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Birkhoff variety theorem and fuzzy logic

Received: 17 September 2002 / Revised Version: 14 November 2002 /
Published online: 2003 – © Springer-Verlag 2003

Abstract. An algebra with fuzzy equality is a set with operations on it that is equipped with
similarity≈, i.e. a fuzzy equivalence relation, such that each operation f is compatible with
≈. Described verbally, compatibility says that each f yields similar results if applied to
pairwise similar arguments. On the one hand, algebras with fuzzy equalities are structures
for the equational fragment of fuzzy logic. On the other hand, they are the formal coun-
terpart to the intuitive idea of having functions that are not allowed to map similar objects
to dissimilar ones. In this paper, we present a generalization of the well-known Birkhoff’s
variety theorem: a class of algebras with fuzzy equality is the class of all models of a fuzzy
set of identities iff it is closed under suitably defined morphisms, substructures, and direct
products.

1. Introduction

Functions operating on a set in such a way that close (similar) elements are mapped
to close elements have traditionally been the subject of study of calculus and func-
tional analysis, the concept of closeness being almost exclusively formalized using
the notion of a metric. On the other hand, the very idea calls for a logical treatment
since, formulated verbally, it reads “if arguments of a function are pairwise similar
then the results are similar as well”. From a logical point of view, the situation is
thus described using a logical formula that is traditionally being called the com-
patibility axiom (or congruence axiom). Therefore, congruence relations which are
the relations satisfying the compatibility axioms provide us with a logico-algebraic
means for handling the above problem. The appropriateness of such an approach
is, however, seriously questionable. Namely, congruences are bivalent relations in
that every two elements either are congruent or are not. Contrary to that, closeness
(or similarity) is a graded notion – any two elements are close to some degree. With
the emergence of fuzzy logic, the ability of logic to treat the problem of functions
preserving in a natural way a given similarity on the universe set changed. Namely,
instead of 0 and 1 only, fuzzy logic allows one to have a whole scale of truth
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degrees and, consequently, one can model graded similarity in fuzzy logic. The
above mentioned compatibility axiom, compared to its crisp (two-valued) interpre-
tation, becomes much less trivial in fuzzy logic since its meaning depends on the
choice of a conjunction operation (usually a t-norm) and has a numerical (if truth
degrees are numbers) significance.

In this paper we study algebras equipped with a fuzzy similarity relation. The
paper is a continuation of [1] where we proposed a calculus for obtaining logical
consequences of a given fuzzy set of identities generalizing Birkhoff’s equational
logic. We give an algebraic description of classes of algebras with fuzzy equalities
axiomatized by a fuzzy set of identities generalizing thus the well-known Birkhoff’s
variety theorem [3].

Section 2 presents relevant notions and the main result. Section 3 contains the
proof and remarks. In addition to the fact that the paper contributes to equation-
al fragment of fuzzy logic, it is also related to some studies of so-called metric
algebras [11, 12] (we comment on this issue in Section 3).

2. The result

First, we briefly review basic notions of fuzzy logic needed in the sequel. More
information can be obtained in [6, 7, 9], and in [1].

We pick complete residuated lattices as the structures of truth values. Complete
residuated lattices, being introduced in the 1930s in ring theory, were introduced
into the context of fuzzy logic by Goguen [4, 5]. Fundamental contribution to for-
mal fuzzy logic using residuated lattices as the structures of truth values is due
to Pavelka [10]. Later on, various logical logical calculi were investigated using
residuated lattices or particular types of residuated lattices. A thorough information
about the role of residuated lattices in fuzzy logic can be obtained from monographs
[6, 7, 9].

In the following, L denotes an arbitrary complete residuated lattice. Recall that
a (complete) residuated lattice is an algebra L = 〈L,∧,∨,⊗,→, 0, 1〉 such that
〈L,∧,∨, 0, 1〉 is a (complete) lattice with the least element 0 and the greatest el-
ement 1, 〈L,⊗, 1〉 is a commutative monoid, and ⊗,→ form an adjoint pair, i.e.
a⊗ b ≤ c iff a ≤ b → c is valid for any a, b, c ∈ L. All properties of complete
residuated lattices used in the sequel are well-known and can be found in any of
the above mentioned monographs. Note that particular types of residuated lattices
(distinguishable by identities) include Boolean algebras, Heyting algebras, alge-
bras of Girard’s linear logic, MV-algebras, Gödel algebras, product algebras, and
more generally, BL-algebras (see [7, 8]). An L-set (or fuzzy set with truth degrees
in L) in a universe set U is any mapping A : U → L, A(u) ∈ L being interpreted
as the truth value of “u belongs to A”. For A1, A2 : U → L we put A1 ⊆ A2 iff
A1(u) ≤ A2(u) for each u ∈ U . If U = U1×· · ·×Un, A is called an n-ary L-rela-
tion between U1, . . . , Un. Recall that L-equivalence (L-similarity) on a set U is a
binary L-relation E on U satisfying E(u, u) = 1 (reflexivity), E(u, v) = E(v, u)

(symmetry), and E(u, v)⊗E(v,w) ≤ E(u,w) (transitivity). An L-equivalence
on U for which E(u, v) = 1 implies u = v will be called an L-equality. A function
f : Un → U is said to be compatible w.r.t. a binary L-relation R on U if for any
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u1, v1, . . . , un, vn ∈ X we have

R(u1, v1)⊗ · · ·⊗R(un, vn) ≤ R(f (u1, . . . , un), f (v1, . . . , vn)).

Note that compatibility says that the corresponding logical formula, i.e.
Rsyn(x1, y1)◦ · · · ◦Rsyn (xn, yn) iRsyn(f syn(x1, . . . , xn), f

syn(y1, . . . , yn)) is
true (in degree 1) in the structure given by U , R, and f .

By a type we mean a collection F of function symbols, each with its arity. An
algebra of type F with L-equality (or simply an L-algebra of type F ) is a triple
M = 〈M,≈M, FM〉 such that 〈M,FM〉 is an algebra of type F (i.e. FM = {f M :
Mar(f ) → M | f ∈ F } where ar(f ) is the arity of f ), ≈M is an L-equality on M ,
and f M ∈ FM is compatible w.r.t. ≈M. Clearly, if L is the two-element Boolean
algebra, L-algebras are exactly (universal) algebras generalizing thus the ordinary
case. The set T (X) of terms over a countable set X of variables (defined in the
usual way) may be naturally made an L-algebra T(X) = 〈T (X),≈T(X), FT(X)〉:
The support of T(X) is T (X); functions are defined by

f T(X)(t1, . . . , tn) = f (t1, . . . , tn)

for any t1, . . . , tn ∈ T (X); L-equality ≈T(X) is defined by

(t1 ≈T(X) t2) =
{

1 for t1 = t2,

0 for t1 �= t2.

Note that T(X) exists whenever X is nonempty or there is some nullary f ∈ F ;
in the following we always assume that T(X) exists. The following is a simple
example of an L-algebra [1]:

Example 1. Let U be a set equipped with an L-equality≈U . Let M = S(U) be the
set of all permutations ofU (i.e. bijective mappings onU ) which are compatible with
≈U . The triple M = 〈M,≈M, ◦M〉 where π ≈M π ′ = ∧

u∈U(π(u) ≈U π ′(u))
and ◦M denotes the composition of permutations, is an L-algebra.

Let≈ denote the relation symbol for equality which is interpreted by≈M. For-
mulas of the type p ≈ q are called identities. Let M be an L-algebra, v : X → M

be a valuation. The interpretation of terms is defined as usual (we denote ‖p‖M,v

the element of M assigned to the term p by the interpretation given by M and v).
The degree ‖p ≈ q‖M,v to which p ≈ q is true in M under v is defined by

‖p ≈ q‖M,v = ‖p‖M,v ≈M ‖q‖M,v.

The degree ‖p ≈ q‖M to which p ≈ q is true in M is defined by

‖p ≈ q‖M =
∧

v:X→M

‖p ≈ q‖M,v,

and more generally, if K is a class of L-algebras of type F , we put

‖p ≈ q‖K =
∧

M∈K
‖p ≈ q‖M.
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Given an L-set � of identities and an L-algebra M, we say that M is a model of �
if �(p ≈ q) ≤ ‖p ≈ q‖M for each identity p ≈ q. For an L-set � of identities
we denote by Mod(�) the class of all models of �. A class K of L-algebras of the
same type is called an L-equational (or simply equational) class if K = Mod(�) for
some L-set �. In what follows we attempt to provide an algebraic characterization
of equational classes.

We need to recall further notions for L-algebras (see also [1]): A morphism of
an L-algebra M1 to an L-algebra M2 is a mapping h : M1 → M2 such that (m ≈M1

m′) ≤ (h(m) ≈M2 h(m′)) and h(f M1(m1, . . . , mn)) = f M2(h(m1), . . . , h(mn))

for each n-ary f ∈ F . If h is, moreover, a bijection and (m ≈M1 m′) = (h(m) ≈M2

h(m′)), we call h an isomorphism. By a congruence on an L-algebra M we under-
stand an L-equivalence relation θ on M satisfying (m1 ≈M m2) ≤ θ(m1,m2) for
m1,m2 ∈ M , and θ(m1,m

′
1)⊗ · · ·⊗ θ(mn,m

′
n) ≤ θ(f M(m1, . . . , mn),

f M(m′1, . . . , m
′
n)) for each n-ary f ∈ F and mi,m

′
i ∈ M . Note that condi-

tion (m1 ≈M m2) ≤ θ(m1,m2) is equivalent to θ(m1,m2)⊗(m1 ≈M m′1)⊗
(m2 ≈M m′2) ≤ θ(m′1,m

′
2). Indeed, from (m1 ≈M m2) ≤ θ(m1,m2) we get

θ(m1,m2)⊗(m1 ≈M m′1)⊗(m2 ≈M m′2) ≤ θ(m1,m2)⊗ θ(m1,m
′
1)⊗

θ(m2,m
′
2) ≤ θ(m′1,m

′
2) and, conversely, we get (m1 ≈M m2) = θ(m1,m1)

⊗ (m1 ≈M m2)⊗(m2 ≈M m2) ≤ θ(m1,m2). The set of all congruences on
M will be denoted by Con(M). A factor structure of an L-algebra M by a con-
gruence θ on M will be understood to be an L-structure M/θ defined as follows:
M/θ is M/1θ (with elements [m]1θ = {m′ | θ(m,m′) = 1} denoted also simply by
[m]θ or even [m]); ([m]θ ≈M/θ [m′]θ ) = θ(m,m′); f M/θ ([m1]θ , . . . , [m2]θ ) =
[f M(m1, . . . , mn)]θ . One can easily verify that the thus-defined notions are correct,
cf. [1].

Given L-algebras M and N of type F , we say that M is a subalgebra of N if
M ⊆ N , f M is a restriction of f N to M for each f ∈ F , and≈M is a restriction of
≈N to M .

A direct product (over an index set I ) of L-algebras Mi of typeF is an L-algebra
×i∈IMi of type F with its universe being the direct product of Mi’s, the operations
on ×i∈IMi being defined as usual (componentwise), and ≈×iMi being defined by

(m ≈×iMi n) =
∧
i∈I

(m(i) ≈Mi n(i))

for m, n ∈ ×i∈IMi .
For a class K of L-algebras of the same type we define four operators: H, I,S,P.

H(K) is the class of all homomorphic images of L-algebras from K, i.e.

H(K) = {h(M) |M ∈ K, h a morphism};
I(K) is the class of all L-algebras isomorphic to some M ∈ K, i.e.

I(K) = {N | N is isomorphic to some M ∈ K};
S(K) is the class of all substructures of L-algebras from K, i.e.

S(K) = {N | N is a substructure of some M ∈ K};
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P(K) is the class of all direct products of L-algebras from K, i.e.

P(K) = {×i∈IMi | I an index set, Mi ∈ K}.
Here, a homomorphic image of M is an L-algebra N = h(M) for which there is a
morphism h : M → N such that h is a surjective mapping. The operators may be
composed, i.e. we may have HS(K), HHPHS(K), etc.

Now, a class K of L-algebras of the same type is called a variety if it is closed
under H, S, and P (i.e. if H(K) ⊆ K, S(K) ⊆ K, and P(K) ⊆ K). The following is
the main result of this paper.

Theorem 1 (variety theorem). A class K of L-algebras of a given type is equa-
tional iff it is a variety.

From the above it is immediate that Theorem 1 generalizes the well-known
Birkhoff theorem [3] to fuzzy setting.

3. Proof, remarks

Let K be a class of L-algebras of the same type, let M be an L-algebra generated
by M ′ ⊆ M (i.e. M is the least subalgebra of M containing M ′ ⊆ M). If for
each N ∈ K and for each mapping g : M ′ → N preserving ≈ (i.e. such that
(m ≈M m′) ≤ (g(m) ≈N g(m′))) there exists a morphism h : M → N extending
g (i.e. h(m) = g(m) for each m ∈ M ′), we say that M has a universal mapping
property for K over M ′; in this case M ′ is said to be a set of free generators of M
over K.

Lemma 2. If M has a universal mapping property for K over M ′ and N ∈ K then
for any g : M ′ → N there exists a unique morphism h : M → N extending g.

Proof. The proof follows from a standard argument: a morphism is uniquely
determined by its restriction to the set of generators. ��
Lemma 3. T(X) has a universal mapping property for any class K of L-algebras
of a given.

Proof. For any M ∈ K and any mapping g : X → M , define h : T (X) → M

inductively by h(x) = g(x) for x ∈ X; h(f (t1, . . . , tn)) = f M(h(t1), . . . , h(tn))

for f ∈ F and ti ∈ T (X). Trivially, h is a morphism. ��
Let K be a class of L-algebras of the same type, let X be a set of variables. Put

&K(X) = {φ ∈ Con(T(X)) | T(X)/φ ∈ IS(K)},
i.e. &K is the set of all congruences φ on T(X) such that the factor L-algebra
T(X)/φ is isomorphic to some substructure of some M ∈ K. Denote furthermore

θK(X) =
⋂

&K(X)
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the intersection of all congruences from&K(X). It is immediate to verify that θK(X)

is a congruence on T(X). We may thus form a factor L-algebra T(X)/θK(X). For
x ∈ X, denote by x the class [x]θK(X) and put X = {x | x ∈ X}. X is the set of
generators of T(X)/θK(X). For convenience, we denote T(X)/θK(X) by FK(X)

and call it the K-free L-algebra over X.
For a morphism h : M → N denote by θh an L-relation on M defined by

θh(m1,m2) = (h(m1) ≈N h(m2)). For a congruence θ on M denote by hθ a
mapping from M to M/θ sending m to [m]θ . It is routine to verify that θh is a
congruence on M and that hθ is a morphism of M to M/θ . Moreover, for congru-
ences θ and ψ on M such that θ ⊆ ψ we denote by ψ/θ an L-relation on M/θ

defined by ψ/θ([m1]θ , [m2]θ ) = ψ(m1,m2). An easy verification shows that ψ/θ

is a congruence on M/θ .

Lemma 4. FK(X) has a universal mapping property for K over X.

Proof. Let M ∈ K and take a mapping g : X → M . Let n : T(X)→ FK(X) de-
note the natural morphism (i.e. n(t) = [t]θK(X)). Letting nX denote the restriction
of n to X, universal mapping property of T(X) implies that there is a morphism
k : T(X)→ M extending nX ◦ g. As T(X)/θk is isomorphic to k(T(X)) which is
a substructure of M, definition of θK(X) implies that θK(X) ⊆ θk .

We claim that there is a morphism h : FK(X)→ M such that n◦h = k. Indeed,
leth = hθk/θK(X)◦i1◦i2 where i1 : [[t]θK(X)]θk/θK(X) �→ [t]θk and i2 : [t]θk �→ k(t)

are isomorphisms of FK(X)/(θk/θK(X)) to T(X)/θk and of T(X)/θk to k(T(X)),
respectively. Then n ◦ h(t) = h([t]θK(X)) = i2(i1(hθk/θK(X)([t]θK(X)))) = k(t).

Now, we have h(x) = h(n(x)) = n ◦ h(x) = k(x) = nX ◦ g = g(x) showing
that h extends g. ��
Lemma 5. If T(X) exists then for K �= ∅ we have FK(X) ∈ ISP(K). Thus, partic-
ularly, if K is a variety then FK(X) ∈ K.

Proof. First, we claim that FK(X) is isomorphic to a subalgebra of a direct product
of T(X)/φ for φ ∈ &K(X), i.e. we claim that FK(X) ∈ ISP({T(X)/φ | φ ∈ &K}).
Recall that FK(X) = T(X)/θK(X) where θK(X) =⋂

&K(X). We verify that the
mapping

i : FK(X)→×φ∈&K(X)T(X)/φ

sending [t]θK(X) to 〈. . . , [t]φ, . . .〉 is an isomorphism of FK(X) to the subalge-
bra i(FK(X)) of ×φ∈&K(X)T(X)/φ. We claim that i is an injection. Indeed, if
i([t1]θK(X)) = i([t2]θK(X)) then for each φ ∈ &K(X) we have [t1]φ = [t2]φ ,
i.e. φ(t1, t2) = 1 and thus also (θK(X))(t1, t2) = 1, i.e. [t1]θK(X) = [t2]θK(X).
Furthermore,

(〈. . . , [t1]φ, . . .〉 ≈×T(X)/φ 〈. . . , [t2]φ, . . .〉)
=

∧
φ∈&K(X)

φ(t1, t2) = (
∧

φ∈&K(X)

φ)(t1, t2) = θK(X)(t1, t2)

= ([t1]θK(X) ≈FK(X) [t2]θK(X)).

Obviously, i is a morphism. Therefore, i is an isomorphism of FK(X) to i(FK(X)).
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Now, by definition, for each φ ∈ &K(X), T(X)/φ belongs to IS(K). To sum
up, we have FK(X) ∈ ISPIS(K).

We need to show that ISPIS(K) ⊆ ISP(K). This is easy: we have ISPIS(K) =
ISPS(K) ⊆ ISSP(K) = ISP(K). ��
Lemma 6. For a class K of L-algebras and t1, t2 ∈ T (X) we have

‖t1 ≈ t2‖K =
∧

M∈K

∧
h:T(X)→M

(h(t1) ≈M h(t2)).

Proof. By definition we have

‖t1 ≈ t2‖K =
∧

M∈K

∧
v:X→M

(‖t1‖M,v ≈M ‖t2‖M,v).

The assertion follows from the fact that there is a bijective correspondence be-
tween morphisms h : T(X) → M and valuations v : X → M (this follows
from the universal mapping property of T(X), Lemma 3) and from the fact that for
h : T(X)→ M and v being the restriction of h to X we have h(ti) = ‖ti‖M,v . ��

For a class K of L-algebras and a set X of variables denote by IdX(K) the L-set
of identities over X of K, i.e. for t1, t2 ∈ T (X) we have

IdX(K)(t1, t2) = ‖t1 ≈ t2‖K.

Lemma 7. For a class K of L-algebras we have

IdX(K) = IdX(I(K)) = IdX(H(K)) = IdX(S(K)) = IdX(P(K)).

Proof. First we show IdX(K) = IdX(I(K)). Since K ⊆ I(K) we have IdX(K) ⊇
IdX(I(K)). Conversely, by Lemma 6, we have to show that for each t1, t2 ∈ T (X),
each isomorphism g : M → N where M ∈ K and each morphism h : T(X)→ N
we have

(IdX(K))(t1 ≈ t2) ≤ (h(t1) ≈N h(t2)).

However, this is true since morphisms h : T(X) → N are in a bijective corre-
spondence with morphisms of T(X) to M (h corresponds to h ◦ g−1), we have
(h(t1) ≈M h(t2)) = (h ◦ g−1(t1) ≈M h ◦ g−1(t2)), and one can apply Lemma 6.

Next, since K ⊆ O(K) we have IdX(K) ⊇ IdX(O(K)) for O = H, O = S,
or O = P (in fact, we have K ⊆ IP(K); however, since IdX(K) = IdX(I(K)), we
may afford to neglect this). We thus need to establish the converse inclusions, i.e.
to verify (IdX(K))(t1 ≈ t2) ≤ (IdX(O(K)))(t1 ≈ t2).

For H(K), we need to show that for each M ∈ K, morphism h : M → N,
N = h(M), and a valuation v : X → N we have (IdX(K))(t1 ≈ t2) ≤ (‖t1‖N,v ≈N

‖t2‖N,v). Due to surjectivity of h we may take w : X → M such that h(w(x)) =
v(x). Then we have

(IdX(K))(t1 ≈ t2) ≤ (‖t1‖M,w ≈M ‖t2‖M,w)

≤ (h(‖t1‖M,w) ≈N h(‖t2‖M,w)) = (‖t1‖M,w◦h ≈N ‖t2‖M,w◦h)
= (‖t1‖M,v ≈N ‖t2‖M,v).
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For S(K), we need to show that for each substructure N of some M ∈ K and
each valuation v : X → N we have (IdX(K))(t1 ≈ t2) ≤ (‖t1‖N,v ≈N ‖t2‖N,v).
However, this is true since (‖t1‖N,v ≈N ‖t2‖N,v) = (‖t1‖M,v ≈M ‖t2‖M,v).

For P(K), we need to show that for each N = ×i∈IMi (Mi ∈ K) and each
valuation v : X → N we have (IdX(K))(t1 ≈ t2) ≤ (‖t1‖N,v ≈N ‖t2‖N,v) which
is true iff for each i ∈ I we have (IdX(K))(t1 ≈ t2) ≤ (‖t1‖N,v(i) ≈Mi ‖t2‖N,v(i))

which is true. ��
Lemma 8. For a class K of L-algebras and t1, t2 ∈ T (X) we have

‖t1 ≈ t2‖K = ‖t1 ≈ t2‖FK(X) = ([t1]θK ≈FK(X) [t2]θK) = θK(t1, t2).

Proof. For convenience, denote FK(X) by F . We prove the assertion by showing
‖t1 ≈ t2‖K ≤ ‖t1 ≈ t2‖F ≤ ([t1]θK ≈F [t2]θK) ≤ θK(t1, t2) ≤ ‖t1 ≈ t2‖K.
‖t1 ≈ t2‖K ≤ ‖t1 ≈ t2‖F follows from F ∈ ISP(K) (Lemma 5) and Lemma 7.
‖t1 ≈ t2‖F ≤ ([t1]θK ≈F [t2]θK) is true since for v′ : X → F sending x to

[x]θK we have

‖t1 ≈ t2‖F =
∧

v:X→F
(‖t1‖F ,v ≈F ‖t2‖F ,v)

≤ (‖t1‖F ,v′ ≈F ‖t2‖F ,v′) = ([t1]θK ≈F [t2]θK).

([t1]θK≈F [t2]θK)≤θK(t1, t2) holds true by definition since F=T(X)/θK(X).
θK(t1, t2) ≤ ‖t1 ≈ t2‖K is true iff for each M ∈ K and each valuation v : X →

M we have θK(t1, t2) ≤ (‖t1‖M,v ≈M ‖t2‖M,v). However, due to the universal
mapping property of T(X), v can be extended to a morphism h : T(X) → M for
which we have θh(t1, t2) = (‖t1‖M,v ≈M ‖t2‖M,v). As T(X)/θh ∈ IS(K), defi-
nition of θK(X) gives θK(X) ⊆ θh. The required inequality now readily follows.

��
Lemma 9. For an infinite set Y of variables we have IdX(K) = IdX(FK(Y )).

Proof. Pick Z ⊇ X such that |Z| = |Y |. Then, obviously, FK(Y ) is isomorphic
to FK(Z). Furthermore, for any identity p ≈ q where p, q ∈ T (X) we have
p, q ∈ T (Z), whence by Lemma 8, [IdX(K)](p ≈ q) = ‖p ≈ q‖K = ‖p ≈
q‖FK(Z) = ‖p ≈ q‖FK(Z). ��
Lemma 10. If V is a variety of L-algebras and X an infinite set of variables, then
V = Mod(IdX(V)).

Proof. Denote V ′ = Mod(IdX(V)). V ′ is a variety. Indeed, this follows from
Lemma 7: Let O denote any of H, S, or P. For any identity t1 ≈ t2 we have
‖t1 ≈ t2‖O(V ′) = ‖t1 ≈ t2‖V ′ ≥ (IdX(V))(t1 ≈ t2) which means that for any
M ∈ O(V ′) we have ‖t1 ≈ t2‖M ≥ (IdX(V))(t1 ≈ t2) whence M ∈ V ′. Obviously,
V ⊆ V ′. This implies IdX(V ′) ⊆ IdX(V). Conversely, IdX(V) ⊆ IdX(V ′) is true
iff for each M ∈ V ′ we have (IdX(V))(t1 ≈ t2) ≤ ‖t1 ≈ t2‖M which is true by
definition of V ′. We thus have IdX(V ′) = IdX(V).
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By Lemma 8, FV (X) = FV ′(X). For each infinite set Y of variables we have by
Lemma 9 that IdY (V ′) = IdY (FV ′(X)) = IdY (FV (X)) = IdY (V). Lemma 8 thus
implies θV ′(Y ) = θV (Y ), i.e. FV ′(Y ) = FV (Y ). Now, for each M ∈ V ′ we have
for some infinite Y that M ∈ H(FV ′(Y )) (indeed, it suffices to have |Y | ≥ |M|
and to consider a morphism induced by some surjection of Y to M) and thus
M ∈ H(FV (Y )) whence M ∈ V . We thus established V ′ ⊆ V and so V = V ′. ��

We can now prove Theorem 1.

Proof of Theorem 1. Let K be equational, i.e. K = Mod(�) for some L-set � of
identities. Using Lemma 7, one can check that K is a variety (the same arguments
as in the beginning of proof of Lemma 10).

Conversely, if V is a variety then Lemma 10 implies that for an infinite set X
of variables and � = IdX(V) we have K = Mod(�), i.e. K is equational. ��
Remark 1. Using fuzzy sets of identities, we follows the so-called Pavelka’s style [7].
Pavelka showed [10] that the requirement of syntactico-semantical completeness
implies severe limitations to the structure of truth values. It is thus worth to note
that the variety theorem is valid for any complete residuated lattice taken as the
structure of truth values. In the light of [1], however, this is not that much surprising.

Remark 2. The concept of an L-algebra is by no means artificial. First, it is obvi-
ous that the compatibility axiom expresses a natural constraint on the operations
(mapping similar to similar). If one takes, e.g., L = [0, 1], this constraint has a
numerical character. Moreover, this constraint is expressed in a simple fragment of
first-order fuzzy logic.

Second, allowing for fuzzy sets of axioms is well-recognized as a useful means
of representing vaguely specified knowledge (expert observations, requirements,
etc.). For example, one may require that particular products must be highly safe
and adds therefore formula (∀x)(P (x) i S(x)) with degree 0.8 to the fuzzy set of
axioms (P and S denote “product” and “safe”, respectively). Note that, technically,
this can still be achieved without fuzzifying the metalevel (with a set of axioms),
see [7]. Having fuzzy sets of axioms, i.e. identities, is natural even in case of the
equational fragment. As an example, consider almost reversible processes: Sup-
pose we have objects (e.g. pools filled with water) and a pair of inverse operations
o and i transforming these objects (o and i might be “drain one liter of water” and
“pour in one liter of water”). When specifying requirements, it may be worth to
take certain technical limitations into account and to require that applying i and
o consecutively, one gets almost the same object. Therefore, it might be worth to
add the identity x ≈ o(i(x)) with degree, say, 0.9 to the fuzzy sets of axioms. So,
in our example, since draining and pouring can never be achieved with absolute
accuracy, it makes sense to require that pouring in one liter and then draining one
liter from a given pool yields approximately the same pool. Changing the degree
(0.9) in the set of axioms sets the requirement on the accuracy and synchronization
of operations i and o.

Remark 3. In [12] (see also [11]), the author investigates the so-called metric alge-
bras which are basically algebras with a metric on the support set. It is interesting
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to note that the author introduces the notion of an atomic inequality which is an
expression of the form “ρ(p, q) � a” where ρ denotes a metric, p, q are terms,
and a ∈ [0,∞]. An atomic inequality is said to be ε-true in a given metric algebra
if ρ(p, q) ≤ a + ε in the metric algebra. The analogy to the fuzzy logic approach
is obvious. Furthermore, an important notion of [12] is that of an equicontinuity of
operations of metric algebras: An operation f is equicontinuous if the implication

ρ(x1, y1) � 0 ∧ · · · ∧ ρ(xn, yn) � 0 i ρ(f (x1, . . . , xn), f (y1, . . . , yn)) � 0

is satisfied equicontinuously. This means that for each ε > 0 there is a δ > 0
such that for any interpretation we have that if each ρ(xi, yi) � 0 is δ-true then
ρ(f (x1, . . . , xn), f (y1, . . . , yn)) � 0 is ε-true. Now it is clear that the idea behind
equicontinuity of operations in metric algebras and compatibility of operations of
L-algebras is essentially the same. In our opinion, however, the explicit formula-
tion of the requirement in the framework of fuzzy logic (L-algebras) is far more
natural. A paper investigating the relationships of metric algebras and L-algebras
is in preparation. Note also that the notion of an L-similarity is more general than
that of a metric [2].
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[7] Hájek P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht, 1998
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