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1 Simple Closure, Scepticism and Compe-

tent Deduction

The most prominent arguments for scepticism in modern epistemology
employ closure principles of some kind. To begin my discussion of such
arguments, consider Simple Knowledge Closure (SKC):

(SKC) (Kxt[p] ∧�(p → q)) → Kxt[q].1

Assuming its truth for the time being, the sceptic can use (SKC) to
reason from the two assumptions that, firstly, we don’t know ¬sh and
that, secondly, op entails ¬sh to the conclusion that we don’t know op,
where ‘op’ and ‘sh’ are shorthand for ‘ordinary proposition’ and ‘sceptical
hypothesis’ respectively.

(SKC), however, fails for familiar reasons: since knowledge entails
belief (KB), we can derive the falsity (F) from (SKC) by hypothetical
syllogism, and thus reduce (SKC) to absurdity:

(KB) Kxt[p] → Bxt[p].

(F) (Kxt[p] ∧�(p → q)) → Bxt[q].

(F) can be counterexampled easily: even though I know that the Peano
Postulates are true I don’t believe every theorem of arithmetic. (F) fails
because we don’t believe every entailment of the propositions we know.2

The sceptic might try to fix her argument by inserting an additional
K-operator into the second conjunct of the antecedent of (SKC). Here is
Known Entailment Closure (KEC):

(KEC) (Kxt[p] ∧Kxt[(p → q)]) → Kxt[q].3

1The box (‘�’) denotes conceptual necessity and ensures the epistemic accessibility
of the entailment.

2(Stalnaker 1996) and (Lewis 1986) would object here, since they individuate
propositions in terms of possible worlds. I shall not discuss their views in this paper.

3The box is irrelevant here. The epistemic accessibility of the material conditional
is established by the fact that Kxt[(p → q)].
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However, knowledge isn’t closed under known entailment either; (KEC)
fails for reasons related to the reasons for (SKC)’s failure: by hypothetical
syllogism we can derive (F’) from (KEC) and (KB):

(F’) (Kxt[p] ∧Kxt[(p → q)]) → Bxt[q].

Here is a counterexample to (F’): Norman knows both the Peano Postu-
lates and that the Peano Postulates entail p, a fairly complex arithmetical
proposition. However, Norman doesn’t believe p itself, since he fails to
draw the conclusions from the propositions he knows. In short, Norman
has not come to believe p by deducing it from the Peano Postulates.

Even though (SKC) and (KEC) fail, it is hardly questionable that
we can extend our knowledge by deductive reasoning. In the literature,
principles of the following kind are usually taken to capture this intuition
without becoming subject to the above objections:

(CDC) (Kxt[p] ∧ x believes q by competently deducing it from p) →
Kxt [q].4

(CDC)—Competent Deduction Closure—ensures that x puts her pieces
of knowledge together in the right way: she comes to believe q by compe-
tently deducing it from p. Assuming for the time being that this principle
accounts for the acquisition of knowledge by deductive reasoning, we cer-
tainly don’t want to do epistemology without it.5

However, even though valid, note that (CDC) is worthless for the
sceptic, who intends to infer the negation of the first conjunct of the
antecedent of (CDC). To this end, besides the negation of (CDC)’s con-
sequent, the sceptic has to assume the second conjunct of (CDC)’s an-
tecedent, which is impossible: in everyday life we don’t competently de-
duce the negations of sceptical hypotheses from the ordinary propositions
we believe. For instance, we don’t normally reason that the proposition
that we have had scrambled eggs for breakfast entails that we aren’t
brains in vats. We cannot even be said to tacitly perform cognitive op-
erations similar to competent deductions of this sort. In everyday life we
presuppose rather than reason that we aren’t brains in vats.

The closure sceptic faces a difficult task: she has to find a closure
principle satisfying two constraints working against each other. Firstly,
to ensure the principle’s exploitability in sceptical arguments, it must im-
pose weaker restrictions on the subject’s cognition than (CDC). I shall
call this constraint the Exploitability Constraint. Secondly, to ensure
the principle’s validity, it must impose stronger restrictions on the sub-
ject’s cognition than (SKC) and (KEC). I shall call this constraint the
V alidity Constraint.

4Cp. (Williamson, 2000), 117.
5(Dretske 1970) and (Nozick 1981) prominently want to. I shall later suggest an

account similar to theirs.
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The goal of the remainder of this paper is to argue towards the con-
clusion that there is no principle conforming to both constraints.

2 Some Candidates

(Brueckner 1994) and (Cohen 1998) suggest the following qualification
of (SKC), where ‘W ’ refers to warrant, the evidence-related property,
“whatever precisely it is, which makes the difference between knowledge
and mere true belief.”6 Here is Simple Closure for Warrant (SWC):

(SWC) (WBxt[p] ∧�(p → q)) → WBxt[q].7

Apparently, (SWC) avoids the problems of (SKC) and (KEC), since the
proposition that WBxt[q]—the consequent of (SWC)—doesn’t seem to
entail Bxt[q]: (SWC) merely claims that x is warranted in believing q,
independently of whether she in fact comes to believe q or not.

However, (SWC) is too strong as it stands: it violates the validity con-
straint, for it leads to the counterintuitive result that someone, who is
warranted in believing the Peano Postulates, is also warranted in believ-
ing any theorem of arithmetic. Norman is a counterexample to (SWC):
even though he is warranted in believing the Peano Postulates he isn’t
warranted in believing Fermat’s Last Theorem.

Can we fix (SWC) by inserting a further W -operator into its second
conjunct? Here is Warranted Entailment Closure (WEC):

(WEC) (WBxt[p] ∧WBxt[(p → q)]) → WBxt[p].

Now, even though (WEC) seems exploitable and valid, there are theorists
denying that there is an evidence-related property of warrant.8 In order
to convince these theorists, the sceptic might choose to find another route
to the sceptical conclusion.

To see how this is possible, reconsider the above objection to (KEC).
The problem with (KEC) was that together with (KB) it entails the
falsity (F’). Note, however, that (F’) is true as long as the domain of the
q-quantifier is restricted to sentences expressing the negations of sceptical
hypotheses: in everyday life we in fact believe, mostly implicitly, that we
aren’t in sceptical scenarios. To yield a valid closure principle we might
thus simply insert the assumption that Bxt [q] as a further condition into

6(Merricks 1995), 841; See also (Plantinga 1993), 3.
7Note that Brueckner and Cohen use the notion of justification in their sceptical

arguments, assuming that justification is a necessary condition for knowledge (See
Cohen (1998), 145 and 148fn and Brueckner (1994), 831). So as to fit Cohen’s and
Brueckner’s formulations of the discussed closure principles, my objections are to be
reformulated in terms of justification.

8See Williamson (2000).
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the antecedent of (KEC). Here is Known Entailment + Belief Closure
(KE+BC):

(KE+BC) ((Kxt[p] ∧Kxt[(p → q)]) ∧Bxt[q]) → Kxt[q].

Is (KE+BC) exploitable? It surely is: the sceptic can use it to reason
from the three assumptions that 1. we don’t know ¬sh and that 2. we
know that op entails ¬sh and that 3. we believe ¬sh to the conclusion
that we don’t know op.

3 Warrant and the Genesis of True Belief

In order to see where (WEC) and (KE+BC) go wrong, note firstly that
they are—unlike (CDC)—silent on x’s belief’s genesis: (CDC) rules out
that x came to believe q for the wrong reasons; (WEC) and (KE+BC)
don’t.

Let me firstly give a counterexample to (KE+BC). Imagine I prove
some complex mathematical proposition p and thereby come to know p.
Half an hour later, after my coffee break, I prove that p entails q, which is
a mathematical proposition even more complex than p. Since I don’t have
in mind anymore what I have proven before the coffee break, I don’t put
my two pieces of knowledge together in the right way and therefore don’t
deduce q. The fact that I don’t see the relevant connections between my
beliefs is due to my limited memory and alertness; if you confronted me
with either p or the proposition that p entails q on their own, I would be
able to reconstruct my proofs. However, after having proven q I make
a tea break. During my break I come to believe q by reading in the
tealeaves. Obviously, I satisfy the three conditions in the antecedent of
(KE+BC), but I don’t know q.

The reason why I don’t know q is because my belief q is accidentally
true only. However, according to a widely shared intuition—I shall call
it the Gettier Intuition—knowledge is incompatible with epistemic luck,
i.e. no belief that is knowledge is accidentally true.9 As a consequence,
(KE+BC) is to be rejected because it doesn’t rule out cases of epistemic
luck.

With regard to (WEC) the situation isn’t that straightforward. To
see where (WEC) goes wrong, we firstly have to note that warrant en-
tails belief. Here is the argument: According to the Gettier Intuition no
belief that is accidentally true qualifies as knowledge. However, if war-
rant didn’t entail belief, then there could be situations in which we are
warranted in believing p and believe p for entirely arbitrary reasons, i.e.
for reasons that aren’t relevantly connected to our warrant. We could

9Cp. (Unger 1968).
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thus be warranted and have a belief that is accidentally true. By the
definition of warrant, however, we would have knowledge in such cases,
but this is incompatible with the Gettier Intuition. We thus have to
reject the assumption that we can be warranted in believing something
without actually believing it.10

What are the consequences of these considerations for (WEC)? Ob-
viously, if warrant entails belief, then (WEC) will be open to objections
similar to the above-mentioned objections to (KEC).

Let us return to (CDC). Does coming to believe by competent deduc-
tion suffice to rule out all cases of epistemic luck? Consider the following
case: I come to believe p, a complex mathematical proposition, by com-
petent deduction from a q I know. During my tea break I read in the
tealeaves and thereby become even more confident that p: I take my
tealeaves to provide strong additional evidence for p. After my experi-
ences with the tealeaves I turn to the coffee ground, which surprisingly
teaches me that my earlier deduction of p from q was unreliable. My
belief p is now solely based on my reading in tealeaves: even though my
belief was acquired by competent deduction, it isn’t based on competent
deduction anymore. Now, since I believe p for the wrong reasons, viz. for
reasons that are only arbitrarily connected to p’s truth, I clearly cease to
know p.

Thus, if the phrase ‘believes by competent deduction’ in (CDC) is to
be interpreted as qualifying the causal history of the relevant belief, then
we have found a counter-example to (CDC). If, however, it is meant to
qualify what causally sustains the relevant belief, then (CDC) is accept-
able. How are we to amend (CDC) in order to dispose of this ambiguity?
Since a belief can be adopted for one reason but later maintained for
another, we are looking for constraints on the factors causally sustaining
x’s belief q rather than for constraints on its genesis. Here is Proper
Basing Closure (PBC):

(PBC) (Kxt[p] ∧ x believes q on the basis of her competently deducing
it from p) → Kxt[q].

Is (PBC) exploitable? It clearly has the same problem as (CDC): in
everyday life we don’t base our belief that ¬sh on competent deductions
from op.

10The argument here assumes that warrant isn’t a conjunctive property, one con-
junct being the conditional that if x believes p, her belief isn’t accidentally true.
Note that if the notion of accidental truth at issue here cannot be cashed out in non-
epistemic terms, then warrant is ultimately to be defined in terms of knowledge, and
any definition of knowledge will be circular.
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4 Modal Closure

Even though none of the above principles is both valid and exploitable,
there are modal versions of closure that seem to satisfy both constraints.
After all it looks as if x can come to know a q that is conceptually entailed
by a p she knows, viz. by basing her belief q on a competent deduction
of q from p. Here is Modal Closure (MC):

(MC) (Kxt[p] ∧Kxt[(p → q)]) → �(Kxt[q]).11

Clearly, this principle is exploitable: the sceptic simply has to establish
that it is impossible to know—and thus impossible to come to know—the
negations of sceptical hypotheses, which has been part of her argument
anyway.

However, something seems wrong with (MC). To see what, consider
the following pairs of propositions:

1. OP : The animals in the pen are zebras.
SH: The animals are cleverly painted mules.12

2. OP : I will go to Spain for holidays next summer.
SH: I will die in a horrible car crash meanwhile.

3. OP : I’ve had scrambled eggs for breakfast.
SH: I’m a brain in a vat.

According to what I shall call ‘Dretske’s Intuition’, these pairs of propo-
sitions constitute counterexamples to (MC): we can’t come to know the
negations of the above sh-propositions by competently deducing them
from their corresponding op-propositions.13 Are we to reject Dretske’s
Intuition or are we to reject (MC)? Even though the common reaction is
to reject our intuitions, I take it that we should reject (MC) and replace
it with a more intuitive principle.

To see why this is more attractive, we need to take a closer look at
the above counterexamples. What do the above cases have in common?
Firstly, note that those situations in which the above pairs of propo-
sitions constitute counterexamples to (MC) are situations in which all
sh-world are—to borrow Lewis’s terminology—uneliminated. What pre-
cisely does it mean for a world to be uneliminated? As Lewis puts it,
a world W is uneliminated “iff the subject’s perceptual experience and

11I take the expression ‘�(Kxt[q])’ to mean that x can come to know q at t. The K-
operator in the second conjunct of the antecedent ensures the impossibility of knowing
undecidable propositions, such as the Continuum Hypothesis. Thanks to Alexander
Bird here.

12See (Dretske 1970) for this example.
13I should mention here that some Mooreans don’t seem to have this intuition.
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memory in W exactly match his perceptual experience and memory in
actuality.”14 Now, since our perceptual experiences and memory in sh-
worlds exactly match our experiences and memory in the actual world,
sh-worlds are uneliminated for us. Our epistemic stance towards the
above ¬sh-propositions in counterexample-situations to (MC) can thus
be depicted as in Figure 1, where ‘SH’ denotes the set of all sh-worlds
and ‘E’ the set of all worlds eliminated by our experience and memory:

Figure 1: Epistemic situation towards ¬sh

In the standard situation, none of the counterpossibilities to ¬sh, i.e. none
of the sh-worlds, is eliminated by our sensory experiences or memory.
Thus, Dretske’s Intuition has it that (MC) fails in precisely those situ-
ations, in which all counterpossibilities to the entailed proposition q are
uneliminated. In set-theoretic parlance, (MC) fails if ¬Q, i.e. the set of
all ¬q-worlds, and E are disjoint sets, i.e. if their intersection is equivalent
to the empty set: ¬Q ∩ E ≡ ∅.

The solution to our problem is now easily obtained. Here is Revised
Modal Closure (RMC):

(RMC) ((Kxt[p] ∧Kxt[(p → q)]) ∧ ¬Q ∩ E 6≡ ∅) → �(Kxt[q]).

According to (RMC), x can come to know q at t, if, firstly, x knows p
at t, if, secondly, p entails q and, if, thirdly, it is not the case that all
counterpossibilities to q are uneliminated by x’s sensory experiences and
her memory.

The advantages of this principle are obvious: it allows us to extend
our knowledge by deduction in the good cases, and fails to do so in the
bad ones, which in turn entails the failure of sceptical arguments. Let
me illustrate how it allows for the extension of knowledge in a good case:
I know that the animal in the tree is a robin. It’s being a robin entails
that it’s not a jay. If the animal were a jay, I would have different sensory
experiences: robins have a reddish breast, jays don’t. Since I have seen
that the bird in the tree has a reddish breast, my sensory experiences
eliminate nearby worlds in which the animal is a jay. It follows from
(RMC) that I am in a position to know that the animal is not a jay. To
be precise, I can come to know that the animal is not a jay by basing my

14Lewis 1996, 224.
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belief that it’s not a jay on my competent deduction of that proposition
from the proposition that it’s a robin.

(RMC) can also account for the extension of knowledge in mathemat-
ics and logic: since mathematical and logical truths are necessary, there
are no counterpossibilities to such truths, and so there are no counter-
possibilities, which our experiences and memory could fail to eliminate.
Thus, in the realm of mathematics and logic, all competent deductions
from knowledge yield knowledge. If I am right, we have thus found a
way to reconcile Dretske’s anti-closure intuitions with the intuition that
we can extend knowledge by deduction, while simultaneously blocking
arguments for scepticism.

Let me sum up. In the first two parts of the paper I have discussed
several closure principles and argued that neither of them conforms to
both the exploitability constraint and the validity constraint, part of my
argument resting on my view that warrant entails belief. In the third
part I then discussed a modal principle, (MC), which nicely illustrated
a general problem of the idea of knowledge-closure: all closure principles
are open to objections based on what I called Dretske’s Intuition. In
reply to this challenge I have suggested to restrict (MC) along the lines
of (RMC) rather than dropping the idea of closure totally or—as the
Mooreans do—biting the bullet and rejecting Dretske’s Intuition. The
view I want to suggest is accordingly a middle way between the unqual-
ified acceptance of closure and its unqualified rejection.15
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