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1 Introduction and preliminaries

This paper deals with Galois connections between power sets viewed from
the perspective of fuzzy logic and fuzzy set theory. These theories devel-
op on a formal level Zadeh’s [14] ideas of graded approach to vagueness.
Up to now there are several results fulfilling the program of investigating
mathematical foundations of human-like reasoning [3, 6, 8].

A remarkable role in mathematics and in general in human reasoning is
played by Galois connections [1, 9]. We will be concerned with Galois con-
nections between power sets of two sets X and Y (shortly: Galois connection



between X and Y ), i.e. a pair 〈↑, ↓〉 of mappings ↑ : 2X → 2Y , ↓ : 2Y → 2X ,

satisfying (a) A1 ⊆ A2 implies A↑
2 ⊆ A↑

1, (b) B1 ⊆ B2 implies B↓
2 ⊆ B↓

1 , (c)
A ⊆ (A↑)↓, (d) B ⊆ (B↓)↑, for all A,A1, A2 ∈ 2X , B,B1, B2 ∈ 2Y . Several
examples of Galois connections in mathematics can be found e.g. in [1, p-
p. 123–124]. In general, a Galois connection is met whenever X is a set (of
objects), Y is a set (of attributes of objects), A↑ (for A ∈ 2X) is the set of
all (attributes) y ∈ Y which are related to (shared by) all (objects) x ∈ A,
and B↓ (for B ∈ 2Y ) is the set of all (objects) x ∈ X which are related to
(have) all (properties) y ∈ B. Denoting the relation (to have an attribute)
in question between X and Y by I, we have an example of Galois connection
given by

A↑ = {y ∈ Y | 〈x, y〉 ∈ I for all x ∈ A},

B↓ = {x ∈ X | 〈x, y〉 ∈ I for all y ∈ B}.

In this context, the properties (a) and (b) of Galois connections capture the
very natural rules “the more objects, the less common attributes”, and vice-
versa. It has been proved by Ore [9] that this case of Galois connections
is representative: each Galois connection between X and Y is of the above
form (i.e. induced by some I ⊆ X × Y ). Interestingly, Galois connections
between power sets are the cornerstone for the theory of concept lattices
(i.e. hierarchical structures of concepts in the sense of Port-Royal school),
see e.g. the seminal paper [13]. Our main concern is to generalize the
concept of Galois connection from the point of view of fuzzy logic and fuzzy
set theory. In Section 2 we introduce the concept of fuzzy Galois connection,
show how fuzzy Galois connections are induced by binary fuzzy relations and
prove the generalization of Ore’s theorem. Representation of fuzzy Galois
connections by (classical) Galois connections is provided in Section 3.

Recall that a fuzzy set [14] in a universe set X is any function A : X → L,
where L is a suitable set (of truth values). The value A(x) is called the
membership degree of x in A and it is interpreted as the truth value of “x is
element of A”. Similarly, a fuzzy relation between X and Y is any function
I : X × Y → L. By { a/x} (where a ∈ L, x ∈ X) it is meant a fuzzy set
given by { a/x}(x) = a and { a/x}(x′) = 0 for x′ ∈ X, x′ 6= x. The crucial
step is the choice of an appropriate structure on L. A very general one is
that of a residuated lattice. A residuated lattice [7, 6, p. 42] is an algebra
L = 〈L,∧,∨,⊗,→, 0, 1〉 where

(i) 〈L,∧,∨, 0, 1〉 is a lattice with the least element 0 and the greatest
element 1,
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(ii) 〈L,⊗, 1〉 is a commutative monoid, i.e. ⊗ is associative, commutative,
and the identity x ⊗ 1 = x holds,

(iii) ⊗ and → satisfy the adjointness property, i.e.

x ≤ y → z iff x ⊗ y ≤ z

holds for each x, y, z ∈ L (≤ denotes the lattice ordering).

Residuated lattices have been introduced by Dilworth and Ward [12].
Note that several other names are used for residuated lattices, e.g. integral
commutative residuated l-monoid [1, pp. 324–325], residuated abelian semi-
group with a unit [2, pp. 211–214], or commutative complete lattice ordered
semigroup with infinity [5, 4].

In each residuated lattice it holds x ≤ y implies x⊗z ≤ y⊗z (isotonicity),
and x ≤ y implies z → x ≤ z → y (isotonicity in the second argument) and
x → z ≥ y → z (antitonicity in the first argument). The operation ⊗ is
thus a t-norm (see e.g. [6]), → is called residuum. In the following we will
deal with complete residuated lattices, i.e. 〈L,∧,∨, 0, 1〉 is assumed to be
a complete lattice. The following identities of complete residuated lattices
will be needed (see e.g. [5, 11]):

a = 1 → a (1)

a ≤ (a → b) → b (2)

a ⊗ (a → b) ≤ b (3)

a ⊗
∧

i∈I

bi ≤
∧

i∈I

(a ⊗ bi) (4)

(
∨

i∈I

ai) → b =
∧

i∈I

(ai → b) (5)

a →
∧

i∈I

bi =
∧

i∈I

(a → bi) (6)

A semantically complete first-order many-valued logic with semantics de-
fined over complete residuated lattices is described in [7]. Several special
classes of residuated lattices serve as structures of truth values of logical
calculi which are semantically complete w.r.t. these structures (for details
see e.g. [6, 8, 10, 11]). The semantics of conjunction and implication is mod-
eled by the operations ⊗ and →, respectively. Supremum (

∨
) and infimum

(
∧

) are intended for modeling of the general and the existential quantifier,
respectively.

The most studied and applied set of truth values is the real interval
[0, 1]. The most important are the  Lukasiewicz, Gödel, and product algebras
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(see [6] for their role and the definitions) defined by the following t-norms:
a ⊗ b = max(a + b − 1, 0) ( Lukasiewicz), a ⊗ b = min(a, b) (Gödel), and
a ⊗ b = a · b (product), with the corresponding residua given by a → b =
min(1 − a + b, 1), a → b = 1 if a ≤ b and = b else, a → b = 1 if a ≤ b and
= b/a else, respectively. Another important structure of truth values is given
by L = {a0, a1, . . . , an}, 0 = a0 < · · · < an = 1, with the t-norm ak ⊗ al =
amax(k+l−n,0) and the corresponding residuum ak → al = amin(n−k+l,n). A
special case of the latter algebra is the Boolean algebra 2 of classical logic
with the support 2 = {0, 1}. Note that each of the preceding residuated
lattices is complete.

Fuzzy sets (fuzzy relations) are also called L-sets (L-relations) if the
structure L is to be emphasized [4, 5]. In this perspective, classical sets
(relations) are identified with 2-sets (2-relations). 2-sets (and relations) are
called crisp. The set of all L-sets in a given universe X will be denoted by
LX .

2 Fuzzy Galois connections

In this section we study fuzzy Galois connections between the sets of all
fuzzy sets in two given universes and their correspondence to binary fuzzy
relations. We suppose L to be a complete residuated lattice. First we
have to internalize the concept of a Galois connection for the case of fuzzy
logic. Given two fuzzy sets A1, A2 ∈ LX we define the subsethood degree [4]
Subs(A1, A2) of A1 in A2 by Subs(A1, A2) =

∧
x∈X(A1(x) → A2(x)). Note

that Subs(A1, A2) is naturally interpreted as the truth value of “for all x ∈ X
it holds that if x belongs to A1 then x belongs to A2” and that for L = 2,
Subs coincides with the usual subsethood relation. As usual, we write A1 ⊆
A2 for Subs(A1, A2) = 1.

Definition 1 A fuzzy Galois connection (L-Galois connection) between the
sets X and Y is a pair 〈↑, ↓〉 of mappings ↑ : LX → LY , ↓ : LY → LX ,
satisfying

Subs(A1, A2) ≤ Subs(A↑
2, A

↑
1) (7)

Subs(B1, B2) ≤ Subs(B↓
2 , B↓

1) (8)

A ⊆ (A↑)↓ (9)

B ⊆ (B↓)↑ . (10)

for every A,A1, A2 ∈ LX , B,B1, B2 ∈ LY .
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Note that crisp Galois connections are just L-Galois connections for L =
2. In the following we write A↑↓ for (A↑)↓ etc., and similarly, B↓↑ for (B↓)↑

etc. The next theorem provides us with a simple characterization of L-Galois
connections.

Theorem 2 A pair 〈↑, ↓〉 forms an L-Galois connection between X and Y
iff

Subs(A,B↓) = Subs(B,A↑) (11)

for all A ∈ LX , B ∈ LY .

P r o o f . Let 〈↑, ↓〉 be an L-Galois connection. From B ⊆ B↓↑ we get
Subs(B↓↑, A↑) ≤ Subs(B,A↑), hence by (7)

Subs(A,B↓) ≤ Subs(B↓↑, A↑) ≤ Subs(B,A↑).

Repeating the arguments we get Subs(B,A↑) ≤ Subs(A,B↓). Therefore (11)
holds.

Conversely, let (11) hold. From Subs(A↑, A↑) = 1 we get Subs(A,A↑↓) =
1, i.e. A ⊆ A↑↓ proving (9). (10) may be proved symmetrically. From

A2 ⊆ A↑↓
2 it follows by (11) that

Subs(A1, A2) ≤ Subs(A1, A
↑↓
2 ) = Subs(A↑

2, A
↑
1)

proving (7). The proof of (8) is symmetric. 2

We have noted that crisp Galois connections are in one-to-one correspon-
dence with binary crisp relations. Our aim is to generalize this result for
the case of L-Galois connections. First, we show how a L-Galois connection
may be obtained from a binary L-relation. To this end, suppose there is
an L-relation I between the sets X and Y , i.e. I ∈ LX×Y . We introduce
operators ↑ : LX → LY and ↓ : LY → LX . Recall that for the crisp case and
A ∈ 2X we have

y ∈ A↑ iff for all x ∈ X : if x ∈ A then 〈x, y〉 ∈ I .

Rewriting in the language of algebras of fuzzy logic yields for A ∈ LX

A↑(y) =
∧

x∈X

(A(x) → I(x, y)) for y ∈ Y (12)
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which will be be taken for the definition of ↑ : LX → LY for any complete
residuated lattice L. Similarly, for ↓ we put for B ∈ LY

B↓(x) =
∧

y∈Y

(B(y) → I(x, y)) for x ∈ X. (13)

I may represent a vague relationship between a set of objects and a set of
attributes. In this case, A↑ and B↓ have the same linguistic interpretation as
described in Section 1 but the semantics is modeled using fuzzy logic. The
mappings ↑ and ↓ defined by (12) and (13) will be called induced by I. To
stress this fact we will also write ↑I and ↓I instead of ↑ and ↓, respectively.
The fundamental properties of ↑ and ↓ are described by the following lemma
which generalizes the result of Birkhoff [1, p. 122].

Lemma 3 For each L-relation I ∈ LX×Y , the pair 〈↑, ↓〉 of mappings de-
fined by (12) and (13) forms an L-Galois connection between X and Y .

P r o o f . We prove (7) and (9). The conditions (8) and (10) may be proved
analogously. Prove (7). We first show that

Subs(A1, A2) ⊗ (A2(x) → I(x, y)) ≤ (A1(x) → I(x, y)) (14)

holds for any y ∈ Y . Thus let y ∈ Y . Since Subs(A1, A2) =
∧

x′∈X A1(x′) →
A2(x′) we have Subs(A1, A2) ≤ A1(x) → A2(x) for any x ∈ X. By this fact
and by (3) we have

Subs(A1, A2) ⊗ A1(x) ≤ A1(x) ⊗ (A1(x) → A2(x)) ≤ A2(x) . (15)

Furthermore, by (2),

A2(x) ≤ (A2(x) → I(x, y)) → I(x, y) .

We therefore have

Subs(A1, A2) ⊗ A1(x) ≤ (A2(x) → I(x, y)) → I(x, y)

which is equivalent (applying the adjointness property twice) to (14). Hence,
(14) holds.
Using the fact that ai ≤ bi, i ∈ I, implies

∧
i∈I ai ≤

∧
i∈I bi and (4) we

further conclude

Subs(A1, A2) ⊗
∧

x∈X

(A2(x) → I(x, y)) ≤

≤
∧

x∈X

(Subs(A1, A2) ⊗ (A2(x) → I(x, y))) ≤
∧

x∈X

(A1(x) → I(x, y)) .
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Applying adjointness property we obtain

Subs(A1, A2) ≤

≤
∧

x∈X

(A2(x) → I(x, y)) →
∧

x∈X

(A1(x) → I(x, y)) =

= A↑
2(y) → A↑

1(y) .

Since y is arbitrary, we have

Subs(A1, A2) ≤
∧

y∈Y

(A↑
2(y) → A↑

1(y)) = Subs(A↑
2, A

↑
1)

proving (7). Prove (9). Let A ∈ LX , x ∈ X. We first prove that

A(x) ≤ (
∧

x′∈X

(A(x′) → I(x′, y))) → I(x, y) (16)

holds for each y ∈ Y . By the adjointness property, (16) holds iff

A(x) ⊗ (
∧

x′∈X

(A(x′) → I(x′, y))) ≤ I(x, y)

which is due to commutativity of ⊗ and the adjointness property equivalent
to

(
∧

x′∈X

(A(x′) → I(x′, y))) ≤ A(x) → I(x, y)

which holds evidently, hence (16) holds. From (16) and from the properties
of infimum it follows

A(x) ≤
∧

y∈Y

(
∧

x′∈X

(A(x′) → I(x′, y))) → I(x, y) = A↑↓(x) ,

i.e., A ⊆ A↑↓ proving (9). 2

We are going to prove that each L-Galois connection is in the above
sense induced by some L-relation. For this purpose we need the following
lemma.

Lemma 4 Let 〈↑, ↓〉 be a L-Galois connection between X and Y . Then

{ a/x}↑(y) = a → { 1/x}↑(y) (17)

{ a/y}↓(x) = a → { 1/y}↓(x) (18)

{ a/x}↑(y) = { a/y}↓(x) (19)

holds for all a ∈ L, x ∈ X, y ∈ Y .
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P r o o f . First, we show

Claim A. a → { 1/y}↓(x) ≤ { a/x}↑(y) and a → { 1/x}↑(y) ≤ { a/y}↓(x).

Proof of Claim A. From

Subs({ a/x}, { { 1/y}↓(x)/x}) = { a/x}(x) → { 1/y}↓(x) =

= a → { 1/y}↓(x) (20)

we have by (7)

Subs({ { 1/y}↓(x)/x}↑, { a/x}↑) ≥ a → { 1/y}↓(x). (21)

From { { 1/y}↓(x)/x} ⊆ { 1/y}↓ we conclude by (7)

{ { 1/y}↓(x)/x}↑ ⊇ { 1/y}↓↑ ,

i.e.
{ { 1/y}↓(x)/x}↑(y) ≥ { 1/y}↓↑(y) = 1 ,

thus
{ { 1/y}↓(x)/x}↑(y) = 1. (22)

We thus have

= Subs({ { 1/y}↓(x)/x}↑, { a/x}↑) =

=
∧

y′∈M

({ { 1/y}↓(x)/x}↑(y′){ a/x}↑(y′)) ≤

≤ { { 1/y}↓(x)/x}↑(y) → { a/x}↑(y) =

= 1 → { a/x}↑(y) = { a/x}↑(y),

i.e. a → { 1/y}↓(x) ≤ { a/x}↑(y). The second part, a → { 1/x}↑(y) ≤
{ a/y}↓(x), can by obtained symmetrically. Q.E.D.

Claim B. { 1/x}↑(y) = { 1/y}↓(x).

Proof of Claim B. For a = 1 we get by Claim A

{ 1/y}↓(x) = 1 → { 1/y}↓(x) ≤ { 1/x}↑(y)

and
{ 1/x}↑(y) = 1 → { 1/x}↑(y) ≤ { 1/y}↓(x),

i.e. { 1/x}↑(y) = { 1/y}↓(x). Q.E.D.
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Prove (17). By Claim A and Claim B we get

a → { 1/x}↑(y) = a → { 1/y}↓(x) ≤ { a/x}↑(y),

the first inequality. The second inequality

{ a/x}↑(y) ≤ a → { 1/x}↑(y) (23)

is equivalent (applying twice the adjointness property) to

a ≤ { a/x}↑(y) → { 1/x}↑(y). (24)

From Subs({ 1/x}, { a/x}) = a we get by (7)

a ≤ Subs({ a/x}↑, { 1/x}↑) ≤

≤ { a/x}↑(y) → { 1/x}↑(y),

i.e. (24) holds. We have proved (17). (18) may be proved analogously.
By (17), (18) and Claim B we have

{ a/x}↑(y) = a → { 1/x}↑(y) = a → { 1/y}↓(x) = { a/y}↓(x),

proving (19). 2

The following lemma generalizes Ore’s result [9, Theorem 10].

Lemma 5 Let 〈↑, ↓〉 be a L-Galois connection between X and Y . Then there
is a L-relation I ∈ LX×Y such that for the induced mappings ↑I and ↓I it
holds 〈↑I , ↓I 〉 = 〈↑, ↓〉.

P r o o f . Introduce I by

I(x, y) = { 1/x}↑(y) = { 1/y}↓(x)

which is correct due to Lemma 4. Observe that for Ai ∈ LX it holds
(
⋃

i∈I Ai)
↑ =

⋂
i∈I A↑

i . In fact, by (11), (5) and (6) we have for any C ∈ LY

Subs(C, (
⋃

i∈I

Ai)
↑) = Subs((

⋃

i∈I

Ai), C
↓) =

∧

x∈X

(
∨

i∈I

Ai(x) → C↓(x)) =

=
∧

x∈X

∧

i∈I

(Ai(x) → C↓(x)) =
∧

i∈I

∧

x∈X

(Ai(x) → C↓(x)) =

=
∧

i∈I

Subs(Ai, C
↓) =

∧

i∈I

Subs(C,A↑
i ) =

∧

i∈I

∧

x∈X

(C(x) → A↑
i (x)) =

=
∧

x∈X

(C(x) →
∧

i∈I

A↑
i (x)) = Subs(C,

⋂

i∈I

A↑
i ).
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Take A ∈ LX . We have

A↑(y) = (
⋃

x∈X

{ A(x)/x})↑(y) =

= (
⋂

x∈X

{ A(x)/x}↑)(y) =
∧

x∈X

{ A(x)/x}↑(y) =
∧

x∈X

A(x) → { 1/x}↑(y) =

=
∧

x∈X

A(x) → I(x, y) = A↑I (y),

i.e. ↑ = ↑I . Using { 1/g}↑(y) = { 1/m}↓(x), ↓ = ↓I may be obtained
symmetrically. 2

As a direct consequence we get the following theorem which shows a
one-to-one correspondence between L-Galois connections and L-relations.

Theorem 6 For a binary L-relation I ∈ LX×Y denote 〈↑I , ↓I 〉 the mappings
defined by (12) and (13). For an L-Galois connection 〈↑, ↓〉 between X and
Y denote I〈↑,↓〉 the binary L-relation from Lemma 5. Then 〈↑I , ↓I 〉 is an
L-Galois connection and it holds

〈↑, ↓〉 = 〈
↑I

〈↑ ,↓〉 ,
↓I

〈↑ ,↓〉 〉 and I = I〈↑I ,↓I 〉.

P r o o f . By Lemma 3 and Lemma 5 it suffices to prove I = I〈↑I ,↓I 〉. We
have

I〈↑I ,↓I 〉(x, y) = { 1/x}↑(y) =

=
∧

x′∈X

{ 1/x}(x′) → I(x′, y) = 1 → I(x, y) = I(x, y),

proving the assertion. 2

Remark As may be easily observed, any L-Galois connection 〈↑, ↓〉 between
X and Y forms a Galois connection between the complete lattices 〈LX ,⊆〉
and 〈LY ,⊆〉 [1, 9]. This fact implies that the composite mappings ↑↓ : LX →
LX and ↓↑ : LY → LY are closure mappings on the respective lattices and
that the sets of all the closed elements of ↑↓ and ↓↑ (i.e. L-sets A ∈ LX and
B ∈ LY such that A = A↑↓ and B = B↓↑) are dually isomorphic complete
lattices w.r.t. the relation ⊆. Furthermore, A↑↓↑ = A↑ and B↓↑↓ = B↓ holds
for any A ∈ LG, B ∈ LM .
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3 Representation of fuzzy Galois connections by

Galois connections

Our aim now is to show that that L-Galois connections may be represented
by special systems of 2-Galois connections. For an L-set A ∈ LX and for
any a ∈ L, the a-cut of A is the 2-set aA = {x ∈ X | A(x) ≥ a}. The a-cut
aI of a binary L-relation is defined analogously.

Lemma 7 Let I ∈ LX×Y be an L-relation, 〈↑, ↓〉 be the L-Galois connection
induced by I, and for a ∈ L let 〈↑a , ↓a〉 be the 2-Galois connection induced
by the 2-relation aI. Then for every 2-sets A ∈ 2X , B ∈ 2Y , a ∈ L, we have

a(A↑) = A↑a , a(B↓) = B↓a , (25)

and for every L-sets A ∈ LX , B ∈ LY , a ∈ L, we have

a(A↑) =
⋂

b∈L

(bA)↑a⊗b , a(B↓) =
⋂

b∈L

(bB)↓a⊗b . (26)

P r o o f . Prove (25). Let A ∈ 2X . By definition, y ∈ a(A↑) iff
∧

x∈X(A(x) →
I(x, y)) ≥ a. Since A(x) ∈ {0, 1} for each x ∈ X, this is equivalent to

∧

x∈A

(A(x) → I(x, y)) =
∧

x∈A

(1 → I(x, y)) =
∧

x∈A

I(x, y) ≥ a

which holds iff for each x ∈ A it holds 〈x, y〉 ∈ aI. The last statement is
equvalent to y ∈ A↑a proving the first part of (25). The second part can be
proved analogously.
Prove (26). Let y ∈ a(A↑), i.e.

∧
x∈X(A(x) → I(x, y)) ≥ a. We have

y ∈ (bA)↑a⊗b iff for each x ∈ bA it holds 〈x, y〉 ∈ a⊗bI. Suppose x ∈ bA, i.e.
A(x) ≥ b. From a ≤ A(x) → I(x, y) we have a ⊗ b ≤ a ⊗ A(x) ≤ I(x, y),
i.e. 〈x, y〉 ∈ a⊗bI. Since x was chosen arbitrarily, we conclude y ∈ (bA)↑a⊗b ,
i.e. a(A↑) ⊆

⋂
b∈L(bA)↑a⊗b . Conversely, let y ∈ (bA)↑a⊗b , i.e. x ∈ bA implies

〈x, y〉 ∈ a⊗bI. We have to show A↑(y) =
∧

x∈X(A(x) → I(x, y)) ≥ a.
Let x ∈ X and put b = A(x). From x ∈ bA it follows by assumption
〈x, y〉 ∈ a⊗bI, i.e. a ⊗ b ≤ I(x, y). We therefore have

a ≤ b → a ⊗ b = A(x) → a → b ≤ A(x) → I(x, y),

hence a ≤
∧

x∈X(A(x) → I(x, y)) = A↑(y). We thus have also⋂
b∈L(bA)↑a⊗b ⊆ a(A↑), proving the first part of (26). The second part may

be obtained symmetrically. 2
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Definition 8 A system {〈↑a , ↓a〉 | a ∈ L} of 2-Galois connections is called
L-nested if (1) for each a, b ∈ L, a ≤ b, A ∈ 2X , B ∈ 2Y , it holds A↑a ⊇ A↑b ,
B↓a ⊇ B↓b , and (2) for every g ∈ G, m ∈ M , the set {a ∈ L | m ∈ {g}↑a}
has the greatest element.

Lemma 9 For j = 1, 2, let 〈↑j , ↓j 〉, and Ij be L-Galois connections and the
corresponding L-relations between X and Y , i.e. Ij = I

〈↑j ,
↓j 〉

and 〈↑j , ↓j 〉 =

〈
↑Ij ,

↓Ij 〉. Then it holds

I1 ⊆ I2 iff for each A ∈ LX , B ∈ LY it holds A↑1 ⊆ A↑2 , B↓1 ⊆ B↓2.

P r o o f . The direct implication follows from (12) and (13). Conversely,
from A↑1 ⊆ A↑2 we conclude I1(x, y) = 1 → I1(g,m) = ( 1/x)↑1(y) ≤
( 1/x)↑2(y) = 1 → I2(x, y) = I2(x, y) which means I1 ⊆ I2. 2

Theorem 10 For an L-Galois connection 〈↑, ↓〉 between X and Y denote
C〈↑,↓〉 = {〈↑a , ↓a〉 | a ∈ L} where ↑a : 2X → 2Y and ↓a : 2Y → 2X are defined

by A↑a = a(A↑) and B↓a = a(B↓) for A ∈ 2X , B ∈ 2Y . For an L-nested
system {〈↑a , ↓a〉 | a ∈ L} of 2-Galois connections between X and Y denote
〈↑C , ↓C 〉 the pair of mappings ↑C : LX → LY and ↓C : LY → LX defined by

A↑C(y) =
∨

{a | y ∈
⋂

b∈L

(bA)↑a⊗b}, B↓C(x) =
∨

{a | x ∈
⋂

b∈L

(bB)↑a⊗b}

for A ∈ LX , B ∈ LY . Then it holds

(1) C〈↑,↓〉 is a nested system of L-Galois connections between X and Y ,

(2) 〈↑C , ↓C 〉 is a L-Galois connection between X and Y ,

(3) C = C〈↑C ,↓C 〉 and 〈↑, ↓〉 = 〈
↑C

〈↑,↓〉 ,
↓C

〈↑,↓〉 〉.

P r o o f . (1) follows by Lemma 9 from the fact that a ≤ b implies aI ⊇ bI.
(2) follows by Lemma 7 by the fact that for any A ∈ LX it holds A(x) =∨
{a | x ∈ aA} (and similarly for B ∈ LY ). (3) is a consequence of (1), (2),

and Lemma 7. 2

Remark Theorem 10 (3) assures there is a one-to-one correspondence
between the class of all L-Galois connections and the class of all L-nested

12



systems of 2-Galois connections between X and Y . The existence of the
one-to-one correspondence is apparent from the one-to-one correspondence
between L-Galois connections and binary L-relations and the representation
of L-relations by systems of 2-relations. However, Theorem 10 provides the
direct way.
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