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Abstract

We show how to understand frame semantics of distributive substructural logics coal-
gebraically, thus opening a possibility to study them as coalgebraic logics. As an ap-
plication of this approach we prove a general version of Goldblatt-Thomason theorem
that characterizes definability of classes of frames for logics extending the distributive
Full Lambek logic, as e.g. relevance logics, many-valued logics or intuitionistic logic.
The paper is rather conceptual and does not claim to contain significant new results.
We consider a category of frames as posets equipped with monotone relations, and
show that they can be understood as coalgebras for an endofunctor of the category
of posets. In fact, we adopt a more general definition of frames that allows to cover a
wider class of distributive modal logics. Goldblatt-Thomason theorem for classes of
resulting coalgebras for instance shows that frames for axiomatic extensions of dis-
tributive Full Lambek logic are modally definable classes of certain coalgebras, the
respective modal algebras being precisely the corresponding subvarieties of distribu-
tive residuated lattices.

Keywords: Substructural logics, frame semantics, coalgebras, coalgebraic logic,
Goldblatt-Thomason theorem.

1 Introduction

Modal logics are coalgebraic, the relational frames of classical modal logics can
be seen as Set coalgebras for the powerset functor. Given an endofunctor T on
Set, a conceptually clear setting of classical coalgebraic logic of T -coalgebras
can be based on an adjunction called logical connection, linking categories Set
and BA of sets and Boolean algebras [5,6] and capturing syntax and seman-
tics of the propositional part of the language. Such connection can be ”lifted”
to a connection between categories of T -coalgebras and Boolean algebras with

1 The authors acknowledge the support of the grant No. P202/11/1632 of the Czech Science
Foundation. email: bilkova@cs.cas.cz, horcik@cs.cas.cz, velebil@math.feld.cvut.cz
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operators, which is in general ”almost” an adjunction, capturing syntax and se-
mantics of the modal part of the language. From certain properties of the lifted
connection one automatically obtains soundness, completeness and expressiv-
ity of the modal language. One can also explore the connection to obtain the
Goldblatt-Thomason definability theorem for classes of T -coalgebras for a rea-
sonable class of Set functors [26].

In this paper, lead by a motivation to approach distributive substructural
logics in a coalgebraic way, we use an (enriched) logical connection [27,31] be-
tween categories Pos of posets and DL of distributive lattices. We consider
a general language of distributive lattices with operators, including the usual
language of substructural logics as an instance. We start with requiring no
additional axioms the operators should satisfy (not even the residuation laws),
obtaining coalgebras for a certain endofunctor T on posets as semantics of this
language. As an application of this setting we prove Goldblatt-Thomason de-
finability theorem for classes of T -coalgebras. Classes of T -coalgebras definable
by additional axioms of distributive substructural logics then precisely corre-
spond to frames for these logics as surveyed and studied in [32]. Distributive
modal logics have been treated coalgebraically before [7,29]. We see the main
novelty of this paper in the fact that we use a weaker assumption than a dual-
ity of the category of algebras and certain topological spaces, thus resulting in
non-topological coalgebras as semantics of distributive modal or substructural
logics.

A leading example of a logic, semantics of which we want to cover, is the
distributive full Lambek calculus dFL [15] in the following language

ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ⊗ ϕ | ϕ→ ϕ | ϕ← ϕ | e (1)

where p ranges through a given poset of atomic propositions, ∧ and ∨ are tied
together by a distributive law, and the remaining four connectives ⊗, ←, →, e
satisfy additional equational axioms as, for example, the residuation laws. The
algebraic semantics of dFL are residuated lattices.

We want to take the stance that ∧ and ∨ are the only propositional connec-
tives of the language, while the remaining four constructions ⊗, ←, →, e are
modalities. To prove that the study of relational models of the above language
falls into the realm of coalgebraic modal logic it will be essential to start with
a weaker setting, with no additional requirements on the modalities, apart from
being monotone and preserving ∧ or ∨, i.e. being operators over distributive
lattices.

As it turns out, the natural environment for giving models of the above
language is the one of posets and monotone relations. Namely, a relational
model will consist of a poset W and four monotone relations P⊗, P←, P→ and
Pe on W . For example, P⊗ will be a monotone relation (i.e., a monotone map
P⊗ : W op × W op × W −→ 2, where 2 is the two-element chain) that we will
denote by P⊗ : W ×W � //W . Hence the “arity” of P⊗ mirrors the arity
of the “modality” ⊗. Analogously, Pe will be a monotone relation of the form
Pe : 1 � //W where 1 denotes the one-element preorder. Hence Pe will appear
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as a “nullary” monotone relation, mirroring the fact that the “modality” e is
nullary. We prove that the above quintuple W = (W , P⊗, P←, P→, Pe) can be
seen as a coalgebra for an endofunctor T of the category Pos of posets and
monotone maps.

The reasoning does not change much if we incorporate slightly more general
languages of the form

ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ | ♥(ϕ0, . . . , ϕn−1) | (ϕ0, . . . , ϕl−1)( ψ | ∼ϕ (2)

where p ranges through a poset At of atomic propositions, the connectives ∧, ∨
are tied together by the distributive law, ♥ is an n-ary fusion-like connective,
( is an l-ary implication-like connective, and ∼ is a negation-like connective.
These connectives are required to interact with ∧ and ∨ in the sense that the
following equalities are valid for each 0 ≤ i ≤ n:

♥(. . . , ϕi ∨ ϕ′i . . . ) = ♥(. . . , ϕi, . . . ) ∨ ♥(. . . , ϕ′i, . . . )

(. . . , ϕi ∨ ϕ′i, . . . )( ψ = ((. . . , ϕi, . . . )( ψ) ∧ ((. . . , ϕ′i, . . . )( ψ)

(ϕ0, . . . , ϕl−1)( (ψ ∧ ψ′) = ((ϕ0, . . . , ϕl−1)( ψ) ∧ ((ϕ0, . . . , ϕl−1)( ψ′)

∼(ϕ1 ∨ ϕ2) = ∼ϕ1 ∧∼ϕ2

In slogans: ♥ should preserve ∨ pointwise,( should pointwise transform ∨ in
its premises to ∧, and it should preserve ∧ in its conclusion, ∼ should transform
∨ into ∧. 2

We will prove that:

(i) Relational models of the language (2) are precisely the coalgebras for an
endofunctor T : Pos −→ Pos. Moreover, the construction of T copies the
syntax of the “modalities” ♥, (, ∼ in (2).

(ii) The algebraic semantics of (2) will be given by a variety DL♥,(,∼ of dis-
tributive lattices with operators ♥, ( and ∼.

(iii) It is essential to start with no requirements on the modalities in order to
obtain a coalgebraic description. Any additional equational requirements
on the modalities ♥, ( and ∼ will result in a modally definable class of
T -coalgebras. We characterize modally definable classes in the spirit of
Goldblatt-Thomason Theorem known from the classical modal logic.

As an illustration, we explain how various classes of frames for languages of
the type (2) can be perceived as modally definable. In particular, we cover all
the frames for the distributive substructural logics as studied in [32], namely:

• The class of frames modelling the distributive full Lambek calculus is modally
definable by the equations for residuated distributive lattices. The modalities
are ⊗, →, ← and e.

2 The language above, in its greatest generality, allows for finitely many connectives of each
kind, all of various arities. In order not to make the notation too heavy, we will assume that
there is just one connective of each kind in our signature. The results for the general case
are straightforward generalisations of results for our simplification.
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• The class of frames modelling the intuitionistic logic is modally definable by
the equations for Heyting algebras. The modalities are ⊗ (coinciding with
∧) and →.

• The class of frames modelling relevance logic is modally definable. The
modalities are ⊗, →, ←, e and ∼.

Related work: Using relational models on posets for modelling semantics
of various nonclassical logics goes back at least to the work of Routley and
Meyer [34], and Dunn, see [10,11,12] or [32] for an overview. We see the novelty
of our approach in the fact that we can systematically work with such frames as
coalgebras, hence one has a canonical notion of a frame morphism as morphism
of corresponding coalgebras. 3

The original Goldblatt-Thomason theorem for modal logics [23] character-
izes modally definable classes of Kripke frames. For positive modal logic it was
proved in [9]. A definability theorem for classes of models is due to Venema [38].
Our version of the theorem is an analogue of coalgebraic Goldblatt-Thomason
theorem for Set coalgebras [26, Theorem 3.15(2.)]. Possibilities to generalize
the theorem to coalgebras over measurable spaces have been explored in [30].
Coalgebraic Goldblatt-Thomason theorem for classes of models can be found
in [21] and [26, Theorem 3.15(1.)]. A Goldblatt-Thomason theorem for classes
of intuitionistic frames appeared in the thesis [33], a definability theorem for
classes of intuitionistic models appeared in [22].

Our approach relates to, but also, due to the coalgebraic formulation, differs
from extensive work relating algebraic and frame (or topological) semantics of
modal and substructural logics, using dualities and discrete dualities for dis-
tributive lattices [17,18,19], distributive lattices with operators [20,35,36,25,29],
or posets [13], most of it using canonical extensions: in contrast to this approach
we do not use a dual equivalence of distributive lattices and certain topologi-
cal spaces, a weaker kind of adjunction between DL and posets, called logical
connection, is enough. The frames, and thus the coalgebras we consider are
not topological as those obtained in [29], [7] or [1], they can however be seen
as non-topological analogues of those — the map from algebras to frames can
be factored through topological frames.

Organisation of the paper: Section 2 is devoted to fixing the terminol-
ogy and notation for monotone relations. In Section 3 we briefly recall how
the semantics of the propositional part of coalgebraic logic is captured by an
adjunction of a special kind, called logical connection. Relational frames as
coalgebras are introduced in Section 4. Complex algebras and canonical frames
are studied in Sections 5 and 6. Our main result: the modal definability theo-
rem is proved in Section 7. We illustrate this result by examples of distributive
full Lambek calculus, relevance logic, etc. We hint at possible generalizations
of our approach in Section 8.

3 The usual notion of morphism for substructural frames is different — it requires equalities
a = f(x), b = f(y) in the back condition in 4.6. The same notion of a frame morphism as
ours in the special case of frames for fuzzy logics is given in [8].
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Remark on the notation we use: We work with posets and monotone
relations as with categories enriched over the two-element chain 2, see Section 2.
Therefore our formulas for manipulation monotone relations use the structure
of the complete Boolean algebra 2 and are to be computed there. We think
that the notation will become convenient in future generalizations to enriched
categories, see Section 8.

Due to space limitations we have omitted some of the proofs. §

2 Preliminaries

Recall that a poset W is a set W equipped with a reflexive, transitive and anti-
symmetric relation≤. Instead of writing x ≤ x′ we will often write W (x, x′) = 1
(and writing W (x, x′) = 0, if x ≤ x′ does not hold). This is in compliance with
the fact that a poset W can be seen as a small category enriched in the two-
element chain 2. Although we will not use any machinery of enriched category
theory explicitly, we find the above notation convenient in the view of further
generalizations, see Section 8 below.

An opposite W op of the poset W has the same set of elements as W , but
we put W op(x, x′) = W (x′, x).

Recall further that a monotone map f : W1 −→ W2 consists of an assignment
x 7→ fx such that, for any x and x′, the inequality W1(x, x′) ≤ W2(fx, fx′)
holds in 2. The poset of all monotone maps from W1 to W2, with the order
defined pointwise, is denoted by [W1,W2]. A product W1×W2 of posets W1, W2

is an order on the pairs of elements, defined pointwise. We denote by W n the
product of n-many copies of W with itself, writing W 0 = 1 — the one-element
poset.

Given posets W1 and W2, a monotone relation from W1 to W2, denoted by

R : W1 � //W2

is a monotone map of the form R : W op
1 × W2 −→ 2. We write R(x, x′) = 1

to denote that x is related to x′. In what follows we will omit the adjective
‘monotone’ and speak just of relations. A relation of the form

R : W n � //W

is called an n-ary relation on W , where n ≥ 0. For n = 0 we obtain

R : 1 � //W

and it is easy to see that such a relation corresponds to an upperset of W , i.e.,
the set U = {x | Rx = 1} has the property: if x ∈ U and x ≤ x′, then x′ ∈ U .

Relations compose in the usual way: the composite of the relations
R : W1 � //W2 S : W2 � //W3 is a relation S ·R : W1 � //W3 given by

§ The full version of the paper including missing proofs can be found at
http://math.feld.cvut.cz/velebil/research/papers.html.
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the formula
S ·R(x, z) =

∨
y

S(y, z) ∧R(x, y)

For every poset W , the identity relation idW : W � //W is defined by putting
idW (x, x′) = 1 iff x ≤ x′. Hence it is consistent to write W instead of idW .

It is easy to see that the above composition is associative and that it has
identity relations as units, hence we obtain a category (enriched in posets) of
posets and relations. The above definitions are specializations of the theory
of profunctors (also distributors, or, modules), known from enriched category
theory. See, for example, [37] for more details.

3 The logical connection

The semantics of the propositional part of the language, i.e., of the language

ϕ ::= p | ϕ ∧ ϕ | ϕ ∨ ϕ (3)

where p ranges through a poset At of atomic propositions and ∧ and ∨ are tied
by the distributive law, will be given by a logical connection of the category
Pos of posets and monotone maps and the category DL of distributive lattices
and lattice morphisms. The logical connection

Stone a Pred : Posop −→ DL (4)

is given by the two-element chain 2 as a schizophrenic object . Recall how the
above connection works (we refer to [31] or [27] for more details on logical
connections):

(i) Pred sends a poset W to the distributive lattice ([W ,2],∩,∪) of uppersets
on W . A monotone map f is sent to [f, 2] : U 7→ U · f .

For a poset W , the distributive lattice Pred(W ) is to be considered as
the “distributive lattice of truth-distributions on W ”.

(ii) For a distributive lattice A , Stone(A ) is the poset DL(A ,2) of prime
filters on A . The mapping Stone(h) is given by composition: a prime
filter F is sent to the prime filter F · h.

The poset Stone(A ) is the “Stone space” of the distributive lattice A .

(iii) The unit ηA : A −→ [DL(A ,2),2] is the lattice homomorphism sending
x in A to the upperset of all prime filters on A that contain x.

(iv) The counit εW : W −→ DL([W ,2],2) is the monotone map sending x in
W to the prime filter of those uppersets on W that contain x.

The semantics of the propositional language (3) is given by the logical con-
nection (4), together with another adjunction

F a U : DL −→ Pos (5)

where U denotes the obvious forgetful functor and F sends a poset X to the
free distributive lattice on X . More in detail, the semantics is given as follows:
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(i) Fix a poset At of atomic propositions. The distributive lattice F (At) is
then the Lindenbaum-Tarski algebra of formulas.

(ii) Observe that U(Pred(W )) = [W ,2], for every poset W . Hence, due to
the adjunction F a U , monotone maps of the form val : At −→ [W ,2]
are in bijective correspondence with lattice morphisms ‖−‖val : F (At) −→
Pred(W ).

Of course, as the notation suggests, the monotone map val is the valu-
ation of atomic propositions, assigning to every p the upperset val(p) of
those x’s in W , where p is valid. The lattice homomorphism ‖−‖val is then
the free extension of the valuation val. It can be described inductively as
follows:

‖p‖val = val(p), ‖ϕ1∧ϕ2‖val = ‖ϕ1‖val∩‖ϕ2‖val, ‖ϕ1∨ϕ2‖val = ‖ϕ1‖val∪‖ϕ2‖val

We will later add more connectives (fusion-like, implication-like and
negation-like) but we are going to consider them as modal operators on dis-
tributive lattices. In fact, as we will see, such extension of the language will
yield extensions of the above two functors Pred and Stone.

4 Relational frames as coalgebras

We define structures that we call (relational) frames for the language of the
type (2). Frames will consist of a poset of states and various relations reflecting
the syntax of “modalities” of the language, compare to frames in [32]. We prove
that frames are exactly the coalgebras for a certain endofunctor of the category
of posets.

Notation 4.1 We will introduce the following “vector” conventions: for a re-
lation P : W n � //W we will write P (~x;x) instead of P (x0, . . . , xn−1;x). For
P : W � //(W op)l ×W we will write P (x; ~y, z) instead of P (x; y0, . . . , yl−1, z).
Analogously we will write W2(~a, f~x) instead of W2(a0, fx0) ∧ · · · ∧
W2(an−1, fxn−1), etc.

Definition 4.2 A relational frame for the language (2) is a quadruple W =
(W , P♥, P(, P∼), consisting of a poset W , and relations

P♥ : W n � //W , P( : W � // (W l)op ×W , P∼ : W � //W op

A morphism from W1 = (W1, P
1
♥, P

1
(, P 1

∼) to W2 = (W2, P
2
♥, P

2
(, P 2

∼) is a
monotone map f : W1 −→ W2 such that the following three equations hold:

P 2
♥(~a; fy) =

∨
~x

W2(~a, f~x) ∧ P 1
♥(~x; y) (6)

P 2
((fx;~b, c) =

∨
~y,z

W2(~b, f~y) ∧W2(fz, c) ∧ P 1
((x; ~y, z) (7)

P 2
∼(fx; b) =

∨
y

W2(b, fy) ∧ P 1
∼(x; y) (8)

We write f : W1 −→ W2 to indicate that f is a morphism of relational frames.



126 Distributive Substructural Logics as Coalgebraic Logics over Posets

Remark 4.3 We have not defined semantics in a relational frame yet, but the
following intuitions about the “meaning” of the individual relations P♥, P(

and P∼ on W might be useful (see Notation 4.1).

(i) P♥(~x; y) = 1 holds, only if ~x 
 ~ϕ implies y 
 ♥~ϕ.

(ii) P((x; ~y, z) = 1 holds, only if x 
 ~ϕ( ψ and ~y 
 ~ϕ imply z 
 ψ.

(iii) P∼(x; y) = 1 holds, only if y 
 ϕ implies x 6
 ∼ϕ.

See Remark 5.5 below for precising the above intuitions.

Example 4.4 A relational frame W for the language (1) consists of
a poset W , together with fusion-like relations P⊗ : W ×W � //W ,
Pe : 1 � //W , and implication-like relations P→ : W � //W op ×W and
P← : W � //W op ×W .

Let us stress that the relations P⊗, Pe, P→ and P← are (as of yet) arbitrary.
When one needs special properties as, for example, the frame to be the model
of a distributive full Lambek calculus (for such frames see [32]), one needs to
invoke modal definability theorem. This is shown in Example 7.7 below.

Example 4.5 Relational frames for the language ∧, ∨, ⊗, →, e
and ∼ of relevance logic, see [12], are posets W equipped with re-
lations P⊗ : W ×W � //W , Pe : 1 � //W , P→ : W � //W op ×W and
P∼ : W � //W op . The above relations are as of yet arbitrary. Frames for
various classes of relevance logic are modally definable, see Remark 7.8 below.

Remark 4.6 It is very easy to prove that the above equations (6)–(8) can be
“split” into six inequalities, giving us the back & forth description of morphisms
for fusion-like, implication-like and negation-like connectives. More precisely:

(i) The equation (6) is equivalent to the conjunction of the following two
inequalities

P 1
♥(~x; y)≤ P 2

♥(f~x; fy) (9)

P 2
♥(~a; fy)≤

∨
~x

W2(~a, f~x) ∧ P 1
♥(~x; y) (10)

(ii) The equation (7) is equivalent to the conjunction of the following two
inequalities

P 1
((x; ~y, z)≤ P 2

((fx; f~y; fz) (11)

P 2
((fx;~b, c)≤

∨
~y,z

W2(~b, f~y) ∧W2(fz, c) ∧ P 1
((x; ~y, z) (12)

(iii) The equation (8) is equivalent to the conjunction of the following two
inequalities

P 1
∼(x; y)≤ P 2

∼(fx; fy) (13)

P 2
∼(fx; b)≤

∨
y

W2(b, fy) ∧ P 1
∼(x; y) (14)
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We define now three functors

T♥ : Pos −→ Pos, T( : Pos −→ Pos, T∼ : Pos −→ Pos

and prove that their product T = T♥×T(×T∼ gives rise to relational frames
and their morphisms. Namely: frames are T -coalgebras and frame morphisms
are T -coalgebra morphisms.

Definition 4.7

(i) The functor T♥ sends W to the poset [(W n)op ,2] of lowersets on W n. For

a monotone map f : W1 −→ W2, the map T♥(f) sends ~L : (W n
1 )op −→ 2

to
~b 7→

∨
~x

W2(~b, f~x) ∧ ~L~x

(ii) The functor T( sends W to the poset [(W l)op×W ,2]op. For a monotone
map f : W1 −→ W2, the map T((f) sends X : (W l

1 )op ×W1 −→ 2 to

(~b, c) 7→
∨
~y,z

W2(~b, f~y) ∧W2(fz, c) ∧X(~y, z)

(iii) The functor T∼ sends W to the poset [W op ,2]op. For a monotone map
f : W1 −→ W2, the map T∼(f) sends X : W op

1 −→ 2 to

b 7→
∨
y

W2(b, fy) ∧Xy

Proposition 4.8 Put T = T♥ × T( × T∼. The category of relational frames
and their morphisms is isomorphic to the category PosT of T -coalgebras and
their morphisms.

Proof.

(i) To give a monotone map γ : W −→ T (W ) is to give three monotone
maps γ♥ : W −→ T♥(W ), γ( : W −→ T((W ) and γ∼ : W −→ T∼(W ).
Each of the three maps, however, can be uncurried to produce monotone
maps P♥ : (W n)op × W −→ 2, P( : W op × (W l)op × W −→ 2 and
P∼ : W op × W op −→ 2. To conclude: T -coalgebras are exactly the
relational frames.

(ii) To give a monotone map f : W1 −→ W2 such that the square

W1
γ1 //

f

��

T (W1)

T (f)

��

W2 γ2
// T (W2)

commutes, is, by Definition 4.7, to give a monotone map f such that equa-
tions (6)–(8) hold. To conclude: coalgebra homomorphisms are exactly the
morphisms of relational frames.

2
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5 Complex algebras

The complex algebra Pred ](W) of the frame W will be a distributive lattice
Pred(W ), equipped with extra operators ♥, ( and ∼.

We prove that taking a complex algebra defines a functor Pred ] from the
(opposite of the) category of relational frames and their morphisms to the cat-
egory DL♥,(,∼ of distributive lattices equipped with extra operations. More-
over, this construction extends the predicate functor Pred : Posop −→ DL in
the sense that the square

(PosT )op Pred]
//

(VT )op

��

DL♥,(,∼

U♥,(,∼

��

Posop
Pred

//DL

(15)

commutes. Above, VT : PosT −→ Pos is the forgetful functor sending a coalge-
bra (W , γ) to the poset W .

Definition 5.1 The category DL♥,(,∼ is defined as follows:

(i) Objects are distributive lattices A = (Ao,∧,∨) (where Ao denotes the
underlying poset), together with monotone maps

[[♥]]A : A n
o −→ Ao, [[(]]A : (A l

o )op×Ao −→ Ao, [[∼]]A : A op
o −→ Ao

called the interpretations of ♥, ( and ∼. We will usually omit the brack-
ets [[−]]A and denote (A ,♥,(,∼) by A.

The operations are required to satisfy the following axioms, for each
0 ≤ i ≤ n:

♥(. . . , xi ∨ x′i, . . . ) =♥(. . . , xi, . . . ) ∨ ♥(. . . , x′i, . . . )

(. . . , xi ∨ x′i, . . . )( y = ((. . . , xi, . . . )( y) ∧ ((. . . , x′i, . . . )( y)

~x( (y1 ∧ y2) = (~x( y1) ∧ (~x( y2)

∼(x1 ∨ x2) = ∼x1 ∧∼x2
(ii) A morphism from A1 to A2 is a lattice morphism h : A1 −→ A2 preserving

the additional operations ♥, ( and ∼ on the nose.

The obvious underlying functor will be denoted by U♥,(,∼ : DL♥,(,∼ −→ DL.

Remark 5.2 It is clear that DL♥,(,∼ is a finitary variety over Pos in the sense
of categorical universal algebra. More precisely: the composite U · U♥,(,∼ :
DL♥,(,∼ −→ Pos of the obvious forgetful functors is a monadic functor. In
particular, the forgetful functor U · U♥,(,∼ : DL♥,(,∼ −→ Pos has a left
adjoint, hence there also exists a left adjoint F♥,(,∼ : DL −→ DL♥,(,∼ to
U♥,(,∼. Thus, given a poset At, we can form F♥,(,∼(F (At)). This is the
Lindenbaum-Tarski algebra of formulas for the language (2) and we denote it
by L (At).
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Definition 5.3 The complex algebra Pred ](W) = (([W ,2],∩,∪),♥,(,∼) is
defined as follows:

(i) Given a vector ~U of uppersets U0, . . . , Un−1, the upperset ♥~U is defined
by the formula

y 7→
∨
~x

~U~x ∧ P♥(~x; y)

(ii) Given a vector ~U of uppersets U0, . . . , Ul−1, and an upperset W , the

upperset ~U (W is defined by the formula

x 7→
∧
~y,z

~U~y ∧ P((x; ~y, z)⇒Wz

(iii) Given an upperset U , the upperset ∼U is defined by the formula

x 7→
∧
y

P∼(x; y)⇒ ¬Uy

where the ¬ sign is negation in 2.

The following result is easy to prove, when one uses the back & forth de-
scription of morphism of frames, see Remark 4.6.

Proposition 5.4 The assignment W 7→ Pred ](W) can be extended to a functor
from (PosT )op to DL♥,(,∼. Moreover, the square (15) commutes.

Proof. It is easy to verify that, given a frame W, the algebra Pred ](W) is an
object of DL♥,(,∼.

For a frame morphism f : W1 −→ W2, put Pred ](f) to be the mapping
[f, 2] : [W2,2] −→ [W1,2]. We verify that the three operations are preserved on
the nose:

(i) The commutativity of the square

[W2,2]n
[f,2]n

//

♥
��

[W1,2]n

♥
��

[W2,2]
[f,2]

// [W1,2]

is the requirement that the equality∨
~a

~U~a ∧ P 2
♥(~a; fy) =

∨
~x

~Uf~x ∧ P 1
♥(~x; y)

holds for every y. The inequality ≥ is obvious: put ~a = f~x and use that
P 1
♥(~x; y) ≤ P 2

♥(f~x; fy) holds, see (9). The converse inequality follows from
the inequality (10).
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(ii) The commutativity of the square

([W2,2]l)op × [W2,2]
([f,2]l)op×[f,2]

//

(

��

([W1,2]l)op × [W1,2]

(

��

[W2,2]
[f,2]

// [W1,2]

is the requirement that the equality∧
~b,c

~U~b ∧ P 2
((fx;~b, c)⇒Wc =

∧
~y,z

~Uf~y ∧ P 1
((x; ~y, z)⇒Wfz

holds for every x. The inequality ≤ follows from P 1
((x; ~y, z) ≤

P 2
((fx; f~y, fz), see (11). For the converse inequality, use inequality (12).

(iii) The commutativity of the square

[W2,2]op
[f,2]op

//

∼
��

[W1,2]op

∼
��

[W2,2]
[f,2]

// [W1,2]

is the requirement that the equality∧
b

P 2
∼(fx; b)⇒ ¬Ub =

∧
y

P 1
∼(x; y)⇒ ¬Ufy

holds for every x. The inequality ≤ follows from inequality (13). For the
converse inequality, use inequality (14).

2

Remark 5.5 The square (15) allows us to give semantics of the language.
More precisely, we saw in Section 3 that the adjunction F a U : DL −→ Pos,
together with Stone a Pred : Posop −→ DL, takes care of the semantics ‖−‖val
of the propositional part of the logic.

The adjunction F♥,(,∼ a U♥,(,∼ : DL♥,(,∼ −→ DL, together with
square (15), allow us to define, for every frame W, a semantics morphism

‖−‖val : L (At) −→ Pred ](W)

in DL♥,(,∼ as the transpose under the composite adjunction

DL♥,(,∼
U♥,(,∼

//⊥ DL
U
//

F♥,(,∼oo
⊥ Pos
Foo

of a valuation val : At −→ [W ,2].
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It is possible to give an inductive description of ‖−‖val. Namely: the equa-
tions

‖p‖val = val(p), ‖ϕ1 ∧ ϕ2‖val = ‖ϕ1‖val ∩ ‖ϕ2‖val,
‖ϕ1 ∨ ϕ2‖val = ‖ϕ1‖val ∪ ‖ϕ2‖val ‖♥~ϕ‖val = ♥‖~ϕ‖val,
‖~ϕ( ψ‖val = ‖~ϕ‖val( ‖ψ‖val, ‖∼ϕ‖val = ∼‖ϕ‖val

hold. Above, the symbols ♥, ( and ∼ on the right-hand sides are to be
interpreted as the operations in the complex algebra Pred ](W).

Let us call the pair (W, val), consisting of a frame and a valuation, a model .
Then the morphism ‖−‖val defines the notion of local truth in the model (W, val)
— we write x 
W,val ϕ, if x belongs to the upperset ‖ϕ‖val, or, equivalently, if
‖ϕ‖valx = 1. If rewritten in terms of 
, the above equations give the familiar
inductive definition of validity. Namely (omitting the obvious cases of atomic
propositions and ∧ and ∨):

(i) x 
W,val ♥~ϕ holds iff there exists ~y such that both ~y 
 ~ϕ and P♥(~y;x)
hold.

(ii) x 
W,val ~ϕ( ψ holds iff for all ~y and z such that ~y 
 ~ϕ and P((x; ~y, z)
hold, z 
 ψ holds.

(iii) x 
W,val ∼ϕ iff for all y such that P∼(x; y) holds, y 6
 ϕ holds.

6 Canonical relational frames

The assignment of the canonical frame Stone](A) to an object A of DL♥,(,∼
is, in a way, dual to the formation of complex algebras. We prove below that
A 7→ Stone](A) is functorial and that the square

DL♥,(,∼
Stone]

//

U♥,(,∼

��

(PosT )op

(VT )op

��

DL
Stone

// Posop

(16)

commutes.

Definition 6.1 Suppose A = (A ,♥,(,∼) is in DL♥,(,∼. Define Stone](A)
as follows:

(i) The underlying poset of Stone](A) is the poset DL(A ,2) of prime filters
on the distributive lattice A .

(ii) The relation P♥ is defined as follows:

P♥(~F ;G) =
∧
~x

~F~x⇒ G(♥~x)

(iii) The relation P( is defined as follows:

P((F ; ~G,H) =
∧
~x,y

F (~x( y) ∧ ~G~x⇒ Hy
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(iv) The relation P∼ is defined as follows:

P∼(F ;G) =
∧
x

Gx⇒ ¬F (∼x)

where the ¬ sign is the negation in 2.

The above definitions clearly make sense if we work with mere uppersets
in lieu of prime filters. We will need the following three technical results that
slightly generalize the results originating in the work on relevance logic, see
Section 6 of [11].

Lemma 6.2 (Squeeze Lemma for ♥) Suppose P♥( ~F ′;G) = 1 holds, where
~F ′ is a vector of filters and G a prime filter. Then there is a vector ~F of prime
filters that extends ~F ′ and P♥(~F ;G) = 1.

Lemma 6.3 (Squeeze Lemma for () Suppose P((F ; ~G′, I ′) = 1, where

F is a prime filter, ~G′ is a vector of filters and I ′ is a complement of an ideal
I ′. Then there exists a vector ~G of prime filters such that ~G extends ~G′ and
a prime ideal I that extends I ′ and P((F ; ~G, I) = 1, where I denotes the
complement of I.

Lemma 6.4 (Squeeze Lemma for ∼) Suppose P∼(F ;G′) = 1, where F is
a prime filter and G′ is a filter. Then there exists a prime filter G extending
G′ such that P∼(F ;G) = 1.

The above three lemmata allow us to prove that the computation of a
canonical frame is a functorial process.

Proposition 6.5 The assignment A 7→ Stone](A) can be extended to a functor
from DL♥,(,∼ to (PosT )op. Moreover, the square (16) commutes.

Proof. Given h : A1 −→ A2, we define Stone](h) as DL(h,2) : DL(A2,2) −→
DL(A1,2). We only need to prove that equations (6)–(8) are satisfied. For the
purposes of better readability we denote [h,2] by h† in what follows.

(i) The required equality

P 1
♥( ~K;h†G) =

∨
~F

DL(A1,2)( ~K, h† ~F ) ∧ P 2
♥(~F ;G)

can be rewritten, using the definition of h†, to the equation

P 1
♥( ~K;Gh) =

∨
~F

DL(A1,2)( ~K, ~Fh) ∧ P 2
♥(~F ;G)

We prove inequalities (9) and (10):

(a) To prove P 2
♥(~F ;G) ≤ P 1

♥(~Fh;Gh), suppose ~Fhx = 1. Then
G(♥(hx)) = Gh(♥x) = 1 and we are done.
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(b) We prove P 1
♥( ~K;Gh) ≤

∨
~F DL(A1,2)( ~K, ~Fh) ∧ P 2

♥(~F ;G).

Define a vector ~K ′ of filters on A2 by putting

~K ′~a =
∨
~x

A2(h~x,~a) ∧ ~K~x

We prove P 2
♥( ~K ′;G) = 1, supposing P 1

♥( ~K;Gh) = 1. To that end,

suppose ~K ′~a = 1 and choose ~x such that A2(h~x,~a) ∧ ~K~x = 1. Then
Gh(♥~x) = G(♥(h~x)) = 1, hence G(♥~a) = 1, since ♥ is monotone.

Now use Lemma 6.2 to find a vector ~F of prime filters such that ~F
extends ~K ′ and P 2

♥(~F ;G) = 1 holds. It remains to prove the equality

DL(A1,2)( ~K, ~Fh) = 1. This follows immediately from the fact that ~F

extends ~K ′: if ~K~x = 1, then ~K ′(h~x) = 1, hence ~Fh~x = 1.

(ii) The required equality

P 1
((h†F ; ~L,M) =

∨
~G,H

DL(A1,2)(~L, h† ~G)∧DL(A1,2)(h†H,M)∧P 2
((F ; ~G,H)

can be rewritten to the equality

P 1
((Fh; ~L,M) =

∨
~G,H

DL(A1,2)(~L, ~Gh)∧DL(A1,2)(Hh,M)∧P 2
((F ; ~G,H)

We prove inequalities (11) and (12):

(a) For proving the inequality P 2
((F ; ~G,H) ≤ P 1

((Fh; ~Gh,Hh), assume

P 2
((F ; ~G,H) = 1. If Fh(~x ( y) ∧ ~Gh~x = F (h~x ( hy) ∧ ~Gh~x = 1,

then Hhy = 1, which was to be proved.
(b) We prove the inequality

P 1
((Fh; ~L,M) ≤

∨
~G,H

DL(A1,2)(~L, ~Gh)∧DL(A1,2)(Hh,M)∧P 2
((F ; ~G,H)

Define

~G′~b =
∨
~y

A2(h~y,~b) ∧ ~L~y, I ′c =
∨
z

A2(c, hz) ∧ ¬Mz

and observe that ~G′ is a vector of filters and I ′ is an ideal. Moreover,
the complement I ′ of I ′ is given by the formula

I ′c =
∧
z

A2(c, hz)⇒Mz

We will prove that P 2
((F ; ~G′, I ′) = 1, if we suppose P 1

((Fh; ~L,M) =
1.
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To that end, suppose F (~b( c)∧ ~G′~b = 1 and suppose z is such that
A2(c, hz) = 1 holds. We need to prove Mz = 1.

Pick ~y witnessing ~G′~b = 1. Then F (h~y ( hz) = Fh(~y ( z) = 1

and ~L~y = 1. Therefore Mz = 1, since we assumed P 1
((Fh; ~L,M) =

1.
By Lemma 6.3 there exist ~G and I such that ~G is a vector of prime
filters extending ~G′, I is a prime ideal extending I ′, and P 2

((F, ~G, I) =
1 holds. Since a complement of a prime ideal is a prime filter, we can
put H = I.

It remains to show that ~Gh extends L and Hh is extended by M .
Since ~G′h clearly extends L, so does ~Gh (use that ~G extends ~G′).

Since I ′h is extended by M , so is Ih. This follows from the fact
that I extends I ′.

(iii) The required equality

P 1
∼(h†F ;L) =

∨
G

DL(A1,2)(L, h†G) ∧ P 2
∼(F ;G)

can be rewritten to the equality

P 1
∼(Fh;L) =

∨
G

DL(A1,2)(L,Gh) ∧ P 2
∼(F ;G)

We prove inequalities in (13) and (14):
(a) To prove the inequality P 2

∼(F ;G) ≤ P 1
∼(Fh;Gh), suppose that

P 2
∼(F ;G) = 1 and Fhx = 1. Then ¬G(∼hx) = ¬Gh(∼x) = 1, which

had to be proved.
(b) We prove the inequality P 1

∼(Fh;L) ≤
∨
GDL(A1,2)(L,Gh) ∧

P 2
∼(F ;G).
Define the filter G′ by the formula

G′b =
∨
y

A2(hy, b) ∧ Ly

and observe that P 2
∼(F ;G′) = 1 holds, if we assume P 1

∼(Fh;L) = 1.
Indeed: suppose G′b = 1 and let y witness this equality. We need

to prove ¬F (∼b) = 1. But we know ¬Fh(∼y) = ¬F (∼(hy)) = 1.
Therefore ¬F (∼b) = 1, since A2(hy, b) = 1 and F is an upperset.

By Lemma 6.4 we can find a prime filter G extending G′ such that
P 2
∼(F ;G) = 1 holds. Moreover, Gh extends L, since G′h does.

2

7 Modal definability

Our modal definability theorem (Theorem 7.6 below) will identify classes C of
frames such that the image of C under Pred ] is an “HSP” class in DL♥,(,∼, i.e.,
it is a variety (compare with the version of Goldblatt-Thomason theorem for
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modal logics [3, Theorem 5.54] and [26, Theorem 3.15/2.]). Since we work over
posets, the notion of HSP-closedness has to take this fact under consideration.
Namely, we will use the factorization system (E ,M) on Pos where E consists
of surjective monotone maps and M of monotone maps reflecting order, i.e.,
f : W1 −→ W2 is in M if W1(x, x′) = W2(fx, fx′) holds for every x and x′.
That (E ,M) is indeed a factorization system on Pos is proved in [4]. We will
use the HSP Theorem w.r.t. a factorization system, see [28]:

A class A of algebras in a variety V over Pos is definable by equations in V
iff A satisfies the following conditions (U : V −→ Pos denotes the underlying
functor):

(H) If e : A1 −→ A2 is such that U(e) is a split epi in Pos and A1 is in A , then
A2 is in A.

(S) If m : A1 −→ A2 is such that U(m) is in M and A2 is in A , then A1 is in
A.

(P) If Ai, i ∈ I, are in A , then
∏
i∈I Ai is in A.

In fact, since the algebraic semantics of our logic takes place in (distributive)
lattices, we may as well replace equationally defined classes by inequationally
defined. We prefer to introduce the inequational description, since it is often
more useful in applications.

Definition 7.1 Suppose W is a relational frame. We say that α entails β,
and denote this fact by α |=W β, provided that ‖α‖val ≤ ‖β‖val holds, for every
valuation val : At −→ [W ,2].

Given a class Σ of pairs of formulas, we denote by Mod(Σ) the class of
frames W such that α |=W β, for all (α, β) ∈ Σ.

The following result is trivial.

Lemma 7.2 α |=W β holds iff Pred ](W) |= α ∧ β = α, where the |= sign on
the right denotes validity in the sense of universal algebra.

Although the notation might suggest it, it is not the case that the logical
connection Stone a Pred lifts to an adjunction Stone] a Pred ]. The unit of
Stone a Pred does lift, however, and we will need it in the proof of Theorem 7.6.

This fact, known in modal logic as the Jónsson-Tarski theorem, is itself
interesting since it gives us the modal completeness of the resulting logic w.r.t.
T -coalgebras: namely, the T -coalgebra (the canonical frame) corresponding
to the Lindenbaum-Tarski DL♥,(,∼-algebra provides a counterexample to any
unprovable formula.

Lemma 7.3 The unit η of Stone a Pred is a morphism in DL♥,(,∼, i.e., η
lifts along the functor U♥,(,∼ : DL♥,(,∼ −→ DL to a natural transformation

η] : IdDL♥,(,∼ −→ Pred ]Stone].

Another technical result that we need for Theorem 7.6 is the following one.

Lemma 7.4 The functor Stone sends maps reflecting order to surjective
monotone maps.
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Proof. Suppose m : A −→ B is a lattice homomorphism that reflects order.
We need to prove that the monotone map Stone(m) : Stone(B) −→ Stone(A )
is surjective. To that end, fix a prime filter F on A . Define the set

E = {G | G ·m = F}

of filters on B, ordered by inclusion. The set E is nonempty, since m reflects
order: put Gb =

∨
a B(ma, b) ∧ Fa and observe that G is in E. Furthermore,

the union of a nonempty chain of elements of E is an element of E. By Zorn’s
Lemma, E has a maximal element G0. It is easy to prove that it is a prime
filter. 2

Finally, before stating Theorem 7.6, we need to introduce the concept of a
prime extension of a frame.

Definition 7.5 The frame W∗ = Stone]Pred ](W) is called the prime extension
of W.

Theorem 7.6 Suppose C is a class of relational frames that is closed under
prime extensions (if W is in C, then W∗ is in C). Then the following are
equivalent:

(i) There is Σ such that C = Mod(Σ).

(ii) C satisfies the following four conditions:
(a) C is closed under “surjective coalgebraic quotients”, i.e., if e : W1 −→

W2 is surjective and W1 is in C, so is W2.
(b) C is closed under “subcoalgebras”, i.e., if m : W1 −→ W2 reflects order

and W2 is in C, so is W1.
(c) C is closed under coproducts.
(d) C reflects prime extensions: if W∗ is in C, so is W.

Proof. 1 implies 2. Suppose C = Mod(Σ). We will verify the four conditions
for C.

(a) Suppose e : W1 −→ W2 is a surjective coalgebra morphism. We prove that
if α |=W1

β, then α |=W2
β.

Consider y ∈ W2 and a valuation val : At −→ [W2,2]. We can define a
new valuation val′ : At −→ [W1,2] by the composition

At val // [W2,2]
[e,2]
// [W1,2]

Then the diagram

L (At)
‖−‖val //Pred ](W2)

Pred](e)
//Pred ](W1)

OO

‖−‖val
′

commutes in DL♥,(,∼.
Let x be such that ex = y. Then, by assumption, x 
val′ α ≤ β, hence
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‖α ∧ β‖valex= [e,2](‖α ∧ β‖val)x = ‖α ∧ β‖val′x = ‖α‖val′x = [e, 2](‖α‖val)x
= ‖α‖valex

Therefore ex 
val α ≤ β, i.e., y 
val α ≤ β.

(b) Suppose m : W1 −→ W2 is a coalgebra morphism with m reflecting order.
We prove that if α |=W2

β, then α |=W1
β.

Observe that [m,2] : [W2,2] −→ [W1,2] is a split epimorphism in Pos.
Indeed: there exists a monotone map z : [W1,2] −→ [W2,2] such that
[m,2] · z = id . Given u : W1 −→ 2, define v : W2 −→ 2 by the formula

vy =
∨
x

W2(mx, y) ∧ ux

Then z : u 7→ v is monotone and the equalities

vmx′ =
∨
x

W2(mx,mx′) ∧ ux =
∨
x

W1(x, x′) ∧ ux = ux′

prove [m,2] · z = id (above, we have used that m reflects order).
Suppose val : At −→ [W1,2] is given. To prove x ∈ ‖α‖val, consider

val′ ≡ At val // [W1,2] z // [W2,2]

By assumption, ‖α ∧ β‖val′mx = ‖α‖val′mx. But the diagram

L (At)
‖−‖val′ //Pred ](W2)

Pred](m)
//Pred ](W1)

OO

‖−‖val

commutes in DL♥,(,∼ due to [m,2] · z = id . Hence ‖α∧β‖valx = ‖α‖valx.

(c) Suppose α |=Wi β, for all i ∈ I. We prove that α |=∐
i∈I Wi

β.

The functor Pred ] preserves products (in fact, it preserves all limits).
Products in (PosT )op are, of course, coproducts in PosT .

Consider x in
∐
i∈I Wi. Since coproducts of frames are formed on the

level of posets, there is i ∈ I such that x is in Wi. Let val : At −→∏
i∈I [Wi,2] be any valuation. Then, by assumption, x 
vali α ∧ β = α,

where
vali ≡ At val //

∏
i∈I [Wi,2]

pi // [Wi,2]

and where pi denotes the i-th projection.
This proves ‖α ∧ β‖valx = ‖α‖valx.

(d) Suppose α |=W∗ β. We prove that α |=W β.
Take x in W and val : At −→ [W ,2]. Recall that, by Lemma 7.3, η lifts

to η], hence we can consider the valuation

val′ ≡ At val // [W ,2]
UU♥,(,∼(η]

Pred](W)
)
// [StonePred(W ),2]
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and therefore the diagram

L (At)
‖−‖val //Pred ](W)

η]
Pred](W)//Pred ]Stone]Pred ](W)

OO

‖−‖val′

(17)

commutes in DL♥,(,∼. Thus, we obtain a commutative diagram

U♥,(,∼L (At)
U♥,(,∼(‖−‖val)//Pred(W )

ηPred(W )//PredStonePred(W )
OO

U♥,(,∼(‖−‖val′ )

in DL (apply U♥,(,∼ to diagram (17) and use that U♥,(,∼(η]
Pred](W)

) =

ηPred(W )).
Hence also the diagram

U♥,(,∼L (At)
U♥,(,∼(‖−‖val) //

U♥,(,∼(‖−‖val′ )

++

U♥,(,∼(‖−‖val)

''

Pred(W )

ηPred(W )

��

PredStonePred(W )

Pred(εW )

��

(∗)

Pred(W ) oo

id (18)

commutes in DL. In fact, the area (∗) in the above diagram is just one of
the triangle equalities for Stone a Pred .

By assumption, εW (x) 
val′ α ∧ β = α. From the lower triangle in (18)
it follows that x 
val α ∧ β = α:

‖α ∧ β‖valx= [εW ,2](‖α ∧ β‖val′x) = ‖α ∧ β‖val′εW (x) = ‖α‖val′εW (x)

= [εW ,2](‖α‖val′x) = ‖α‖valx

2 implies 1. Denote by Σ the set of pairs (α, β) such that α |=W β, for all W in
C. Hence C ⊆ Mod(Σ) by definition.

Suppose W0 is in Mod(Σ), we want to prove that W0 is in C.
Define A to be the closure of {Pred ](W) | W ∈ C} under products, subalge-

bras along monotone maps reflecting order and images along split epis in Pos.
Therefore Pred ](W0) is in A and there is a diagram

Pred ](W0) A m //eoo
∏
i∈I Pred ](Wi)

in DL♥,(,∼, where A is in A, Wi are in C, for all i ∈ I, and m reflects orders,
and e is split epi in Pos.

Consider the image of the above diagram

Stone]Pred ](W0) Stone](A)
Stone](m)

//
Stone](e)
oo Stone](

∏
i∈I Pred ](Wi))
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under Stone] : DL♥,(,∼ −→ (PosT )op .
When reading the above diagram in PosT , i.e., when reversing the arrows,

we obtain a diagram

Stone]Pred ](W0)
Stone](e)

// Stone](A) Stone](Pred ](
∐
i∈I Wi))

Stone](m)
oo

Then:

(i) Stone](Pred ](
∐
i∈I Wi)) is in C, since it is a prime extension of a coproduct

of elements of C.

(ii) Stone](A) is in C.
(a) By Lemma 7.4, Stone](m) is a surjective coalgebra homomorphism.

Indeed, the underlying map of Stone](m) is Stone(m) by (16).
(b) Since Stone](Pred ](

∐
i∈I Wi)) is in C, so is Stone](A). Use properties

of C.

(iii) Stone]Pred ](W0) is in C.
This will follow after we prove that Stone](e) reflects orders. Its under-

lying map is restriction along e from the poset of prime filters on A to the
poset of prime filters on Pred(W0). Recall that e is a split epimorphism,
denote by z the monotone map satisfying e · z = id . Consider two prime
filters u, u′ on A such that u·e ≤ u′ ·e holds. Then u = u·e·z ≤ u′ ·e·z = u′

holds.

Since we proved that Stone]Pred ](W0) is in C, we know that W0 is in C, since
C reflects ultrafilter extensions. 2

Example 7.7 The distributive and associative full Lambek calculus (denoted
by dFL) is given by the grammar (1), where ⊗ is required to be associative,
to have e as a unit and to satisfy the residuation laws ϕ⊗ψ ≤ χ iff ψ ≤ ϕ→ χ
iff ϕ ≤ χ ← ψ. Thus, the subvariety of DL⊗,e,→,← that we want to deal with
is exactly that of distributive residuated lattices.

The frames that are definable by the above (in)equations are precisely the
quintuples (W , P⊗, P→, P←, Pe) that satisfy the following conditions (for details
see [32, Chapter 11]):

(i) P⊗ is associative:
∨
z(P⊗(x, y; z) ∧ P⊗(z, u; v)) =

∨
w(P⊗(y, u;w) ∧

P⊗(x,w; v))

(ii) and has Pe as a (left and right) unit:
W (x, y) =

∨
z(Pe(z)→ P⊗(z, x; y)) =

∨
z(Pe(z)→ P⊗(x, z; y))

(iii) The equalities P⊗(x0, x1; y) = P→(x1;x0, y) = P←(x0;x1, y) hold.

Class C of frames satisfying the above conditions is easily seen to verify the
conditions in Theorem 7.6.

Example 7.8 Many interesting examples can be found among the extensions
of (associative) dFL with, e.g., the structural rules, or when expanding the
language by negation. Instances of the first possibility are: dFL extended with
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any combination of: exchange, weakening, contraction. See [32] for details on
what follows.

(i) The exchange rule corresponds to the commutativity of P⊗, i.e. to the
equality P⊗(x, y; z) = P⊗(y, x; z).

(ii) Weakening corresponds to: P⊗(x0, x1; y) implies x0 ≤ y and x1 ≤ y.

(iii) Contraction corresponds to the equality P⊗(x, x;x) = 1.

This includes, for example, intuitionistic logic, obtained as an extension of dFL
with all the three structural rules. 4 Instances of the second possibility include,
e.g., the relevance logic R, see [12] or [32]. Here the language ⊗, →, ←, e is
extended by a negation connective ∼.

The frames (W , P⊗, P→, P←, Pe, P∼) for the relevance logic R are the frames
for dFL satisfying, in addition, the contraction equality together with the
following three axioms ([32]):

(a) P∼(x; y) = P∼(y;x),

(b)
∨
y P⊗(x0, x1; y) ∧ P∼(y;u) ≤

∨
s P⊗(u, x0; s) ∧ P∼(x1; s),

(c)
∨
y(P∼(x; y) ∧

∧
z(P∼(y; z)⇒ W (z, x))) = 1.

The class C of frames satisfying these axioms is easily seen to verify the con-
ditions of Theorem 7.6. It is modally definable by corresponding axioms of
R.

8 Conclusions and further work

We have shown that frames for various kinds of distributive substructural logic
can be perceived naturally as modally definable classes of poset coalgebras. It
seems natural to construct first frames for logics that have minimal necessary
restrictions on the modalities — these frames are exactly the coalgebras for
a certain endofunctor of the category of posets. Such an approach yields the
notion of frame morphisms for free: the morphisms of frames are exactly the
coalgebra morphisms. Any (in)equational requirement on the modalities results
in singling out a subclass of frames that is modally definable in the sense of
Goldblatt-Thomason Theorem. Hence any subvariety of modal algebras (=
distributive lattices with operators) defines a Goldblatt-Thomason subclass of
frames, and vice versa, which has been illustrated by well-known examples of
frames for distributive full Lambek calculus, relevance logic, etc.

The limitation of our result lies certainly in the presence of the distributive
law for the propositional part of the logic since it leaves out nondistributive
substructural logics. We believe that this can be easily overcome by passing to
general lattices and using a two-sorted representation of lattices in the sense
of [24]. The underlying logical connection will be two-sorted, hence the “state
space” will consist of two posets connected with a monotone relation. This

4 A usual frame (X,≤) for intuitionistic logic can be perceived as a relational frame defining
P (x, y; z) = x ≤ z ∧ y ≤ z. Then coalgebraic morphisms correspond precisely to bounded
morphisms.
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is in compliance with various notions of generalized frames, as studied, e.g.,
in [16] and [14]. Furthermore, this approach will also allow to pass naturally
from posets to categories enriched in a general commutative quantale. In the
latter framework, we believe to be able to study, e.g., many-valued modal and
substructural logics in a rather conceptual way.

A natural further direction would be to prove a more general Goldblatt-
Thomason theorem for coalgebras over posets or categories enriched in a general
commutative quantale, obtaining an analogue of [26, Theorem 3.15]. Another
line of research explores the fact that the coalgebraic functor we obtained is
easily seen to satisfy the Beck-Chevalley Condition in the sense of [2]. Hence
it will be possible to develop the theory of cover modalities over coalgebras for
distributive substructural logics.
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