{P} \lambda q([x \mid x=\mathrm{\top}] ; \underline{P} \perp ; q ;[\top \neq \perp]) \quad \ldots \text { about output } \perp
\end{aligned}
$$

Hence derived entries for saturated verb words, e.g.
like-DEC ${ }_{T \perp}-3 \mathrm{~s} .3 \mathrm{~s} \mid-\mathbf{s}:([\top \neq \perp] ;[$ like $\langle T, \perp\rangle])$ at-issue fact about $\langle T, \perp\rangle$

Outline

> Grammatical centering systems
> Simple Update with Centering $\left(\mathrm{UC}_{0}\right)$
> Mandarin zero anaphora
> Kalaallisut anaphoric inflections
$>$ English anaphoric pronouns
> Conclusion

Anaphora resolution in English

\square coherence-driven? (Hobbs 1979)
motivated e.g. by Winograd's (6):
(6) The city council denied the demonstrators a permit because ...
a. ... they feared violence.
b. ... they advocated violence.
(they = the city council)
(they $=$ the demonstrators)
\square parallelism-driven? (Sidner 1983)
motivated e.g. by Kehler's (7):
(7) Margaret Thatcher admires Hilary Clinton, and George W. Bush absolutely worships her.
(her = Hilary Clinton)

- attention-driven? (Kameyama 1986, Brennan et al 1987, Grosz et al 1995) motivated e.g. by Kameyama's (8) v. (9):
(8) John hit Bill. Mary told him to go home.

$$
\begin{array}{r}
\text { (him = John) } \\
(\text { him }=\text { Bill }
\end{array}
$$

(9) Bill was hit by John. Mary told him to go home.

Kehler's (2002) proposal

Pronoun interpretation is based on the interaction of two aspects of interpretation:
linguistic properties of the linguistic form (e.g. a pronoun signals that the referent is salient in the current state of discourse)
\square pragmatic process of coherence establishment, which adds one of three kinds of COHERENCE RELATIONS (in (6)-(9), signalled by underlined items):

- CAUSAL, e.g.
(6) The city council denied the demonstrators a permit because they feared/advocated violence.
- RESEMBLANCE, e.g.
(7) Margaret Thatcher admires Hilary Clinton, and George W. Bush absolutely worships her.
- CONTIGUITY, e.g.
(8) John hit Bill. Mary told him to go home.
(9) Bill was hit by John. Mary told him to go home.

English in UC_{0} : Centering + coherence

Coherence relation: CONTIGUITY
Kehler's (10), a problem for static centering theories ([BFP], [GJW]), not for UC_{0} :
$\langle\rangle,\langle\ldots, \odot, \oplus\rangle\rangle$
(input list, with $\odot=$ Terry,
© $=$ Tony)
(10)i. Terry ${ }^{\top}$ set out for an outdoor excursion on Monday.
${ }^{\top}[x \mid$ terry $\langle x\rangle, x \in \perp \Rightarrow] ;[$ set.out $\langle\top\rangle] ;$
$\langle\langle\oplus\rangle,\langle\ldots, \oplus, \oplus\rangle\rangle$
ii. He_{T} was excited about trying out his ${ }_{T}$ new sailboat ${ }^{\perp}$.
$[x \mid$ new.sailboat.of $\langle x, \top\rangle] ;$ excited.about.trying.out $\langle\top, \perp\rangle]$
$\langle\langle\oplus\rangle,\langle\perp, \ldots, \odot, \oplus\rangle\rangle$
iii. He_{T} wanted Tony ${ }^{\perp}$ to join him $_{T}$ on a sailing expedition.
$[x \mid$ tony $\langle x\rangle, x \in \perp \Rightarrow] ;[\top \neq \perp] ;$ wwant.to.join.on.sailing.exp $\langle\top, \perp\rangle]$;
$\langle\langle\oplus\rangle,\langle\oplus,-, \ldots, \oplus, \oplus\rangle\rangle$

English in UCo: Garden path explained

iii. $\langle\langle\oplus\rangle,\langle\oplus, \ldots, \ldots, \oplus, \oplus\rangle\rangle$
iv. The $_{T}$ marina ${ }^{\top}$...
${ }^{\top}[x \mid$ marina $\langle x\rangle$, use $\langle\top, x\rangle]$;
$\langle\langle\square, \odot\rangle,\langle\oplus,-, \ldots, \odot, \oplus\rangle\rangle$
\ldots is actually very close to Tony ${ }_{\perp}$'s house ${ }^{\perp}$.
$[$ tony $\langle\perp\rangle, \perp \in \perp \Rightarrow] ;[x \mid$ house.of $\langle x, \perp\rangle] ;[$ very.close.to $\langle\top, \perp\rangle]$
$\langle\langle\square, \odot\rangle,\langle ■, \oplus, \perp, \ldots, \odot, \oplus\rangle\rangle$
V. $\mathrm{He}_{\mathrm{T}^{\prime}}{ }^{\top}$ called him ${ }_{\perp^{\prime}}{ }^{\perp}$ at 6 am .
${ }^{\top}\left[x \mid x=\top^{\prime}\right] ;\left[x \mid x=\perp^{\prime}\right] ;[\top \neq \perp] ;[$ call.at.6am $\langle\top, \perp\rangle]$;
$\langle\langle\oplus, \square, \oplus\rangle\rangle,\langle\oplus, ■, \oplus,-, \ldots, \odot, \oplus\rangle\rangle$
vi. He_{T} was sick and furious with him_{\perp} for waking $\operatorname{him}_{\mathrm{T}}$ up so early.
$[$ sick $\langle\top\rangle] ;[\top \neq \perp] ;[$ furious.with $\langle\top, \perp\rangle$, wake.up $\langle\perp, T\rangle]$

Outline

> Grammatical centering systems
> Simple Update with Centering $\left(\mathrm{UC}_{0}\right)$
> Mandarin zero anaphora
> Kalaallisut anaphoric inflections
> English anaphoric pronouns
> Conclusion

Conclusion

- Anaphora involves both context change (antecedent update that introduces a dref) and context dependence (anaphoric item that presupposes an antecedent dref).
- Grammatical centering systems have top-level anaphors (restricted to top-ranked drefs: T or \perp), e.g. Mandarin ' ${ }_{\perp}$ like ${ }_{T}$ ', Kalaallisut 'like- $\mathrm{FCT}_{\perp}-3 \mathrm{~S}_{\perp}-3 \mathrm{~S}_{\mathrm{T}}$ '. In such systems, anaphora resolution is therefore unambiguous.
- English pronouns are shallow anaphors (restricted to salient drefs: $T, \top^{\prime}, \perp, \perp^{\prime}$). In English discourse, ambiguous anaphora resolution is not a problem because it is usually resolved by gender presuppositions and coherence establishment.
[All languages have descriptive anaphors (to top-ranked sets: $T \Rightarrow, \perp \Rightarrow$). These are expressed by noun phrases with not-at-issue content, e.g.
- English (articles: a v. the): $\left[\mathrm{A}^{\top} \text { cat and a dog }\right]^{\top}$ came in. The ${ }_{T \Rightarrow}$ cat was hungry.
- Kalaallisut, Mandarin (no articles): ‘[Cat ${ }^{\top}$ and dog] ${ }^{\top}$ came in. $\mathrm{Cat}_{\mathrm{T} \Rightarrow}$ was hungry’

Tomorrow: Indexicality

- Basic ideas

- Cross-linguistic evidence shows that indexicality likewise involves not only context dependence, but also context change.
- UC_{0} extended with drefs for events and states $\left(\mathrm{UC}_{\varepsilon}\right)$

- Suggested readings

- Kaplan, D. 1979. On the logic of demonstratives. Journal of Philosophical Logic 8:81-98.
- Rice, K. 1986. Some remarks on direct and indirect discourse in Slave (Northern Athapaskan). Direct and Indirect Speech (F. Coulmas, ed.), pp. 47-76. De Gruyter.
- Stalnaker, R. 1978. Assertion. Syntax and Semantics Vol. 9: Pragmatics (P. Cole, ed.), pp. 315-332. Academic Press.

References

Bittner, M. 2014. Temporality: Universals and Variation. Wiley-Blackwell.
Bittner, M. 2001. Surface composition as bridging. Journal of Semantics 18:127-177.
Brennan, S. et al. 1987. A centering approach to pronouns. ACL-87. [BFP]
Chu, C. 1998. A Discourse Grammar of Mandarin Chinese. P. Lang: New York
Dekker, P. 1994. Predicate Logic with Anaphora. SALT IV.
Groenendijk, J. et al. 1995. Coreference and contextually restricted quantification. SALT V.
Grosz, B. et al. 1995. Centering: A framework for modeling the local coherence of discourse. Computational Linguistics 21:203-225. [GJW]
Hobbs, J. 1979. Coherence and coreference. Cognitive Science 3:67-90.
Kameyama, M. 1986. A property-sharing constraint in centering. ACL-86.
Kamp, H. and U. Reyle. 1993. From Discourse to Logic. Kluwer: Dordrecht.
Kehler, A. 1997. Current theories of centering for pronoun interpretation: A critical evaluation. Computational Linguistics 23:467-475.

References (2)

Kehler, A. 2002. Coherence, Reference, and the Theory of Grammar. CSLI.
Li, W. 2005. Topic Chains in Chinese. Lincom: München.
Muskens, R. 1995. Tense and the logic of change. Lexical Knowledge in the Organization of Language (U. Egli et al., eds.), 147-183. Benjamins, Amsterdam.
Muskens, R. 1996. Combining Montague Semantics and Discourse Representation. Linguistics and Philosophy 19:143-186.
Sidner, C. 1983. Focusing in the comprehension of definite anaphora. American Journal of Computational Linguistics 7:217-231.
Tsao, F. 1979. A Functional Study of Topic in Chinese. Student Book: Taiwan
Veltman. F. 1990. Defaults in update semantics. In: Conditionals, Defaults and Belief Revision (H. Kamp, ed.), pp. 28-64. DYANA Report R2.5.A. Centre for Cognitive Science, University of Edinburgh.
Veltman, F. 1996. Defaults in update semantics. Journal of Philosophical Logic 25:221261.

