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Abstract. The paper presents generalizations of results on so-called Horn logic, well-known
in universal algebra, to the setting of fuzzy logic. The theories we consider consist of formu-
las which are implications between identities (equations) with premises weighted by truth
degrees. We adopt Pavelka style: theories are fuzzy sets of formulas and we consider degrees
of provability of formulas from theories. Our basic structure of truth degrees is a complete
residuated lattice. We derive a Pavelka-style completeness theorem (degree of provability
equals degree of truth) from which we get some particular cases by imposing restrictions
on the formulas under consideration. As a particular case, we obtain completeness of fuzzy
equational logic.

1. Introduction and preliminaries

Since the inception of fuzzy approach in 1960s, fuzzy logic in narrow sense, i.e.
logical calculi for reasoning in presence of vagueness, has been substantially devel-
oped.An overview can be found in [20, 22, 29] (but note that many new results were
published after these monographs). In addition to results on general first-order fuzzy
logic, there also appeared results on logical calculi resulting from the general first-
order case by natural restrictions. As an example, monadic fuzzy logic was studied
in [24]; there are several papers on systems related to fuzzy logic programming,
e.g. [34]. The present paper studies an equational fragment of first-order fuzzy logic
and is a continuation of [5]. The equational fragment results by restricting relation
symbols to a single one, namely, to the symbol of equality, and considering only
particular formulas, namely, (generalized) implications between identities. Struc-
tures of the equational fragment are the so-called algebras with fuzzy equalities
which generalize ordinary algebras and can be thought of as systems of functions
mapping similar elements to similar ones. The main aim of this paper is to study
theories and provability in our equational fragment. This generalizes [5] where
the formulas under consideration were identities. Identities are, in fact, implica-
tions with empty premises which is a special case of formulas considered in this
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paper. In the ordinary (crisp) case, implications between identities have been stud-
ied in universal algebra. There are numerous results on properties of implicationally
defined classes of algebras [2, 12, 17, 30] and proofs from implicational theories,
e.g. [32]. A survey on implications in the context of universal algebra can be found
in [38].

Recall that by an implication it is usually meant a generalized formula
V
i∈I
ti ≈ t ′i i t ≈ t ′

where ti , t ′i (i ∈ I ), t, t ′ ∈ T (X) are terms over a type F and a set X of variables.
Putting P = { 〈

ti , t
′
i

〉 ; i ∈ I}, an implication can be denoted by P ⇒ (t ≈ t ′)with
P interpreted as a set of premises. In general, P is not required to be finite. Model
classes of implications with possible infinite number of premises are closed under
isomorphic images, subalgebras, and direct products. They are known as sur-reflec-
tive classes. Simpler sets of premises naturally lead to further closure properties.
The following summary gives an overview of some of the classes of implications
defined by restrictions on their premises.

(i) Implications: P is arbitrary, model classes (sur-reflective classes) are classes
closed under subalgebras, and direct products.

(ii) Finitary implications: P may be infinite but X is finite. Model classes (sem-
ivarieties) are classes closed under subalgebras, direct products, and direct
unions.

(iii) Horn clauses: P is finite, model classes (quasivarieties) are classes closed
under subalgebras, direct products, and direct limits. Alternatively, quasiva-
rieties can be characterized as classes closed under subalgebras and reduced
products or as classes closed under subalgebras, direct products, and ultra-
products.

(iv) Equation implications: P is either singleton, i.e. P = {〈
s, s′

〉}
for certain

s, s′ ∈ T (X), or P = ∅. Equation implications are special Horn clauses.
(v) Identities: P = ∅, model classes (varieties) are closed under homomorphic

images, subalgebras, and direct products.

In order to generalize the concept of an implication to fuzzy setting, we need to
recall basic notions from fuzzy sets and fuzzy logic. We use complete residuated
lattices as the structures of truth degrees. Recall that a (complete) residuated lattice
is an algebra L = 〈L,∧,∨,⊗,→, 0, 1〉 such that (i) 〈L,∧,∨, 0, 1〉 is a (com-
plete) lattice with the least element 0 and the greatest element 1, (ii) 〈L,⊗, 1〉 is a
commutative monoid, (iii) 〈⊗,→〉 is an adjoint pair, i.e. a ⊗ b ≤ c iff a ≤ b → c

is valid for each a, b, c ∈ L (so-called adjointness property). Complete residuated
lattices were introduced into the context of fuzzy logic by Goguen [18, 19]. Note
that particular types of residuated lattices (distinguishable by identities) include
Boolean algebras, Heyting algebras, MV-algebras, Gödel algebras, product alge-
bras, and more generally, BL-algebras, see [6, 22, 25, 29]. In the sequel, L always
denotes a complete residuated lattice (not necessarily linear).

An L-set A (fuzzy set with truth degrees in L) in a universe U is any mapping
A : U → L,A(u) ∈ L being interpreted as the truth value of “element u belongs to
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A”. Let LU denote the set of all L-sets inU .A mapping ∅U : U → Lwith ∅U(u) =
0 (u ∈ U ) is called an empty L-set inU . For every L-setA : U → L, the support of
A is an ordinary set Supp(A) defined by Supp(A) = {u ∈ U |A(u) > 0}. L-set A
is called finite if Supp(A) is finite. For L-sets A and B in U , the subsethood degree
S(A,B) of A in B is defined by

S(A,B) =
∧

u∈U
(
A(u) → B(u)

)
. (1)

We write A ⊆ B (A is a subset of B) iff S(A,B) = 1, i.e. iff for each u ∈ U ,
A(u) ≤ B(u). As usual, operations on L extend componentwise to operations with
L-sets. A binary L-relation R (binary fuzzy relation with truth degrees in L) on
U is an L-set in U × U , i.e. a mapping R : U × U → L. An L-equivalence (or
similarity) on U is a binary L-relation on U satisfying E(u,u) = 1 (reflexivity),
E(u, v) = E(v,u) (symmetry), E(u, v) ⊗ E(v,w) ≤ E(u,w) (transitivity) for
all u, v,w ∈ U . An L-equivalence on U for which E(u, v) = 1 implies u = v is
called an L-equality. Function f : Un → U is compatible with an L-equivalence
E onU ifE(u1, v1)⊗· · ·⊗E(un, vn) ≤ E

(
f (u1, . . . ,un), f (v1, . . . , vn)

)
for all

u1, v1 . . .un, vn ∈ U . Note that compatibility says that pairwise similar elements
are mapped to similar elements. An L-set A is called crisp if A(u) ∈ {0, 1} for
each u ∈ U . Following common usage, we sometimes identify crisp L-sets with
the corresponding ordinary sets. Further details on fuzzy sets and fuzzy relations
can be found e.g. in [6, 22, 29].

A collection F of function symbols, each with its arity will be called a type.
Given a complete residuated lattice L, the language of our L-Horn logic consists
of (at least denumerable) setX of variables, a type F , a binary predicate symbol ≈
standing for (fuzzy) equality, a set {a; a ∈ L} of symbols of truth values (however,
for the sake of convenience and since there is no danger of misunderstanding, we
identify a with a), and symbols of logical connectives i (implication), c (con-
junction) and

V
(generalized conjunction). The set T (X) of all terms over F and

X is defined as usual. Terms are denoted by p, q, . . . , t , possibly with indices. The
set of all variables occurring in t is denoted by var(t).

An algebra with L-equality (shortly an L-algebra) of type F is a triplet M =〈
M,≈M, FM

〉
, where

〈
M,FM

〉
is an (ordinary) algebra of type F and ≈M is an

L-equality on M such that each fM ∈ FM is compatible with ≈M. Unless stated
otherwise, we use a fixed type F . An L-relation θ on M such that (i) θ is an
L-equivalence relation on M , (ii) ≈M ⊆ θ , (iii) all functions fM ∈ FM are
compatible with θ , is called a congruence on M. Congruences on an L-algebra
form a complete lattice [9]. For a congruence θ on an L-algebra M, an L-alge-
bra M/θ = 〈

M/θ,≈M/θ , FM/θ
〉
, where (i)

〈
M/θ, FM/θ

〉
is an ordinary factor

algebra of
〈
M, FM

〉
modulo {〈a,b〉 | θ(a,b) = 1} and (ii) [a]θ ≈M/θ [b]θ =

θ(a,b) for all a,b ∈ M , is called a factor L-algebra of M modulo θ . Let M,N
be L-algebras of the same type. A mapping h : M → N satisfying a ≈M b ≤
h(a) ≈N h(b) is called an ≈-morphism. An ≈-morphism h : M → N is called a
morphism (of L-algebras) if h is a morphism between ordinary algebras

〈
M, FM

〉

and
〈
N, FN

〉
. A morphism h : M → M is called an endomorphism.
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The term L-algebra is an L-algebra T(X) = 〈
T (X),≈T(X), FT(X)

〉
where〈

T (X), FT(X)
〉

is the ordinary term algebra and ≈T(X) is a crisp L-equality.
The paper is organized as follows. Section 2 defines implications between iden-

tities in fuzzy setting and their semantics. In Section 3 and Section 4 we introduce
and study an algebraic counterpart to semantic closure of implicational theories.
Section 5 presents a completeness result. A special case of implications with crisp
premises is dealt with in Section 6. Section 7 shows that fuzzy equational logic as
presented in [5] results from fuzzy Horn logic as a special case (empty premises).

Note also that in [10], a follow up to the present paper, we characterize model
classes of implicational theories.

2. Implications between identities

We are going to introduce the concept of an implication between identities in fuzzy
setting.We start with an approach as general as possible which, nevertheless, reflects
natural requirements. Moreover, we wish to get particular cases which are of interest
by imposing suitable restrictive conditions on the general concept of an implica-
tion. Before going to the definition of implications and their semantics, consider
the following comments.

First, in evaluating an implication ϕ i ψ in a standard way (call it the first
way), one takes truth degrees ‖ϕ‖ and ‖ψ‖, and a truth function → of implication
and defines the truth degree ‖ϕ i ψ‖ of ϕ i ψ to be ‖ϕ‖ → ‖ψ‖. There is,
however, a second way to look at evaluating implications in bivalent case. Namely,
one takes ϕ and tests whether it is true (‖ϕ‖ equals 1). If not, ‖ϕ i ψ‖ equals 1;
if yes, ‖ϕ i ψ‖ equals ‖ψ‖. Note that in bivalent case, both of the ways yield
the same truth degree of ϕ i ψ . While the first way can be directly adopted for
fuzzy setting (one just allows ‖ϕ‖ and ‖ψ‖ to take also intermediate truth values
and takes a suitable “fuzzy implication” →), the second way is not so straightfor-
ward. A general way to go is the following: Pick a threshold a ∈ L such that ϕ is
considered sufficiently true iff its truth degree is at least a. In evaluating ϕ i ψ ,
one takes ‖ϕ‖ and compares it to a. If ‖ϕ‖ does not exceed the threshold (i.e.
a �≤ ‖ϕ‖), set ‖ϕ i ψ‖ to 1; otherwise (i.e. a ≤ ‖ϕ‖) set ‖ϕ i ψ‖ to ‖ψ‖. In
bivalent case, there is only one nontrivial choice of a, namely, a = 1 which yields
the usual interpretation of implications. In fuzzy setting, however, the choice of a
is not unique.

Second, interestingly enough, both of the above ways of interpreting impli-
cations are particular cases of a more general approach via a unary connective
� representing a truth-stressing hedge like “very true” (i.e. �ϕ reads “ϕ is very
true”), and a corresponding unary function ∗ onLwhich interprets � (see [22, 23]):
Consider a formula �(a i ϕ)i ψ with a a truth constant interpreted by a ∈ L.
If ∗ is the identity on L and a = 1, the truth degree of �(a i ϕ) i ψ is just the
truth degree defined in the first way. If ∗ is the globalization (i.e. a∗ = 1 for a = 1
and a∗ = 0 otherwise), the truth degree of �(a i ϕ)i ψ is just the truth degree
defined in the second way with a being the threshold.

Third, as we are interested in implications between identities with possibly
several identities in the premise connected in a conjunctive manner and want to
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allow each identity to have its own threshold, we deal with formulas �(Vi∈I (ai i
ϕi)) i ψ where ϕi’s and ψ are identities, ai’s are the thresholds of ϕi’s, and

V

is a “general conjunction” interpreted by infimum in L. For convenience and sim-
plicity, we write only

V
i∈I 〈ϕi, a〉i ψ instead of �(Vi∈I (ai i ϕi))i ψ . That

is, we omit � (since its placement is fixed), we write 〈ϕi, ai〉 instead of ai i ϕi ,
and do not distinguish between constants ai for truth degrees and truth degrees
ai themselves. Note that the second convention follows the identification of so-
called weighted formulas 〈ϕ, a〉 of fuzzy logic with evaluated syntax [29, 31] with
ordinary formulas a i ϕ, see e.g. [22, Section 3.3]. Doing so, we deal with for-
mulas which can be thought of as implications P i ψ where P is a fuzzy set of
formulas ϕi with P(ϕi) = ai . For our purpose, this is a convenient and sufficiently
general way.

∗ ∗ ∗
To sum up, we wish to consider implications with weighted premises. Doing

so, we will distinguish several types of families P of premises P (e.g. P finite).
For reasons that will appear later we assume that the families P of premises P are
closed under endomorphic images. An endomorphic image of a binary fuzzy rela-
tion P on T (X) has to be defined to respect the fact that for two terms t, t ′ ∈ T (X)
there can be r, r ′, s, s′ ∈ T (X) such that h(r) = h(s) = t , h(r ′) = h(s′) = t ′,
but P(r, r ′) �= P(s, s′). This kind of ambiguity can be avoided using the general
suprema.

Definition 1. For P ∈ LT (X)×T (X) and an endomorphism h : T(X) → T(X), we
define an endomorphic image h(P ) ∈ LT (X)×T (X) of P by

h(P )(t, t ′) = ∨
h(s)= t
h(s′)= t ′

P(s, s′) (2)

for every terms t, t ′ ∈ T (X). Let ∅ �= P ⊆ LT (X)×T (X). The family P is called a
proper family of premises of type F (in variables X) if for every P ∈ P and every
endomorphism h on T(X) we have h(P ) ∈ P. Then, each P ∈ P is called an L-set
of premises of type F (in variables X).

For a crisp P ⊆ T (X)×T (X), the notion of the endomorphic image as defined
above coincides with the classical one: h(P ) = {〈

h(t), h(t ′)
〉 | 〈
t, t ′

〉 ∈ P }
.

Example 1. The following are examples of proper families of premises.

(a) If P = LT (X)×T (X), then P is a proper family of premises trivially. This family
does not represent any constraints on premises. Implications with such premises
will represent the most general type of formulas used in our investigation.

(b) For P ∈ LT (X)×T (X), put var(P ) = ⋃ {
var(t) ∪ var(t ′) |P(t, t ′) > 0

}
, i.e.

var(P ) is a set of variables occurring in identities which belong to P in some
nonzero degree. Let P = {

P ∈ LT (X)×T (X) | var(P ) is finite
}
. Then P is a

proper family of premises, so-called finitary premises.
(c) A family P = {

P ∈ LT (X)×T (X) |P is finite
}

is a special subfamily of that of
(b). It is easy to observe that endomorphic image of every finite L-relation is
finite. Trivially, var(P ) is finite. P of this form is called a proper family of all
finite premises.
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(d) Families of premises defined in (a)–(c) have their crisp variants. It follows
immediately from the fact that if P ∈ LT (X)×T (X) is crisp, then h(P ) is crisp
as well. Hence, the following families

P1 = {P ∈ LT (X)×T (X) |P is crisp},
P2 = {P ∈ LT (X)×T (X) | var(P ) is finite and P is crisp},
P3 = {P ∈ LT (X)×T (X) |P is finite and crisp},

are proper families of premises. In fact, they can be used to determine families
of implications with crisp premises. A calculus for such formulas is introduced
in Section 6.

(e) There are approaches [32] which have used also implications with exactly one
premise. In this case P = {

P ∈ LT (X)×T (X) |P is a singleton
}

and P is trivi-
ally a proper family of premises. This concept can be generalized to families
with at most n premises.

(f) P = {∅} is a proper family of premises trivially. Implications with empty
premises represent just identities. As we will see in Section 7, putting P = {∅},
our results yield the well-known results on equational logic [11] and our previ-
ous results on fuzzy equational logic [5] as a special case.

Now we can define the notion of a (weighted) P-implication.

Definition 2. Suppose L is a complete residuated lattice,X a set of variables, F is
a type, P is a proper family of premises of type F in variables X. A PPP-implication
is an expression of the form

V
P(s,s′)>0

〈
s ≈ s′, P (s, s′)

〉
i (t ≈ t ′), (3)

where P ∈ P and t, t ′ ∈ T (X). For a P-implication ϕ and a truth value a ∈ L, the
couple 〈ϕ, a〉 is called a weighted PPP-implication.

Remark 1. (1) P-implications are in general “infinite expressions”. Following the
discussion in the beginning of Section 2, we consider (3) a shorthand for

�
(V

P(s,s′)>0

(
P(s, s′)i (s ≈ s′)

))
i (t ≈ t ′), (4)

a formula in language containing a unary connective �, symbols a for truth
constants a ∈ L, and a “generalized conjunction”

V
. (4) says “if it is very true

that all identities s ≈ s′ from P are true then t ≈ t ′ is true”, which is the
intended meaning of (3).

(2) In the following, we will freely use the fact that an L-set � of P-implications
can be thought of as an ordinary set I� of weighted P-implications, where
I� = {〈ϕ, a〉 |�(ϕ) = a}.

(3) If P is a proper family of finitary (finite) premises, a P-implication will be called
a finitary implication (Horn clause). Similarly for weighted P-implications.

(4) For simplicity, a P-implication (3) will be denoted by P i (t ≈ t ′). A Horn
clause P i (t ≈ t ′) will be occasionally denoted by

〈
t1 ≈ t ′1, a1

〉
c

〈
t2 ≈ t ′2, a2

〉
c · · · c 〈

tn ≈ t ′n, an
〉
i t ≈ t ′, (5)



Fuzzy Horn logic I 9

where P(ti, t ′i ) = ai for i = 1, . . . , n, and Supp(P ) ⊆ {〈
t1, t

′
1

〉
, . . . ,

〈
tn, t

′
n

〉}
.

Identities and weighted identities are denoted by t ≈ t ′ and
〈
t ≈ t ′, a

〉
.

We are going to introduce semantics of P-implications, i.e. to define a truth
degree

∥∥P i (t ≈ t ′)
∥∥

M,v
of P i (t ≈ t ′) in an L-algebra M under a valua-

tion v. Given terms t, t ′ ∈ T (X), a degree
∥∥t ≈ t ′

∥∥
M,v

to which the identity t ≈
t ′ is true in M under a valuation v : X → M is defined in the usual manner, i.e.
by

∥∥t ≈ t ′
∥∥

M,v
= ‖t‖M,v ≈M

∥∥t ′
∥∥

M,v
. The truth degree

∥∥P i (t ≈ t ′)
∥∥

M,v
of (3) is defined in a straightforward way, taking into account that (3) is a short-
hand for (4). Connective � will be interpreted by a unary operation ∗ on L,
called a truth stresser, which is similar to to that of Hájek’s ⊗-truth stressing
hedge, see [23] (a particular case of a truth stressing hedge was introduced by
Baaz [1], see also [22]).

Definition 3. Let L = 〈L,∧,∨,⊗,→, 0, 1〉 be a complete residuated lattice. A
unary operation ∗ : L → L satisfying

1∗ = 1, (6)

a∗ ≤ a, (7)

(a → b)∗ ≤ a∗ → b∗, (8)

for every a, b ∈ L, is called a truth stresser for L. A residuated lattice L equipped
with a truth stresser ∗ for L will be denoted by L∗.

Later on, we will formulate additional constraints for ∗. Conditions (6)–(8)
represent three of the four basic conditions required in [23]. The fourth condition
(a ∨ b)∗ ≤ a∗∨b∗ presented in [23] is not necessary e.g. to establish a characteriza-
tion of semantic consequence. On the other hand, an analogy to (a ∨ b)∗ ≤ a∗ ∨b∗
is important when considering implications with crisp premises, see Section 6.

Example 2. Let L be a complete residuated lattice.

(a) Let ∗ be the identity on L, i.e. a∗ = a (a ∈ L). Then ∗ is a truth stresser.
(b) Let ∗ be defined by

a∗ =
{

1 if a = 1,
0 otherwise.

(9)

Then ∗ is a truth stresser. We follow Takeuti and Titani [33] and call it global-
ization. Note that in [33], globalization is defined on complete Heyting alge-
bras. Note also that if we restrict ourselves to linearly ordered residuated lat-
tices, globalization is axiomatically defined by (6), (7), and a∗ ∨ (a∗ → 0) = 1,
see [22, Section 2.4].

(c) Denote the two above truth stressers by ∗1 (identity) and ∗2 (globalization).
Trivially, for each truth stresser ∗ we have a∗1 = 0 ≤ a∗ ≤ a = a∗2 for a < 1
and 1 = 1∗1 = 1∗ = 1∗2 . Therefore, truth stressers are bounded by ∗1 and ∗2 .

A general definition of the truth degree of an implication follows.

Definition 4. Let P i (t ≈ t ′) be a P-implication and let ∗ be a truth stresser for
a complete residuated lattice L. For an L-algebra M and a valuation v : X → M ,
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we define the truth degree
∥∥P i (t ≈ t ′)

∥∥
M,v

of P i (t ≈ t ′) in M under v with
respect to ∗ by

∥∥P i (t ≈ t ′)
∥∥

M,v
= ‖P ‖M,v → ∥∥t ≈ t ′

∥∥
M,v

, (10)

where

‖P ‖M,v = (∧

s,s′∈T (X)
(
P(s, s′) → ∥∥s ≈ s′

∥∥
M,v

))∗
. (11)

For a weighted P-implication
〈
P i (t ≈ t ′), a

〉
, a ∈ L, we define a truth degree∥∥〈

P i (t ≈ t ′), a
〉∥∥

M,v
of

〈
P i (t ≈ t ′), a

〉
in M under v w.r.t. ∗ by

a → ∥∥P i (t ≈ t ′)
∥∥

M,v
. (12)

Therefore, we consider ∗ as a parameter controlling the interpretation of (3).
For the boundary truth stressers of Example 2, we have the following. First, for ∗
being the identity we get

∥∥P i (t ≈ t ′)
∥∥

M,v

= (∧

s,s′∈T (X)
(
P(s, s′) → ∥∥s ≈ s′

∥∥
M,v

)) → ∥∥t ≈ t ′
∥∥

M,v
. (13)

Second, for ∗ being globalization we get

∥∥P i (t ≈ t ′)
∥∥

M,v
=






∥∥t ≈ t ′
∥∥

M,v
if P(s, s′) ≤ ∥∥s ≈ s′

∥∥
M,v

for all s, s′ ∈ T (X),
1 otherwise.

(14)

Denoting by a and b the truth degree of P i (t ≈ t ′) as defined by (13) and (14),
respectively, it is easily seen that a ≤ b. (13) and (14) are thus the boundary cases
of (10). As we will see, both types of semantics are reasonable (cf. also discussion
in the beginning of Section 2). Note that in the bivalent case, both (13) and (14)
coincide.

Remark 2. (1) We will use only one structure of truth values and one truth stresser
at a time, so there is no danger of confusion if the degree is denoted simply by∥∥P i (t ≈ t ′)

∥∥
M,v

. Sometimes, we will use
∥∥P i (t ≈ t ′)

∥∥L∗
M,v to point out

L and ∗ explicitly.
(2) It is easily seen, that (12) is equal to ‖P ‖M,v → (a → ∥∥t ≈ t ′

∥∥
M,v

). This
corresponds well to the intuitive meaning of a weighted implication and also
justifies a possible notation

〈
t1 ≈ t ′1, a1

〉
c

〈
t2 ≈ t ′2, a2

〉
c · · · c 〈

tn ≈ t ′n, an
〉
i

〈
t ≈ t ′, a

〉

for a weighted Horn clause
〈〈
t1 ≈ t ′1, a1

〉
c

〈
t2 ≈ t ′2, a2

〉
c · · · c 〈

tn ≈ t ′n, an
〉
i t ≈ t ′, a

〉
.

(3) Evidently,
∥∥P i (t ≈ t ′)

∥∥
M,v

≥ b iff
∥∥〈
P i (t ≈ t ′), b

〉∥∥
M,v

= 1.
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(4) Suppose we are given an L-algebra M, and a class K of L-algebras of the same
type. Truth degrees of P i (t ≈ t ′) in M, and K are defined by

∥∥P i (t ≈ t ′)
∥∥

M =
∧

v:X→M

∥∥P i (t ≈ t ′)
∥∥

M,v
,

∥∥P i (t ≈ t ′)
∥∥K =

∧

M∈K
∥∥P i (t ≈ t ′)

∥∥
M .

Example 3. The apparatus of weighted implications can be seen as a tool in for-
mal specification in presence of vagueness. In particular, applications of weighted
implications lie mainly in the field of so-called humanistic systems, where the
description of a system behavior is influenced by human judgment or perceptions,
and is therefore inherently vague. In the following, we present a way to describe
approximate knowledge about a simple function-based system.

We deal with the problem of human perception of colors and the related problem
of color mixture. Needles to say, the problems in question are hardly graspable by
bivalent logic (crisp structures) since the notions of “color similarity” and “color
indistinguishability” that naturally appear in the problem domain are vague. The
color perception itself is a complex neuro-chemical process with a psychological
feedback. Denote the set of all colors by M . Equip M with an L-equality relation
≈M the meaning of which is to represent similarity of colors from M . Note that
≈M is a nontrivial L-relation for which all properties of an L-equality seem to be
fully justified.

The (additive) mixture of colors can be thought of as an operation onM . Thus,
suppose we have a language F = {f }, where f is a binary function symbol and
a term f (t, t ′) of type F represents a color resulting by the mixture of colors rep-
resented by terms t, t ′. It is a well-known fact [16] that assuming sufficiently high
light intensities, if x is indistinguishable from x′, and y is indistinguishable from y′,
then f (x, y) is indistinguishable from f (x′, y′). This rule immediately translates
into a compatibility condition for fM.

To sum up, an L-algebra M = 〈
M,≈M, fM

〉
of type F seems to be a suitable

semantical structure enabling us to study color mixture. Weighted implications can
be used to define additional constraints on our perception of color mixture. For
instance, the weighted P-implication

〈
x ≈ x′, a

〉
c

〈
f (x, y) ≈ f (x′, y′), b

〉
i

〈
y ≈ y′, c

〉
(15)

can be read as: “if colors x, x′ are similar in degree a and if mixtures f (x, y),
f (x′, y′) are similar in degree b, then colors y, y′ are similar (at least) in degree c”.

The following definition introduces three additional conditions.

Definition 5. A truth stresser ∗ for L is called an implicational truth stresser if it
satisfies

a∗∗ = a∗, (16)

a∗ ⊗ a∗ = a∗, (17)
∧

i∈I a
∗
i = (∧

i∈I ai
)∗
, (18)

for every a ∈ L, ai ∈ L (i ∈ I ), and each I .
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Lemma 1. The following are properties of truth stressers:

(i) (7) implies 0∗ = 0,
(ii) (18) implies (6),

(iii) (18) implies monotony of ∗ (a ≤ b implies a∗ ≤ b∗ for every a, b ∈ L),
(iv) (6) and (8) imply monotony of ∗,
(v) monotony of ∗ and (8) imply a∗ ⊗ b∗ ≤ (a ⊗ b)∗ for every a, b ∈ L.

Proof. (i): 0∗ ≤ 0, i.e. 0∗ = 0.
(ii): Put I = ∅ and apply (18) (and convention saying that infimum of ∅ is 1.

(iii): For a ≤ b, we have a = a ∧ b, thus a∗ = (a ∧ b)∗. Applying (18) for
I = {1, 2} we obtain a∗ = a∗ ∧ b∗, whence a∗ ≤ b∗.

(iv): a ≤ b implies a → b = 1, thus (a → b)∗ = 1∗ = 1 by (6). Then a∗ →
b∗ = 1 by (8), thus a∗ ≤ b∗.

(v): a ≤ b → (a ⊗ b) by adjointness, using monotony it follows that a∗ ≤
(b → (a ⊗ b))∗ and so a∗ ≤ b∗ → (a ⊗ b)∗ by (8), whence a∗ ⊗ b∗ ≤
(a ⊗ b)∗ by adjointness. ��

Remark 3. (1) Using (8), (6), and condition (29) presented in Section 4, we can
prove a weaker form of condition (18). Namely, a1

∗ ∧a2
∗ = (a1 ∧ a2)

∗, which
can be extended for finitely many ai’s. But as it will appear later, this weaker
form of (18) is not sufficient in our development.

(2) Every implicational truth stresser ∗ for L is an interior operator on 〈L,≤〉, i.e.
∗ verifies a∗ ≤ a, monotony (a ≤ b implies a∗ ≤ b∗), and a∗ = a∗∗.

(3) The “≤”-part of (18) is one of the definitional conditions of Takeuti and Titani’s
globalization [33].

Example 4. The following are examples of implicational truth stressers.

(a) Suppose L is a complete Heyting algebra (i.e. a ⊗ b = a ∧ b), putting a∗ = a,
we get an implicational truth-stresser. Conversely, if a∗ = a is an implicational
truth stresser on L then L is a Heyting algebra.

(b) For every complete residuated lattice L, the truth stresser ∗ defined by (9) is
an implicational truth stresser. Obviously, (16), (17) are satisfied. For every
index set I and ai ∈ L (i ∈ I ) we have

∧
i∈I a∗

i = 1 iff for every i ∈ I we
have a∗

i = 1 iff ai = 1 iff
∧
i∈I ai = 1 iff

(∧
i∈I ai

)∗ = 1. Consequently,
∧
i∈I a∗

i = 0 iff
(∧

i∈I ai
)∗ = 0. Hence, (18) holds as well.

There are, of course, other nontrivial implicational truth stressers and thus other
interesting “semantics of implications”. An example is given by the following the-
orem.

Theorem 1. Let L be a complete BL-chain (i.e. a linearly ordered BL-algebra, see
[22]) satisfying

a ⊗
∧

i∈I bi =
∧

i∈I (a ⊗ bi) (19)

for every a ∈ L, {bi ∈ L | i ∈ I }. Then the unary operation ∗ defined by

a∗ =
∧

n∈N0
an (20)
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for all a ∈ L is an implicational truth stresser. Moreover, a∗ is the greatest idem-
potent less or equal to a.

Proof. As (6) is a consequence of (18), we have to check conditions (7), (8), (16)–
(18).

(7): For n = 1 we have a1 ≤ a, thus a∗ = ∧
n∈N0

an ≤ a.
(8): We have

(a → b)∗ =
∧

n∈N0
(a → b)n ≤

∧

n∈N0
(an → bn)

≤
∧

n∈N0
an →

∧

n∈N0
bn = a∗ → b∗.

(16): Due to (19), the following equality holds:

a∗∗ =
∧

m∈N0

(∧

n∈N0
an

)m =
∧

m∈N0

⊗m

i=1

∧

ni∈N0
ani

=
∧

m∈N0

∧

n1,...,nm∈N0

⊗m

i=1
ani =

∧

m∈N0

∧

n1,...,nm∈N0
a

∑m
i=1 ni

=
∧

m∈N0

∧

n∈N0
an =

∧

n∈N0
an = a∗.

(17): Analogously as for (16), we have

a∗ ⊗ a∗ = (∧
n∈N0

an
) ⊗ (∧

m∈N0
am

) = ∧
m,n∈N0

an+m = ∧
k∈N0

ak = a∗.

(18): We have to show
∧
i∈I

∧
n∈N0

ani = ∧
n∈N0

(∧
i∈I ai

)n. The “≥”-part
is evident. For the “≤”-part, observe that since ani ≤ ai1 ⊗ · · · ⊗ ain for ai =
min

{
ai1 , . . . , ain

}
holds for each n (recall that L is supposed to be a chain), we

have
∧

i∈I
∧

n∈N0
ani ≤

∧

i∈I a
n
i ≤

∧

i1,...,in∈I
(ai1 ⊗ · · · ⊗ ain) = (∧

i∈I ai
)n
.

Hence, the required inequality follows immediately.
It remains to show that a∗ is the greatest idempotent which is less or equal to

a. Indeed, let b ∈ L be an idempotent such that b ≤ a. Then b = ∧
n∈N0

bn ≤∧
n∈N0

an = a∗. ��
Remark 4. Since prelinearity implies a ⊗ (b1 ∧ b2) = (a ⊗ b1) ∧ (a ⊗ b2), any
finite prelinear L satisfies (19). Thus, every finite BL-chain satisfies (19). If L =
〈[0, 1] ,max,min,⊗,→, 0, 1〉 is a residuated lattice with ⊗ being a continuous
t-norm, then L is a BL-algebra and (19) is a consequence of right-continuity of ⊗,
see [6, 22].

3. Semantic consequence

In ordinary equational logic [11], logical notions have their algebraic counterparts.
A set of identities is handled as a binary relation on T (X). Semantically closed
sets then correspond to fully invariant congruence relations on T(X). Fuzzy equa-
tional logic [5] naturally develops these notions in fuzzy setting. A situation in
(fuzzy) Horn logic is more complex, L-sets of P-implications will be represented
by so-called P-indexed systems of L-relations.
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Definition 6. Let P be a proper family of premises. A system

S = {
SP ∈ LT (X)×T (X) |P ∈ P

}

is called a PPP-indexed system of L-relations. For a P-indexed system S of
L-relations we define an L-set �S of P-implications by

�S(P i (t ≈ t ′)) = SP (t, t
′), for every P ∈ P and t, t ′ ∈ T (X).

For every L-set � of P-implications we define a P-indexed system S� of
L-relations as follows

S� = {
SP ∈ LT (X)×T (X) |SP (t, t ′) = �(P i (t ≈ t ′))

for every P ∈ P and t, t ′ ∈ T (X)}.
For convenience, if � is an L-set of P-implications, then by �P we denote the
corresponding L-relation SP ∈ S� .

Remark 5. (1) It is immediate that �S� = �, S�S = S. That is, there is an obvi-
ous bijective correspondence between P-indexed systems S of L-relations and
L-sets � of P-implications, and we can go from S to the corresponding � and
vice versa.

(2) For P-indexed systems S,S′ of L-relations, we put S ≤ S′ iff for every P ∈ P

we have SP ⊆ S′
P . Consequently, S = S′ iff SP = S′

P for every P ∈ P.
(3) An L-set of identities � can be thought of as an L-set of P-implications for

P = {∅}. Thus, the corresponding {∅}-indexed system S� consists a single
L-relation denoted by �∅.

(4) SP denotes elements of a system S. Notice that we use S to denote the subset-
hood degree, see (1). There is no danger of confusion here since SP is a fuzzy
relation on terms while S is a fuzzy relation on fuzzy sets. Moreover, elements
of S are always used with subscripts (SP , Si , etc.).

Definition 7. Suppose L∗ is a complete residuated lattice with implicational truth
stresser ∗. Let � be an L-set of P-implications. If the corresponding S� satisfies

P ⊆ �P , (21)

�P (t, t
′) ≤ �h(P )(h(t), h(t

′)), (22)

S(P,�Q)
∗ ≤ S(�P ,�Q), (23)

for every P,Q ∈ P, t, t ′ ∈ T (X), and every endomorphism h on T(X), then S� is
called an L∗-implicational PPP-indexed system of L-relations. Moreover, if �P is
a congruence for every P ∈ P, then S� is called an L∗-implicational PPP-indexed
system of congruences.

Remark 6. (1) Let us comment on the meaning of (21)–(23). Note first that for �,
�P (t ≈ t ′) = �(P i (t ≈ t ′)). Now, think of�(P i (t ≈ t ′)) as of a degree
to which P i (t ≈ t ′) is true in some L-algebra M, i.e. � is a theory of M.
Then (21) says that the validity degree of P i (t ≈ t ′) is at least as high as
the degree to which

〈
t, t ′

〉
belongs to P . Roughly speaking, if

〈
t, t ′

〉
is in P then
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P i (t ≈ t ′) is always true which is an obvious property. (22) says, roughly
speaking, that if P i (t ≈ t ′) is true then h(P )i (h(t) ≈ h(t ′)) is true, i.e.,
thinking of endomorphisms as of substitutions, (22) says that validity is pre-
served under substitutions. Finally, (23) says that a mapping sending P to �P
obeys one of characteristic properties of a so-called L∗-closure operator [8].
An L∗-closure operator is a mapping C : LU → LU satisfying A ⊆ C(A),
S(A,B)∗ ≤ S(C(A),C(B)), C(A) = C(C(A)). It can be shown that if ∗ is an
implicational truth stresser, then C : LU → LU is an L∗-closure operator iff C
satisfies A ⊆ C(A) and S(A,C(B))∗ ≤ S(C(A),C(B)) [8], whence (21) and
(23). Note that L∗-closure operators satisfy stronger conditions than the usual
fuzzy closure operators, see e.g. [3, 4]. Note also that our mapping sending P
to �P is in fact only a partial L∗-closure operator since it is a mapping of P to
LT (X)×T (X), not of LT (X)×T (X) to LT (X)×T (X) (for instance, in case of crisp
premises, P = 2T (X)×T (X)). Nevertheless, (21)–(23) say that sending P to �P
has closure properties and that � is closed under substitutions.

(2) Since P is supposed to be proper, h(P ) ∈ P for every P ∈ P as required by
Definition 1. That is, condition (22) is defined correctly.

(3) Condition (23) has equivalent formulations. For instance, (23) holds for every
P,Q ∈ P iff

�P (t, t
′)⊗ (∧

s,s′∈T (X)
(
P(s, s′) → �Q(s, s

′)
))∗ ≤ �Q(t, t

′) (24)

for all t, t ′ ∈ T (X). This equivalent formulation will be used later on.
(4) Suppose �∅ is a congruence. Then if (22) holds for P = ∅, we can claim

�∅(t, t ′) ≤ �h(∅)
(
h(t), h(t ′)

) = �∅
(
h(t), h(t ′)

)
. Hence, �∅ is a fully invari-

ant congruence [5].
(5) For particular proper families of premises, some of the conditions (21)–(23)

will simplify or hold trivially. We will take advantage of this fact in Section 6
and Section 7.

Conditions (22), (23) can be replaced equivalently by a single condition as
shown below.

Lemma 2. Suppose we have a P-indexed system S� of L-relations. Then S� is an
L∗-implicational P-indexed system of L-relations if and only if S� satisfies (21)
together with

�P (t, t
′)

≤ [∧

s,s′∈T (X)
(
P(s, s′) → �Q

(
h(s), h(s′)

))]∗ → �Q
(
h(t), h(t ′)

)
(25)

for every P,Q ∈ P, t, t ′ ∈ T (X), and every endomorphism h on T(X).

Proof. “⇒”: Let us suppose (21), (22), and (23) hold. TakeP,Q ∈ P, t, t ′ ∈ T (X),
and an endomorphism h : T(X) → T(X). Using (2) and the adjointness property
it follows that

h(P )(r, r ′) → �Q(r, r
′) =

(∨
h(s)= r
h(s′)= r ′

P(s, s′)
)

→ �Q(r, r
′)

=
∧

h(s)= r
h(s′)= r ′

(
P(s, s′) → �Q(r, r

′)
) =

∧
h(s)= r
h(s′)= r ′

(
P(s, s′) → �Q

(
h(s), h(s′)

))
,
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for every r, r ′ ∈ T (X). Thus, using (22), (24) we obtain

�P (t, t
′) ≤ �h(P )

(
h(t), h(t ′)

)

≤ [∧

r,r ′∈T (X)
(
h(P )(r, r ′) → �Q(r, r

′)
)]∗ → �Q

(
h(t), h(t ′)

)

=
[∧

r,r ′∈T (X)
∧

h(s)= r
h(s′)= r ′

(
P(s, s′) → �Q

(
h(s), h(s′)

))]∗→ �Q
(
h(t), h(t ′)

)

= [∧

s,s′∈T (X)
(
P(s, s′) → �Q

(
h(s), h(s′)

))]∗→ �Q
(
h(t), h(t ′)

)
.

Hence, the inequality (25) is satisfied.
“⇐”: Assume that conditions (21), (25) hold.
(22): Take any endomorphism h : T(X) → T(X) and put Q = h(P ). From

Definition 1 it follows that Q ∈ P. Now, using (25) we obtain

�P (t, t
′)

≤ [∧

r,r ′∈T (X)
(
P(r, r ′) → �h(P )

(
h(r), h(r ′)

))]∗ → �h(P )
(
h(t), h(t ′)

)
.

Moreover, applying (2), (21), we have

P(r, r ′) ≤ ∨
h(s)=h(r)
h(s′)=h(r ′)

P (s, s′) = h(P )
(
h(r), h(r ′)

) ≤ �h(P )
(
h(r), h(r ′)

)
,

i.e. P(r, r ′) → �h(P )
(
h(r), h(r ′)

) = 1 for all r, r ′ ∈ T (X). Now, (6) gives

�P (t, t
′) ≤ 1∗ → �h(P )

(
h(t), h(t ′)

) = �h(P )
(
h(t), h(t ′)

)
,

proving (22).
(23): Applying (25) to h being the identical morphism (i.e. h(t) = t) we get

(24), a condition equivalent to (23). ��
Remark 7. In ordinary case, the concept of a semantically closed set of implications
corresponds to so-called fully invariant closure operators and fully invariant clo-
sure systems inT (X)×T (X), see [38]. Recall that the condition of full invariance of
a closure operator cl means that h(cl(P )) ⊆ cl(h(P )) for everyP ⊆ T (X)×T (X).
In case of implications with finite premises, semantically closed sets of implications
correspond to algebraic (i.e. finitely generated) fully invariant closure operators.

In fuzzy setting, the above-described relationship is not so straightforward. That
is why we use the notion of a P-indexed system of L-relations and postulate addi-
tional conditions (these conditions are “present” in the concept of a fully invariant
closure system of relations in the ordinary case). It is an open problem whether there
is some nicer algebraic characterization of our P-indexed systems of L-relations.

Theorem 2. Let P = LT (X)×T (X) and let S� be an L∗-implicational P-indexed
system of L-relations. Then an operator cl on LT (X)×T (X) defined by cl(P ) = �P
is an L∗-closure operator and

h
(
cl(P )

) ⊆ cl
(
h(P )

)
(26)

holds for every P ∈ LT (X)×T (X), and every endomorphism h : T(X) → T(X).
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Proof. We check (26) since the rest is obvious. Let P ∈ LT (X)×T (X) and let h be
an endomorphism on T(X). We have

h(�P )(t, t
′) = ∨

h(s)= t
h(s′)= t ′

�P (s, s
′) ≤ ∨

h(s)= t
h(s′)= t ′

�h(P )(h(s), h(s
′))

= ∨
h(s)= t
h(s′)= t ′

�h(P )(t, t
′) = �h(P )(t, t

′)

for all t, t ′ ∈ T (X). Thus, h
(
cl(P )

) ⊆ cl
(
h(P )

)
. ��

Theorem 3. Let P = LT (X)×T (X) and suppose ∗ is an implicational truth stress-
er. Let cl be an L∗-closure operator on LT (X)×T (X) satisfying (26) for every P ∈
LT (X)×T (X) and every endomorphism h : T(X) → T(X). Then the P-indexed
system S� = {�P |�P = cl(P )} is an L∗-implicational P-indexed system of L-
relations.

Proof. (22): Using (26) we get

�P (t, t
′) = cl(P )(t, t ′) ≤ ∨

h(s)=h(t)
h(s′)=h(t ′)

cl(P )(s, s′) = h
(
cl(P )

)
(h(t), h(t ′))

≤ cl
(
h(P )

)
(h(t), h(t ′)) = �h(P )(h(t), h(t

′))

for all terms t, t ′ ∈ T (X). The rest follows easily. ��
Remark 8. Note that the correspondences described by Theorem 2 and Theorem 3
are in fact mutually inverse. Therefore, for P = LT (X)×T (X) (no restriction on
premises) there is a natural bijective correspondence between L∗-implicational P-
indexed system of binary L-relations and fully invariant L∗-closure operators in
T (X), generalizing the ordinary case.

We are going to show that L∗-implicational P-indexed systems of congruences
are in one-to-one correspondence with L∗-implicational P-theories, i.e. theories of
classes of L-algebras with respect to a given implicational truth stresser.

Definition 8. Let ∗ be an implicational truth stresser and let P be a proper family
of premises of type F . For a class K of L-algebras of type F we define an L-set of
P-implications Impl(K) by

(
Impl(K))(P i (t ≈ t ′)

) = ∥∥P i (t ≈ t ′)
∥∥K

for every P ∈ P, t, t ′ ∈ T (X) (the truth degree
∥∥P i (t ≈ t ′)

∥∥K is w.r.t. ∗).
An L-set � of P-implications is said to be an L∗-implicational PPP-theory, if

there is a class K of L-algebras of the same type such that � = Impl(K).
Theorem 4. Let � be an L∗-implicational P-theory. Then �P is a congruence on
T(X) for every P ∈ P.

Proof. Since � is an L∗-implicational P-theory, there is a class K of L-algebras
such that � = Impl(K). That is, we have
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�
(
P i (t ≈ t ′)

) = ∥∥P i (t ≈ t ′)
∥∥K = ∧

M∈K
∧
v:X→M

∥∥P i (t ≈ t ′)
∥∥

M,v
.

Denote �
(
P i (t ≈ t ′)

)
simply by ∧M,v

∥∥P i (t ≈ t ′)
∥∥

M,v
.

Reflexivity and symmetry of�P follow from reflexivity and symmetry of every
L-equality. For transitivity, let P ∈ P and t, t ′, t ′′ ∈ T (X). Using (17), properties
of ≈M’s, and the isotony of → in the second argument, we have

�P (t, t
′)⊗�P (t

′, t ′′)
= (∧

M,v

∥∥P i (t ≈ t ′)
∥∥

M,v

) ⊗ (∧

M,v

∥∥P i (t ′ ≈ t ′′)
∥∥

M,v

)

≤
∧

M,v

(∥∥P i (t ≈ t ′)
∥∥

M,v
⊗ ∥∥P i (t ′ ≈ t ′′)

∥∥
M,v

)

=
∧

M,v

((‖P ‖M,v → ∥∥t ≈ t ′
∥∥

M,v

) ⊗ (‖P ‖M,v → ∥∥t ′ ≈ t ′′
∥∥

M,v

))

≤
∧

M,v

((‖P ‖M,v ⊗ ‖P ‖M,v

) → (∥∥t ≈ t ′
∥∥

M,v
⊗ ∥∥t ′ ≈ t ′′

∥∥
M,v

))

=
∧

M,v

(‖P ‖M,v → (∥∥t ≈ t ′
∥∥

M,v
⊗ ∥∥t ′ ≈ t ′′

∥∥
M,v

)) ≤ �P (t, t
′′).

Hence, �P is transitive.
It suffices to check compatibility with operations since ≈T(X) ⊆ �P holds

trivially. Take P ∈ P, an n-ary f ∈ F , and terms t1, t ′1, . . . , tn, t
′
n. Since

⊗n

i=1

∥∥ti ≈ t ′i
∥∥

M,v
=

⊗n

i=1
‖ti‖M,v ≈M ∥∥t ′i

∥∥
M,v

≤ fM(‖t1‖M,v , . . . , ‖tn‖M,v

) ≈M fM(∥∥t ′1
∥∥

M,v
, . . . ,

∥∥t ′n
∥∥

M,v

)

= ‖f (t1, . . . , tn)‖M,v ≈M ∥∥f (t ′1, . . . , t
′
n)

∥∥
M,v

= ∥∥f (t1, . . . , tn) ≈ f (t ′1, . . . , t
′
n)

∥∥
M,v

,

we get

�P (t1, t
′
1)⊗ · · · ⊗�P (tn, t

′
n) =

⊗n

i=1

∧

M,v

∥∥P i (ti ≈ t ′i )
∥∥

M,v

≤
∧

M,v

⊗n

i=1

∥∥P i (ti ≈ t ′i )
∥∥

M,v

=
∧

M,v

⊗n

i=1

(‖P ‖M,v → ∥∥ti ≈ t ′i
∥∥

M,v

)

≤
∧

M,v

((‖P ‖M,v

)n →
⊗n

i=1

∥∥ti ≈ t ′i
∥∥

M,v

)

≤
∧

M,v

(‖P ‖M,v→
∥∥f (t1,. . . ,tn)≈f(t ′1,. . . , t ′n)

∥∥
M,v

)

= �P
(
f (t1, . . . , tn), f (t

′
1, . . . , t

′
n)

)
.

Hence, �P is compatible. Altogether, �P is a congruence for every P ∈ P. ��
Remark 9. In the proof of Theorem 4 we used (17), i.e. a∗ ⊗ a∗ = a∗, which is
required for implicational truth stressers. Without postulating (17), we are not able
to prove that �P is transitive and compatible. When every �P is a congruence, we
can easily define a class of models as factorizations of T(X), see Theorem 6.

We need the following technical assertion.
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Lemma 3. Suppose P is a proper set of premises and ∗ is an implicational truth
stresser. Then for every P,Q ∈ P, for every L-algebra M, and for every valuation
v : X → M , we have

[∧

s,s′∈T (X)
(
P(s, s′) →

∧

M,v

∥∥Qi (s ≈ s′)
∥∥

M,v

)]∗

≤
∧

M,v

(‖Q‖M,v → ‖P ‖M,v

)
. (27)

Proof. First, observe that
∧

s,s′∈T (X)
(
P(s, s′) →

∧

M,v

∥∥Qi (s ≈ s′)
∥∥

M,v

)

=
∧

s,s′∈T (X)
(
P(s, s′) →

∧

M,v

[‖Q‖M,v → ∥∥s ≈ s′
∥∥

M,v

])

=
∧

s,s′∈T (X)
∧

M,v

(
P(s, s′) → [‖Q‖M,v → ∥∥s ≈ s′

∥∥
M,v

])

=
∧

M,v

∧

s,s′∈T (X)
(‖Q‖M,v → [

P(s, s′) → ∥∥s ≈ s′
∥∥

M,v

])

=
∧

M,v

(‖Q‖M,v →
∧

s,s′∈T (X)
[
P(s, s′) → ∥∥s ≈ s′

∥∥
M,v

])
.

Now using (16), (8), and (18), we have
[∧

s,s′∈T (X)
(
P(s, s′) →

∧

M,v

∥∥Qi (s ≈ s′)
∥∥

M,v

)]∗

= [∧

M,v

(‖Q‖M,v →
∧

s,s′∈T (X)
[
P(s, s′) → ∥∥s ≈ s′

∥∥
M,v

])]∗

=
∧

M,v

(‖Q‖M,v →
∧

s,s′∈T (X)
[
P(s, s′) → ∥∥s ≈ s′

∥∥
M,v

])∗

≤
∧

M,v

((‖Q‖M,v

)∗ → (∧

s,s′∈T (X)
[
P(s, s′) → ∥∥s ≈ s′

∥∥
M,v

])∗)

=
∧

M,v

(‖Q‖M,v → (∧

s,s′∈T (X)
[
P(s, s′) → ∥∥s ≈ s′

∥∥
M,v

])∗)

=
∧

M,v

(‖Q‖M,v → ‖P ‖M,v

)
,

proving (27). ��
Theorem 5. Let� be an L∗-implicational P-theory. Then the corresponding S� is
an L∗-implicational P-indexed system of congruences.

Proof. Let us have a class K of L-algebras such that � = Impl(K). We have to
check (21)–(23) of S� . The rest follows from Theorem 4.

(21): Suppose we have P ∈ P and terms t, t ′ ∈ T (X). For every M ∈ K and a
valuation v : X → M , we have

P(t, t ′) ≤ (
P(t, t ′) → ∥∥t ≈ t ′

∥∥
M,v

) → ∥∥t ≈ t ′
∥∥

M,v

≤
∧

s,s′∈T (X)
(
P(s, s′) → ∥∥s ≈ s′

∥∥
M,v

) → ∥∥t ≈ t ′
∥∥

M,v

≤ (∧

s,s′∈T (X)
(
P(s, s′) → ∥∥s ≈ s′

∥∥
M,v

))∗ → ∥∥t ≈ t ′
∥∥

M,v

= ∥∥P i (t ≈ t ′)
∥∥

M,v
,

showing that P(t, t ′) ≤ ∧
M,v

∥∥P i (t ≈ t ′)
∥∥

M,v
= �P (t, t

′), i.e. P ⊆ �P .
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(22): For all terms r, r ′ ∈ T (X), a truth degree
∥∥h(r) ≈ h(r ′)

∥∥
M,v

equals to∥∥r ≈ r ′
∥∥

M,w
for some valuationw : X → M . Moreover,w is determined uniquely

by the endomorphism h. Hence, it follows that

�P (t, t
′) =

∧

M,v

[(∧

s,s′∈T (X)
(
P(s, s′)→∥∥s ≈ s′

∥∥
M,v

))∗→ ∥∥t ≈ t ′
∥∥

M,v

]

≤
∧

M,v

[(∧

s,s′∈T (X)
(
P(s, s′)→∥∥h(s) ≈ h(s′)

∥∥
M,v

))∗→ ∥∥h(t) ≈ h(t ′)
∥∥

M,v

]

for any endomorphism h on T(X). Furthermore,
∧

s,s′∈T (X)
(
P(s, s′) → ∥∥h(s) ≈ h(s′)

∥∥
M,v

)

=
∧

s,s′∈T (X)
∧

h(r)=h(s)
h(r ′)=h(s′)

(
P(r, r ′) → ∥∥h(s) ≈ h(s′)

∥∥
M,v

)

=
∧

s,s′∈T (X)

((∨
h(r)=h(s)
h(r ′)=h(s′)

P (r, r ′)
)

→ ∥∥h(s) ≈ h(s′)
∥∥

M,v

)

=
∧

s,s′∈T (X)
(
h(P )(h(s), h(s′)) → ∥∥h(s) ≈ h(s′)

∥∥
M,v

)

=
∧

s,s′∈T (X)
(
h(P )(s, s′) → ∥∥s ≈ s′

∥∥
M,v

)
.

Putting both facts together, we obtain

�P (t, t
′) ≤

∧

M,v

[(∧

s,s′∈T (X)
(
P(s, s′) → ∥∥h(s) ≈ h(s′)

∥∥
M,v

))∗

→ ∥∥h(t) ≈ h(t ′)
∥∥

M,v

]

=
∧

M,v

[(∧

s,s′∈T (X)
(
h(P )(s, s′)→∥∥s ≈ s′

∥∥
M,v

))∗

→∥∥h(t) ≈ h(t ′)
∥∥

M,v

]

=
∧

M,v

∥∥h(P )i (h(t) ≈ h(t ′))
∥∥

M,v
= �h(P )(h(t), h(t

′)).

(23): By Lemma 3,

�P (t, t
′)⊗ (∧

s,s′∈T (X)
(
P(s, s′) → �Q(s, s

′)
))∗

= (∧

M,v

(‖P ‖M,v → ∥∥t ≈ t ′
∥∥

M,v

))

⊗ [∧

s,s′∈T (X)
(
P(s, s′) →

∧

M,v

∥∥Qi (s ≈ s′)
∥∥

M,v

)]∗

≤ (∧

M,v

(‖P ‖M,v → ∥∥t ≈ t ′
∥∥

M,v

)) ⊗ (∧

M,v

(‖Q‖M,v → ‖P ‖M,v

))

≤
∧

M,v

[(‖P ‖M,v → ∥∥t ≈ t ′
∥∥

M,v

) ⊗ (‖Q‖M,v → ‖P ‖M,v

)]

≤
∧

M,v

(‖Q‖M,v → ∥∥t ≈ t ′
∥∥

M,v

) = �Q(t, t
′).

The previous inequality is equivalent to (23). The proof is complete. ��
Now we turn our attention to the converse problem. Having given an L∗-im-

plicational P-indexed system of congruences S� , we construct a suitable class of
L-algebras K, such that � = Impl(K).
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Theorem 6. Let S� be an L∗-implicational P-indexed system of congruences. Then
� is an L∗-implicational P-theory. Namely, � = Impl(K) for a class K defined by
K = {T(X)/�P |P ∈ P}.
Proof. We have to check that �P (t, t ′) = ∥∥P i (t ≈ t ′)

∥∥K, where
∥∥P i (t ≈ t ′)

∥∥K =
∧

Q∈P
v:X→T (X)/�Q

∥∥P i (t ≈ t ′)
∥∥

T(X)/�Q,v
.

“≤”: Take T(X)/�Q ∈ K and a valuation v : X → T (X)/�Q. There is an
endomorphism h on T(X), such that [h(s)]�Q = ‖s‖T(X)/�Q,v for every s ∈ T (X).
Consequently,

∥∥s ≈ s′
∥∥

T(X)/�Q,v
= ‖s‖T(X)/�Q,v ≈T(X)/�Q

∥∥s′
∥∥

T(X)/�Q,v

= [h(s)]�Q ≈T(X)/�Q
[
h(s′)

]
�Q

= �Q
(
h(s), h(s′)

)

for every s, s′ ∈ T (X). Using (25) we get

�P (t, t
′) ≤ [∧

s,s′∈T (X)
(
P(s, s′) → �Q

(
h(s), h(s′)

))]∗ → �Q
(
h(t), h(t ′)

)

= [∧

s,s′∈T (X)
(
P(s, s′) → ∥∥s ≈ s′

∥∥
T(X)/�Q,v

)]∗ → ∥∥t ≈ t ′
∥∥

T(X)/�Q,v

= ∥∥P i (t ≈ t ′)
∥∥

T(X)/�Q,v
,

proving the “≤” inequality.
“≥”: For everyP ∈ P and a valuation v : X → T (X)/�P , where v(x) = [x]�P

for all x ∈ X, we have ‖t‖T(X)/�P ,v = [t]�P for every t ∈ T (X) (easy proof by
structural induction). Thus, it follows that

�P (s, s
′) = [s]�P ≈T(X)/�P

[
s′

]
�P

= ‖s‖T(X)/�P ,v ≈T(X)/�P
∥∥s′

∥∥
T(X)/�P ,v

= ∥∥s ≈ s′
∥∥

T(X)/�P ,v

for every s, s′ ∈ T (X). Now we can use property (6) of ∗ and (21) to obtain the
desired inequality:

�P (t, t
′) = ∥∥t ≈ t ′

∥∥
T(X)/�P ,v

= 1∗ → ∥∥t ≈ t ′
∥∥

T(X)/�P ,v

= [∧

s,s′ ∈ T (X)
(
P(s, s′) → �P (s, s

′)
)]∗ → ∥∥t ≈ t ′

∥∥
T(X)/�P ,v

= [∧

s,s′ ∈ T (X)
(
P(s, s′) → ∥∥s ≈ s′

∥∥
T(X)/�P ,v

)]∗ → ∥∥t ≈ t ′
∥∥

T(X)/�P ,v

= ∥∥P i (t ≈ t ′)
∥∥

T(X)/�P ,v
≥

∧
Q∈P
v:X→T (X)/�Q

∥∥P i (t ≈ t ′)
∥∥

T(X)/�Q,v
.

��
∗ ∗ ∗

We close this section with a definition of a truth degree of a semantic con-
sequence. Moreover, we will express this logical notion algebraically. First, we
introduce the notion of a semantic closure of an L-set of P-implications. As it will
appear later, a degree of a semantic consequence is equal to a membership degree
of a formula in a suitable semantic closure.
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A semantic closure of � is defined as an L∗-implicational closure of the cor-
responding S� . Theorem 7 shows that such closure always exists. First, we check
that a system of all L∗-implicational P-indexed systems of congruences is a closure
system itself. Then every P-indexed system of L-relations (corresponding to�) can
be closed to the least L∗-implicational P-indexed system of congruences containing
S� .

Recall that for P-indexed systems of L-relations S = {SP |P ∈ P}, S′ ={
S′
P |P ∈ P

}
, we put S ≤ S′ iff SP ⊆ S′

P for all P ∈ P. Let N = {Si | i ∈ I } be a
system of P-indexed systems Si of L-relations. That is, each Si ∈ N is a P-indexed
system Si = {

Si,P ∈ LT (X)×T (X) |P ∈ P
}
. We can define a P-indexed system⋂

i∈I Si = {(⋂
i∈I Si

)
P

|P ∈ P
}

of L-relations as the intersection
⋂ N, i.e.

(⋂
i∈I Si

)
P

= ⋂
i∈I Si,P .

for every P ∈ P. Hence,
(⋂

i∈I Si
)
P
(t, t ′) = ∧

i∈I Si,P (t, t ′) for all t, t ′ ∈ T (X)
and P ∈ P.

Theorem 7. Let S∗ denote a system of all L∗-implicational P-indexed systems of
congruences. Then S∗ is a closure system.

Proof. We have to check, that S∗ is nonempty and closed under arbitrary intersec-
tions. Clearly,

Smax = {
SP | SP (t, t ′) = 1 for every P ∈ P, t ′, t ∈ T (X)}

belongs to S∗ and so S∗ is nonempty.
Let N = {Si ∈ S∗ | i ∈ I}. We have to show that

⋂ N = ⋂
i∈I Si ∈ S∗. It is

easy to show that each
(⋂

i∈I Si
)
P

= ⋂
i∈I Si,P (P ∈ P) is a congruence. Hence,

it remains to check that
⋂
i∈I Si satisfies conditions (21)–(23).

(21): Let P ∈ P, t, t ′ ∈ T (X). Since P(t, t ′) ≤ Si,P (t, t
′), P(t, t ′) ≤∧

i∈I Si,P (t, t ′) = (⋂
i∈I Si

)
P
(t, t ′).

(22): From Si,P (t, t
′) ≤ Si,h(P )

(
h(t), h(t ′)

)
(i ∈ I ), we get

(⋂
i∈I Si

)
P
(t, t ′) =

∧

i∈I Si,P (t, t
′) ≤

∧

i∈I Si,h(P )
(
h(t), h(t ′)

)

= (⋂
i∈I Si

)
h(P )

(
h(t), h(t ′)

)
.

(23): Take any P,Q ∈ P, and terms t, t ′ ∈ T (X). Taking into account (18) and
(23) of Si , it follows that

(⋂
i∈I Si

)
P
(t, t ′)⊗ [∧

s,s′∈T (X)
(
P(s, s′) → (⋂

i∈I Si
)
Q
(s, s′)

)]∗

=
∧

i∈I Si,P (t, t
′)⊗ [∧

s,s′∈T (X)
(
P(s, s′) →

∧

j∈I Sj,Q(s, s
′)
)]∗

≤
∧

i∈I
(
Si,P (t, t

′)⊗ [∧

s,s′∈T (X)
(
P(s, s′) → Si,Q(s, s

′)
)]∗) ≤ Sk,Q(t, t

′)

for every k ∈ I . Hence,
(⋂

i∈I Si
)
P
(t, t ′)⊗ [∧

s,s′∈T (X)
(
P(s, s′) → (⋂

i∈I Si
)
Q
(s, s′)

)]∗

≤
∧

k∈I Sk,Q(t, t
′) = (⋂

i∈I Si
)
Q
(t, t ′),

verifying (24) which is equivalent to (23). ��
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Corollary 1. For every L-set � of P-implications, and every implicational truth
stresser ∗, there exists the least L∗-implicational P-indexed system of congruences
S�� = {��

P |P ∈ P}, such that �P ⊆ ��
P for every P ∈ P. ��

Definition 9. Suppose � is an L-set of P-implications, and ∗ is an implicational
truth stresser. Then the associated L∗-implicational P-indexed system of congru-
ences S�� = {��

P |P ∈ P} (see Corollary 1) is called a semantic closure of S� .
Analogously, the corresponding L-set �� of P-implications is called a semantic
closure of �.

As usual, let Mod(�) denote the class of all models of �, i.e.

Mod(�) = {
M |�(ϕ) ≤ ‖ϕ‖M for every P-implication ϕ

}
.

For every P-implication ϕ we define a truth degree ‖ϕ‖� to which ϕ seman-
tically follows from � w.r.t. ∗ by

‖ϕ‖� = ‖ϕ‖Mod(�) .

Theorem 8. Suppose � is an L-set of P-implications, and ∗ is an implicational
truth stresser. Then

∥∥P i (t ≈ t ′)
∥∥
�

= ��
P (t, t

′)

for every P ∈ P, and for all terms t, t ′ ∈ T (X).
Proof. “≤”: Previous results yield that� can be closed to��. Since� ⊆ ��, we
have Mod(��) ⊆ Mod(�). Furthermore, S�� is an L∗-implicational P-indexed
system of congruences, thus Theorem 6 yields

{
T(X)/��

Q |Q ∈ P
} ⊆ Mod(��)

since ��
P (t, t

′) ≤ ∥∥P i (t ≈ t ′)
∥∥

T(X)/��
Q

for every P,Q ∈ P, and t, t ′ ∈ T (X).
Thus, we have

∥∥P i (t ≈ t ′)
∥∥
�

=
∧

M ∈ Mod(�)

∥∥P i (t ≈ t ′)
∥∥

M

≤
∧

M ∈ Mod(��)

∥∥P i (t ≈ t ′)
∥∥

M

≤
∧

Q∈ P

∥∥P i (t ≈ t ′)
∥∥

T(X)/��
Q

= ��
P (t, t

′).

“≥”: Take M ∈ Mod(�). That is, for every P-implication P i (t ≈ t ′) we
have �(P i (t ≈ t ′)) ≤ ∥∥P i (t ≈ t ′)

∥∥
M, whence � ⊆ Impl({M}). Moreover,

Impl({M}) is an L∗-implicational P-theory (defined by the one element class K =
{M}), and so SImpl({M}) is an L∗-implicational P-indexed system of congruences
(due to Theorem 5), containing S� . As S�� is the least one containing S� , we get
S�� ≤ SImpl({M}). As a consequence,

��
P (t, t

′) ≤ (
Impl({M}))(P i (t ≈ t ′)) = ∥∥P i (t ≈ t ′)

∥∥
M .

Since M ∈ Mod(�) is arbitrary, we obtain

��
P (t, t

′) ≤
∧

M ∈ Mod(�)

∥∥P i (t ≈ t ′)
∥∥

M = ∥∥P i (t ≈ t ′)
∥∥
�

proving “≥”. Altogether, we have
∥∥P i (t ≈ t ′)

∥∥
�

= ��
P (t, t

′) for every
P i (t ≈ t ′). ��
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Remark 10. Theorem 8 provides an algebraic characterization of semantic conse-
quence for arbitrary residuated lattice L together with an implicational truth stresser
for L and for any proper family of premises P. In Section 5 we describe the notion
of a syntactic consequence (provability) and we establish a general completeness
theorem. However, we need to postulate two more restrictive conditions on truth
stressers. These conditions will be introduced in Section 4.

4. Implicational and Horn theories

In this section, we investigate a relationship between L∗-implicational P-theories
and their special subtheories determined by a restriction on P, namely by a restric-
tion on finiteness of every P ∈ P. From the point of view of axiomatization,
finiteness is an important property. As a consequence, we will not have to general-
ize the notions of a deduction rule (having finitely many hypotheses) and a weighted
proof (being a finite sequence).

In the case of infinitely many premises, things are much more complicated.
First, restrictions on ∗ necessary to prove the completeness theorem would be very
strong. In addition to that, there would be deduction rules using infinitely many
hypotheses, so when we want such rules to be involved in proofs, we have to gener-
alize the notion of a proof itself (to be an infinitely branching tree of a finite depth).
But we will not go into this mainly because it does not seem to be any natural
motivation there.

This section is aimed to investigate the relationship between theories with gen-
eral P-implications and restrictions on finite premises. An important thing to stress
is that we need to postulate two additional conditions for implicational truth stress-
ers to be able to achieve a result which is similar to the well-known relationship
between ordinary implicational theories and ordinary Horn theories.

Definition 10. For every proper family of premises P, let PFin denote a restricted
proper family of premises defined by

PFin = {P |P ∈ P and P is finite} .

PFin is called a Horn restriction of P. Let � be an L∗-implicational P-the-
ory. Then an L-set �Fin of PFin-implications, where �Fin(P i (t ≈ t ′)) =
�(P i (t ≈ t ′)) for every P ∈ PFin, t, t ′ ∈ T (X) is called an L∗-implicational
Horn subtheory of �.

Remark 11. (1) For an L∗-implicational P-theory �, the corresponding L∗-impli-
cational Horn subtheory �Fin is an L∗-implicational PFin-theory.

(2) In case of finite premises, condition (24) simplifies to

�P (t, t
′)⊗ (∧n

i=1

(
P(ti, t

′
i ) → �Q(ti, t

′
i )

))∗ ≤ �Q(t, t
′), (28)

where Supp(P ) ⊆ {〈
t1, t

′
1

〉
, . . . ,

〈
tn, t

′
n

〉}
.
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Example 5. The following are examples of Horn restrictions.

(a) Let us have an L∗-implicational P-theory�, where P = LT (X)×T (X). Then PFin
is a proper family of all finite premises and Horn subtheory �Fin is an L-set of
Horn clauses.

(b) In case of crisp premises, i.e. P = {P ∈ LT (X)×T (X) |P is crisp}, the cor-
responding PFin is a proper family of all crisp finite premises. Hence, for an
L∗-implicational P-theory�, the Horn subtheory consists of Horn clauses with
crisp premises.

(c) In ordinary case, for every implicational theory�, we can consider a Horn the-
ory [38] being a restriction of � on finite premises. In our approach for L = 2,
this is exactly the Horn subtheory of �.

(d) There are also other nontrivial examples of Horn subtheories. For every a ∈ L,
let Pa denote

Pa = {P ∈ LT (X)×T (X) |P(t, t ′) > 0 implies P(t, t ′) ≥ a

for all t, t ′ ∈ T (X)}.
It is easy to see that Pa is a proper family of premises since for every P ∈ P,
h(P )(t, t ′) is either zero or h(P )(t, t ′) ≥ a. In fact, we have P0 = LT (X)×T (X),
and P1 denotes the proper family of crisp premises. For every L∗-implicational
Pa-theory, we can consider the corresponding (Pa)Fin-subtheory.

For every �, �Fin is a restriction of � on implications with finite premises.
Conversely, we can ask, whether for a given P and an L∗-implicational PFin-the-
ory � there is an L∗-implicational P-theory � such that � = �Fin. Under some
additional assumptions, such theory always exists.

Definition 11. An implicational truth stresser ∗ for a complete residuated lattice L
is called a Horn truth stresser if it satisfies

a ⊗ b∗ = a ∧ b∗, (29)

(a → ∨
i∈I bi)

∗ = ∨
i∈I (a → bi)

∗, (30)

for every nonempty index set I and a, b, bi ∈ L.

Remark 12. (1) Monotony of ∗ yields that (a → ∨
i∈I bi)

∗ ≥ ∨
i∈I (a → bi)

∗ is al-
ways true. Therefore, (30) is equivalent to (a → ∨

i∈I bi)
∗ ≤ ∨

i∈I (a → bi)
∗.

(2) Note that (29) is not too restrictive. For instance, it is well-known fact that (29)
is implied by divisibility (recall that b∗ is an idempotent), e.g. it holds in every
BL-algebra, see [6].

(3) Condition (30) is similar to left-continuity of → in the second argument:
a → ∨

i∈I bi = ∨
i∈I (a → bi). However, our condition seems to be

more restrictive. For instance, in the standard Łukasiewicz algebra Ł =
〈[0, 1],max,min,⊗,→, 0, 1〉, where a ⊗ b = max(a + b − 1, 0), a → b =
min(1 − a + b, 1), the operation → is continuous in the second argument. But
for ∗ defined by (9), condition (30) is not satisfied. Take I = [0, 0.5), bi = i

for every i ∈ I , so for a = 0.5 we have

(0.5 → 0.5)∗ = 1∗ = 1 � 0 = ∨
i ∈[0,0.5) 0∗ = ∨

i ∈[0,0.5) (0.5 → i)∗.
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For some special proper families of premises, condition (30) simplifies, see
Section 6.

(4) In finite chains, condition (30) is always satisfied (obvious).

Any finite L-relation P ′ ∈ LT (X)×T (X), where P ′(t, t ′) > 0 implies P ′(t, t ′) =
P(t, t ′) for every terms t, t ′ ∈ T (X), is called a finite restriction of P ∈ P. In the
sequel, a set of all finite restrictions of P ∈ P will be denoted by Fin(P ). Note
that for ∅T (X)×T (X), we have ∅T (X)×T (X) ∈ Fin(P ), since both conditions hold
trivially. We say that P is closed under finite restrictions if Fin(P ) ⊆ P for each
P ∈ P.

Theorem 9. Let L∗ be a complete residuated lattice with a Horn truth stresser ∗,
let � be an L∗-implicational PFin-theory, where P is a proper family of premises
closed under finite restrictions. Then putting

�P = ⋃
P ′∈ Fin(P ) �P ′ , for P ∈ P, (31)

� is an L∗-implicational P-theory. Moreover, � is the least L∗-implicational
P-theory with � = �Fin.

Proof. Using Theorem 6, we need to check conditions (21)–(23) of S� , the fact
that every �P is a congruence, and the fact that � is the least one with � = �Fin.

�P is a congruence: This is easy to see since the system of congruences{
�P ′ |P ′ ∈ Fin(P )

}
is directed. Indeed, for every P ′

1, P
′
2 ∈ Fin(P ), we have

P ′
1, P

′
2 ⊆ P ′

1 ∪ P ′
2, and P ′

1 ∪ P ′
2 ∈ Fin(P ), thus by (21) of S� , it follows that

P ′
1, P

′
2 ⊆ �P ′

1 ∪P ′
2
, whence, by (23)�P ′

1
, �P ′

2
⊆ �P ′

1 ∪P ′
2
. This idea generalizes easily

for finitely many congruences, i.e.
{
�P ′ |P ′ ∈ Fin(P )

}
is a directed system of con-

gruences. Hence,�P = ⋃
P ′ ∈ Fin(P ) �P ′ is a congruence for every P ∈ P (see [9]).

(21): Since P = ⋃
P ′∈ Fin(P ) P

′, condition (21) of S� gives

P = ⋃
P ′∈ Fin(P ) P

′ ⊆ ⋃
P ′∈ Fin(P ) �P ′ = �P ,

verifying (21) for every P ∈ P.
(22): For P ′ ∈ Fin(P ), P ∈ P, and an endomorphism h on T(X) we have

h(P ′) ⊆ h(P ) and h(P ′) is finite. Thus,

�P (t, t
′) = ∨

P ′∈ Fin(P ) �P ′(t, t ′) ≤ ∨
P ′∈ Fin(P ) �h(P ′)

(
h(t), h(t ′)

)

≤ ∨
P ′′∈ Fin(h(P )) �P ′′

(
h(t), h(t ′)

) = �h(P )
(
h(t), h(t ′)

)

proves (22) for S� .
(23): Let P ′ ∈ Fin(P ) with Supp

(
P ′) = {〈

ti , t
′
i

〉 | i = 1, . . . , k
}
, P ∈ P, and

t, t ′ ∈ T (X). Since S� satisfies (23) equivalently formulated by (24), we have

�P ′(t, t ′)⊗ (∧k

i=1

(
P ′(ti , t ′i ) → �Q′(ti , t

′
i )

))∗
≤ �Q′(t, t ′)

for every Q′ ∈ Fin(Q), Q ∈ P. Hence,

�P ′(t, t ′)⊗ ∨
Q′∈ Fin(Q)

(∧k

i=1

(
P ′(ti , t ′i ) → �Q′(ti , t

′
i )

))∗

≤ ∨
Q′∈ Fin(Q) �Q′(t, t ′) = �Q(t, t

′).

Using (18), (29) we get



Fuzzy Horn logic I 27

�P ′(t, t ′)⊗ ∨
Q′∈ Fin(Q)

⊗k

i=1

(
P ′(ti , t ′i ) → �Q′(ti , t

′
i )

)∗ ≤ �Q(t, t
′). (32)

Since
{
�Q′ |Q′ ∈ Fin(Q)

}
is a directed system, we have

⊗k

i=1

∨
Q′∈ Fin(Q)

(
P ′(ti , t ′i ) → �Q′(ti , t

′
i )

)∗

= ∨
Q′

1,...,Q
′
k∈ Fin(Q)

⊗k

i=1

(
P ′(ti , t ′i ) → �Q′

i
(ti , t

′
i )

)∗

= ∨
Q′∈ Fin(Q)

⊗k

i=1

(
P ′(ti , t ′i ) → �Q′(ti , t

′
i )

)∗
.

Using (18), (29), (30), (32), and the previous equality we further get

�P ′(t, t ′)⊗ (∧k

i=1

(
P ′(ti , t ′i ) → �Q(ti, t

′
i )

))∗

= �P ′(t, t ′)⊗
⊗k

i=1

(
P ′(ti , t ′i ) → �Q(ti, t

′
i )

)∗

= �P ′(t, t ′)⊗
⊗k

i=1

(
P ′(ti , t ′i ) → ∨

Q′∈ Fin(Q) �Q′(ti , t
′
i )

)∗

= �P ′(t, t ′)⊗
⊗k

i=1

∨
Q′∈ Fin(Q)

(
P ′(ti , t ′i ) → �Q′(ti , t

′
i )

)∗

= �P ′(t, t ′)⊗ ∨
Q′∈ Fin(Q)

⊗k

i=1

(
P ′(ti , t ′i ) → �Q′(ti , t

′
i )

)∗ ≤ �Q(t, t
′).

Note that (30) can be used properly because Fin(Q) is always a nonempty set (e.g.
∅T (X)×T (X) ∈ Fin(Q)). Moreover, for every P ′ ∈ Fin(P ), we have P ′(s, s′) =
P(s, s′) for every

〈
s, s′

〉 ∈ Supp
(
P ′). Thus, using monotony of ∗, we have

�P ′(t, t ′)⊗ (∧

s,s′ ∈ T (X)
(
P(s, s′) → �Q(s, s

′)
))∗

≤ �P ′(t, t ′)⊗ (∧k

i=1

(
P(ti, t

′
i ) → �Q(ti, t

′
i )

))∗
≤ �Q(t, t

′)

for any P ′ ∈ Fin(P ). Hence, we have

�P (t, t
′)⊗ (∧

s,s′ ∈ T (X)
(
P(s, s′) → �Q(s, s

′)
))∗

= ∨
P ′∈ Fin(P ) �P ′(t, t ′)⊗ (∧

s,s′ ∈ T (X)
(
P(s, s′) → �Q(s, s

′)
))∗ ≤ �Q(t, t

′),

verifying (23). Altogether, S� is an L∗-implicational P-indexed system of congru-
ences, thus the corresponding � is an L∗-implicational P-theory by Theorem 6.

� is the least one with� = �Fin: First, we check� = �Fin. Take anyP ∈ PFin.
For everyP ′ ∈ Fin(P ), using (21), (23), we haveP ′ ⊆ �P , and consequently�P ′ ⊆
�P . On the other hand, �P ⊆ ⋃

P ′∈ Fin(P ) �P ′ holds trivially due to the fact P ∈
Fin(P ). Hence, �P = ⋃

P ′∈ Fin(P ) �P ′ = �P for every P ∈ PFin, i.e. � = �Fin.
Suppose �′ is an L∗-implicational P-theory such that � = �′

Fin. Take any
P ∈ P. We will show that �P ⊆ �′

P . If P ∈ PFin, we are done, since
�P = �P = �′

P as we have shown in the previous paragraph. For P �∈ PFin,
and arbitrary P ′ ∈ Fin(P ), it follows that P ′ ⊆ P . Using (21) and (23) for S�′ ,
we have P ′ ⊆ �′

P , and �′
P ′ ⊆ �′

P . Thus, �P ′ = �P ′ = �′
P ′ ⊆ �′

P for all
P ′ ∈ Fin(P ). Hence, �P = ⋃

P ′∈ Fin(P ) �P ′ ⊆ �′
P . That is, � is the least L∗-im-

plicational P-theory for which � = �Fin. ��
If L is finite, we can avoid the usage of (30):
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Theorem 10. Let L∗ be a finite residuated lattice with an implicational truth
stresser ∗ satisfying (29), let � be an L∗-implicational PFin-theory, where P is
a proper family of premises closed under finite restrictions. Let �P (P ∈ P) be
defined by (31). Then � is an L∗-implicational P-theory. Moreover, � is the least
L∗-implicational P-theory with � = �Fin.

Proof. We show only the critical part where (30) is used. Since L is finite and{
�Q′ |Q′ ∈ Fin(Q)

}
is directed due to (21) and (23), for every i = 1, . . . , k there

is Qi ∈ Fin(Q) such that
∨
Q′∈ Fin(Q) �Q′(ti , t ′i ) = �Qi (ti , t

′
i ). Thus,

(∧k

i=1

(
P ′(ti , t ′i ) → �Q(ti, t

′
i )

))∗

=
⊗k

i=1

(
P ′(ti , t ′i ) → ∨

Q′∈ Fin(Q) �Q′(ti , t
′
i )

)∗

=
⊗k

i=1

(
P ′(ti , t ′i ) → �Qi (ti , t

′
i )

)∗

≤
⊗k

i=1

∨
Q′∈ Fin(Q)

(
P ′(ti , t ′i ) → �Q′(ti , t

′
i )

)∗
.

The rest follows from the proof of Theorem 9. ��
Remark 13. (1) For all Horn restrictions of P presented in Example 5, the condition

of Theorem 9 holds, i.e. for all P ∈ P, every finite restriction of P belongs to
P. This fact is easy to observe. Thus, the connection between L∗-implicational
PFin-theories and L∗-implicational P-theories is established for all widely used
families of premises.

(2) In the ordinary case [38], fully invariant algebraic closure systems of congru-
ences form the algebraic counterparts of Horn theories. Theorem 9 shows a
condition analogous to algebraicity in our framework. Thus, we could define
algebraic P-indexed systems of congruences as those S� , where � satisfies
(31). For P = LT (X)×T (X), this could yield fully invariant algebraic L∗-closure
systems of congruences. For L = 2, this would further yield fully invariant
algebraic closure systems of congruences—the classical case.

5. Completeness theorem

This section introduces a general completeness theorem which can be used to obtain
completeness theorems of particular calculi depending on what proper family of
premises P and what Horn truth stresser ∗ is given. The choice of P and ∗ is of
crucial importance. For some combinations of P and ∗ the theorem yields simplified
deduction schemes or some restrictive requirements for ∗ get weaker, e.g. (30). As
an extreme example, for P = {∅} we get fuzzy equational logic—the truth stresser ∗
can be omitted and the axiomatic system reduces to the one presented in [5].

The completeness theorem will be proven as usual. First, we define the notion
of a deductive closure of an L-set of P-implications and then we show that the
deductive closure equals the semantic closure. After this, we propose a system of
weighted deduction rules and the notion of a provability degree. Finally, we will
prove the completeness in Pavelka style.
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In the sequel, L∗ denotes a complete residuated lattice L equipped with a Horn
truth stresser ∗. P denotes a proper family of premises for which each P ∈ P is
finite. P-implications will be called Horn clauses (or P-Horn clauses to denote P

explicitly). By � we denote an L-set of Horn clauses.

Definition 12. As usual, let t (x/r) denote the result of substituting term r for var-
iable x in term t . Furthermore, for P ∈ P, let P(x/r) ∈ LT (X)×T (X) denote a
binary L-relation defined by

(
P(x/r)

)
(t, t ′) = ∨

s(x/r)= t
s′(x/r)= t ′

P(s, s′)

for all terms t, t ′ ∈ T (X).
Remark 14. (1) Evidently, every substitution (x/r) can be expressed as an endo-

morphism h on T(X), which is a homomorphic extension of a mapping
g : X → T (X), where g(x) = r , and g(y) = y for y ∈ X, y �= x. Thus,
we have t (x/r) = h(t) for every term t ∈ T (X). Consequently, we have
P(x/r) = h(P ) ∈ P.

(2) We denote substitutions also by τ , τ1, τ2, . . . , and so on. Moreover, instead
of (· · · ((tτ1)τ2) · · · )τn, we simply write tτ1τ2 · · · τn. Similarly, we denote
(· · · ((P τ1)τ2) · · · )τn by Pτ1τ2 · · · τn.

The following lemma is easy to verify.

Lemma 4. Suppose P is a proper family of premises, and let us have substitutions
τ1, . . . , τk . Let τ denote τ1 · · · τk . We have,

Pτ(t, t ′) = ∨
sτ = t
s′τ = t ′

P(s, s′)

for all terms t, t ′ ∈ T (X). ��
Definition 13. Suppose � is an L-set of P-Horn clauses. A deductive closure of
S� is the least P-indexed system S�� of L-relations satisfying

�P ⊆ ��
P , (33)

��
P (t, t) = 1, (34)

��
P (t, t

′) ≤ ��
P (t

′, t), (35)

��
P (t, t

′)⊗ ��
P (t

′, t ′′) ≤ ��
P (t, t

′′), (36)

��
P (t, t

′) ≤ ��
P (s, s

′), (37)

P(t, t ′) ≤ ��
P (t, t

′), (38)

��
P (t, t

′) ≤ ��
P(x/r)

(
t (x/r), t ′(x/r)

)
, (39)

��
P (t, t

′)⊗
⊗k

i=1

(
P(ti, t

′
i ) → ��

Q(ti, t
′
i )

)∗ ≤ ��
Q(t, t

′), (40)

for every P,Q ∈ P, Supp(P ) = {〈
ti , t

′
i

〉 | i = 1, . . . , k
}
, x ∈ X, terms

t, t ′, t ′′, r, s, s′ ∈ T (X), where s contains t as a subterm and s′ results from s

by replacing one occurrence of t by t ′. The corresponding L-set �� of P-Horn
clauses is called a deductive closure of �.
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Remark 15. (1) Observe that for a Horn truth stresser ∗ and finite P ∈ P, condition
(40) coincides with (28). Indeed, this is a consequence of (18) and (29).

(2) The deductive closure �� of an L-set � of Horn clauses always exists since the
system of all P-indexed systems of L-relations satisfying conditions (33)–(40)
is nonempty and closed under arbitrary intersections. The proof is analogous to
that of Theorem 7 and therefore omitted.

Theorem 11. Let � be an L-set of P-Horn clauses. Then �� = ��.

Proof. “⊆”: It is sufficient to show thatS�� is an L∗-implicationalP-indexed system
of congruences. Then �� ⊆ �� since �� is the least L∗-implicational P-indexed
system of congruences containing �.

First, we check that every ��
P (P ∈ P) is a congruence on T(X). Reflexivity,

symmetry, and transitivity of ��
P follows from (34)–(36). For compatibility with

operations, we repeatedly use (37). Namely, for t1, s1, . . . , tn, sn ∈ T (X) and any
n-ary f ∈ F (37) yields

��
P (ti , si)

≤ ��
P

(
f (s1, . . . , si−1, ti , ti+1, . . . , tn), f (s1, . . . , si−1, si , ti+1, . . . , tn)

)

for every i = 1, . . . , n. Hence, by (36) and monotony of ⊗,

��
P (t1, s1)⊗ · · · ⊗ ��

P (tn, sn)

≤
⊗n

i=1
��
P

(
f (s1, . . . , si−1, ti , . . . , tn), f (s1, . . . , si , ti+1, . . . , tn)

)

≤ ��
P

(
f (t1, . . . , tn), f (s1, . . . , sn)

)

which is the desired compatibility with operations. Clearly, ≈T(X) ⊆ ��
P . Thus,

every ��
P is a congruence on T(X).

Now we check (21)–(23).
(21): Trivial, because of (38).
(22): Take t, t ′ ∈ T (X), P ∈ P, where Supp(P ) = {〈

ti , t
′
i

〉 | i = 1, . . . , k
}
.

Since P is finite, a set of variables X′ = var(P ) ∪ var(t) ∪ var(t ′) = {x1, . . . , xn}
is finite as well. For arbitrary endomorphism h on T(X)we can take a set variables
Y = {y1, . . . , yn} such that yi �∈ X′, yi �∈ var(h(x)) for every i = 1, . . . , n, and
every variable x ∈ X′. That is, every yi is different from variables occurring in
terms t1, t ′1, . . . , tn, t

′
n, t, t

′, and yi does not occur in any endomorphic image h(x)
of a variable x ∈ X′.

Put τ = (x1/y1) · · · (xn/yn)(y1/h(x1)) · · · (yn/h(xn)) and observe that for a
term r ∈ T (X′) we have rτ = h(r). Applying this fact to t, t ′ ∈ T (X′) and using
(39) we obtain

��
P (t, t

′) ≤ ��
P(x1/y1)

(
t (x1/y1), t

′(x1/y1)
)

≤ ��
P(x1/y1)(x2/y2)

(
t (x1/y1)(x2/y2), t

′(x1/y1)(x2/y2)
) ≤ · · ·

≤ ��
Pτ (tτ, t

′τ) = ��
Pτ

(
h(t), h(t ′)

)
.

Clearly, now it suffices to show that h(P ) = Pτ . Observe that P(r, r ′) > 0 implies
r, r ′ ∈ T (X′) (X′ consists of all the variables occurring in couples of terms which
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belong toP in some nonzero degree). Thus, using Lemma 4, and the fact rτ = h(r)

for r ∈ T (X′), it follows that

Pτ(s, s′) = ∨
rτ = s
r ′τ = s′
r,r ′∈T (X′)

P (r, r ′) = ∨
h(r)= s
h(r ′)= s′
r,r ′∈T (X′)

P (r, r ′) = (
h(P )

)
(s, s′)

for every s, s′ ∈ T (X). Hence, h(P ) = Pτ , thus ��
P (t, t

′) ≤ ��
h(P )

(
h(t), h(t ′)

)
,

proving (22).
(23): For finite P ∈ P, we can express (23) equivalently by (28). Hence, using

(18), (29), and (40) we have

��
P (t, t

′)⊗ (∧k

i=1

(
P(ti, t

′
i ) → ��

Q(ti, t
′
i )

))∗

= ��
P (t, t

′)⊗
∧k

i=1

(
P(ti, t

′
i ) → ��

Q(ti, t
′
i )

)∗

= ��
P (t, t

′)⊗
⊗k

i=1

(
P(ti, t

′
i ) → ��

Q(ti, t
′
i )

)∗ ≤ ��
Q(t, t

′)

for every P,Q ∈ P, Supp(P ) = {〈
ti , t

′
i

〉 | i = 1, . . . , k
}

and every terms t, t ′ ∈
T (X). Altogether, S�� is an L∗-implicational P-indexed system of congruences,
showing “⊆”.

“⊇”: We check that S�� satisfies conditions (33)–(40). Since S�� is the least
P-indexed system of L-relations satisfying (33)–(40), we obtain �� ⊆ ��.

(33) holds trivially. Since every ��
P (P ∈ P) is a congruence, conditions (34)–

(36) are satisfied obviously.
(37): This property will be proven using the compatibility of every ��

P with
operations. Let us have terms t, t ′, s, s′ ∈ T (X), where s has an occurrence of t
as a subterm and s′ is a term resulting from s by substitution of t by t ′. If s =
f (t1, . . . , tk−1, t, tk+1, . . . , tn) and s′ = f (t1, . . . , tk−1, t

′, tk+1, . . . , tn), compat-
ibility of ��

P with f ∈ F and ��
P (ti , ti) = 1 yield

��
P (t, t

′) =
⊗k−1

i= 1
��
P (ti , ti)⊗ ��

P (t, t
′)⊗

⊗n

j = k+1
��
P (tj , tj )

≤ ��
P

(
f (t1, . . . , tk−1, t, tk+1, . . . , tn), f (t1, . . . , tk−1, t

′, tk+1, . . . , tn)
)

= ��
P (s, s

′).

This argument can be used to show ��
P (t, t

′) ≤ ��
P (s, s

′) even in general case (one
can proceed by structural induction over the rank of s).

(38): Holds trivially because of (21).
(39): Take a substitution (x/r) and a mapping g : X → T (X) defined by

g(x) = r and g(y) = y for y ∈ X, y �= x. As in Remark 14, g has a homomorphic
extension h : T(X) → T(X), i.e. h = g�. Evidently, h(t) = t (x/r) for all terms
t ∈ T (X). Moreover,

(
P(x/r)

)
(t, t ′) = ∨

s(x/r)= t
s′(x/r)= t ′

P(s, s′) = ∨
h(s)= t
h(s′)= t ′

P(s, s′) = (
h(P )

)
(t, t ′).

Thus, (22) gives

��
P (t, t

′) ≤ ��
h(P )

(
h(t), h(t ′)

) = ��
P(x/r)

(
t (x/r), t ′(x/r)

)

which is the required inequality.
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(40): Since S�� satisfies (23), we can use the equivalent formulation for finite
sets of premises (28) together with (18), (29). Hence,

��
P (t, t

′)⊗
⊗k

i=1

(
P(ti, t

′
i ) → ��

Q(ti, t
′
i )

)∗

= ��
P (t, t

′)⊗
∧k

i=1

(
P(ti, t

′
i ) → ��

Q(ti, t
′
i )

)∗

= ��
P (t, t

′)⊗ (∧k

i=1

(
P(ti, t

′
i ) → ��

Q(ti, t
′
i )

))∗
≤ ��

Q(t, t
′)

holds for every P,Q ∈ P, where Supp(P ) = {〈
ti , t

′
i

〉 | i = 1, . . . , k
}
, and for all

t, t ′ ∈ T (X). ��
Remark 16. In the previous proof, we used only condition (29) of Horn truth stress-
ers. Condition (30) has not been used.

∗ ∗ ∗
From now on, we focus on the notion of provability of weighted formulas. Using

similar concepts as in [31], we introduce the notion of a degree of provability from
a given L-set of P-Horn clauses. As we will see later, a suitably defined degree of
provability of a P-Horn clause is equal to its membership degree to a deductive
closure. This way we establish the completeness theorem.

First, we need to introduce suitable deduction rules and a notion of provability.
We proceed in Pavelka-style approach. That is, we infer weighted formulas from
weighted formulas. Basic inference steps are accomplished using deduction rules
which are partial mappings yielding a weighted formula 〈ϕ, a〉 (conclusion) from
weighted formulas 〈ϕ1, a1〉 , . . . , 〈ϕn, an〉 (premises). Then, the provability degree
of ϕ is defined to be the supremum over all a’s such that 〈ϕ, a〉 is the last member
of the proof.

Note in advance that our deduction rules do not conform to the notion of a
deduction rule as introduced in [31], see also [22, 29]. According to Pavelka, a
deduction rule is a pair R = 〈R1, R2〉, where R1 : Fmln → Fml is a partial
mapping on the set of formulas and R2 : Ln → L is a mapping on the set of truth
degrees. Weighted formula 〈ϕ, a〉 inferred by R is of the form ϕ = R1(ϕ1, . . . , ϕn)

and a = R2(a1, . . . , an), meaning that one infers validity of ϕ in degree (at least)
a ∈ L given formulasϕi valid in degree (at least) ai (i = 1, . . . , n). Contrary to that,
our rules (Ext) and (Mon) compute a ∈ L in the inferred weighted formula 〈ϕ, a〉
not only from ai’s but also from truth degrees (represented by constants) which
are present in ϕi’s. This is, however, only for the sake of convenience. Namely, as
we will see in Remark 19, all of our deduction rules are in fact derived rules in
a suitably extended Pavelka-style first-order fuzzy logic with ordinary deduction
rules of the form R = 〈R1, R2〉 as mentioned above.

Therefore, denoting the set of all P-Horn clauses by Fml, we call every partial
mapping

R : (Fml × L)n → Fml × L

an n-ary L∗-deduction rule for P-Horn clauses. A nonempty system R of deduc-
tion rules is called L∗-deductive system for P-Horn clauses.
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Remark 17. (1) Instead ofR(〈ϕ1, a1〉 , . . . , 〈ϕn, an〉) = 〈ϕ, a〉, we use the common
notation

〈ϕ1, a1〉 , . . . , 〈ϕn, an〉
〈ϕ, a〉 . (41)

On the verbal level, the deduction rule (41) should be read as “From ϕ1 in degree
a1, and · · · and ϕn in degree an infer ϕ in degree a”.

(2) An axiom can be thought of as nullary deduction rule, i.e. a mapping
A : {∅} → Fml × L. Hence, an axiom is a weighted formula from Fml × L.
In accordance with Remark 1, we can denote an axiom

〈
P i (t ≈ t ′), a

〉
also

by P i
〈
t ≈ t ′, a

〉
.

Definition 14. Let � be an L-set of P-Horn clauses and let R be an L∗-deductive
system for P-Horn clauses. An L∗-weighted R-proof of a weighted P-Horn clause〈
P i (t ≈ t ′), a

〉
, a ∈ L, from � is a finite sequence of weighted P-Horn clauses

〈ϕ1, a1〉 , . . . , 〈ϕl, al〉, where ϕl is P i (t ≈ t ′), al = a, and for every 〈ϕi, ai〉,
i = 1, . . . , l, we have either

ai = �(ϕi)

or there is an n-ary L∗-deduction rule R ∈ R, such that

R
( 〈
ϕi1 , ai1

〉
, . . . ,

〈
ϕin, ain

〉 ) = 〈ϕi, ai〉 ,

for some i1, . . . , in < i. The number l is called a length of the proof.
A weighted P-Horn clause

〈
P i (t ≈ t ′), b

〉
is said to be R-provable from

�, if there exists an L∗-weighted R-proof of
〈
P i (t ≈ t ′), b

〉
from �. We denote

this fact by � �R 〈
P i (t ≈ t ′), b

〉
.

A P-Horn clause P i (t ≈ t ′) is said to be R-provable from � in degree
(at least) b ∈ L, if the weighted P-Horn clause

〈
P i (t ≈ t ′), b

〉
is R-provable

from �.

For every P-Horn clause P i (t ≈ t ′) we define a degree
∣∣P i (t ≈ t ′)

∣∣R
�

of
R-provability of P i (t ≈ t ′) from � by

∣∣P i (t ≈ t ′)
∣∣R
�

= ∨{
a ∈ L |� �R 〈

P i (t ≈ t ′), a
〉 }
.

Remark 18. In what follows, we use a system of deduction rules (Ref)–(Mon)
introduced below. Therefore, if there is no danger of confusion, we omit the
“R” from terms “R-proof”, “

∣∣P i (t ≈ t ′)
∣∣R
�

”, etc. and write simply “proof”,
“
∣∣P i (t ≈ t ′)

∣∣
�

”, etc. In [36], we present another axiomatization which uses
more axioms, and less n-ary deduction rules (n ≥ 1).
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First group of rules are the rules of congruence:

(Ref) : 〈P i (t ≈ t), 1〉,

(Sym) :

〈
P i (t ≈ t ′), a

〉

〈P i (t ′ ≈ t), a〉,

(Tra) :

〈
P i (t ≈ t ′), a

〉
,

〈
P i (t ′ ≈ t ′′), b

〉

〈P i (t ≈ t ′′), a ⊗ b〉 ,

(Rep) :

〈
P i (t ≈ t ′), a

〉

〈P i (s ≈ s′), a〉,

where P ∈ P, a, b ∈ L, t, t ′, t ′′, s, s′ ∈ T (X), and s contains t as a subterm and s′
results from s by substitution of one occurrence of t in s by t ′.

The second group are the rules of extensivity, substitution, and monotony:

(Ext) :
〈
P i (t ≈ t ′), P (t, t ′)

〉
,

(Sub) :

〈
P i (t ≈ t ′), a

〉

〈
P(x/r)i

(
t (x/r) ≈ t ′(x/r)

)
, a

〉,

(Mon) :

{〈
Qi (ti ≈ t ′i ), ai

〉; i = 1, . . . , n
}
,

〈
P i (t ≈ t ′), b

〉

〈
Qi (t ≈ t ′), b ⊗ ⊗n

i=1(P (ti , t
′
i ) → ai)

∗〉 ,

where P,Q ∈ P such that Supp(P ) = {〈
ti , t

′
i

〉 | i = 1, . . . , n
}
, t, t ′, r ∈ T (X),

x ∈ X, a1, . . . , an, a, b ∈ L.

Remark 19. (1) On the verbal level, the rule of monotony (Mon) can be read: “if
P implies t ≈ t ′ and every premise ti ≈ t ′i from P is implied by Q, then also
t ≈ t ′ is implied byQ”. A finer reading of (Mon) is: “Q implies t ≈ t ′ (at least)
in degree to which P implies t ≈ t ′ and each ti ≈ t ′i is implied byQ at least in
degree to which ti ≈ t ′i belongs to P ”.

(2) The truth value b⊗⊗n
i=1(P (ti , t

′
i ) → ai)

∗ as used in (Mon) is computed using
truth values of input formulas together with P(ti, t ′i )’s. In other words, the
thresholds of premises represented by degrees P(ti, t ′i ) have an influence on
the resulting truth value.
Consider the following example. Take a complete residuated lattice L =
〈{0, a, 1},∨,∧,⊗,→, 0, 1〉, where 0 < a < 1, and a ⊗ a = 0, the rest is
determined uniquely. Moreover, we equip L by Horn truth stresser ∗, for which
a∗ = 0∗ = 0, 1∗ = 1. Now, we can use (Mon) to infer

〈
r ≈ r ′, 1

〉
i

〈
s ≈ s′, a

〉
,
〈
s ≈ s′, a

〉
i

〈
t ≈ t ′, 1

〉

〈r ≈ r ′, 1〉i 〈t ≈ t ′, 1〉 .

On the other hand, increasing the threshold of s ≈ s′ from a to 1, we get an
inference with empty conclusion

〈
r ≈ r ′, 1

〉
i

〈
s ≈ s′, a

〉
,
〈
s ≈ s′, 1

〉
i

〈
t ≈ t ′, 1

〉

〈r ≈ r ′, 1〉i 〈t ≈ t ′, 0〉 .
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(3) One way to have deduction rules in Pavelka-style (separate syntactic and seman-
tic parts) is to split the (Mon) rule into separate rules (MonP ) for every set of
premises P ∈ P. In this case, it would be possible to distinguish the syntac-
tic and semantic part of a rule by two independent mappings as usual. For
the above example, we would then use two different deduction rules (MonP1 ),
(MonP2 ). However, this would be an artificial way of doing what can be done
more naturally. The same applies to (Ext).

(4) We are going to show that (Ref)–(Mon) are derived rules in a natural Pav-
elka-style first-order fuzzy logic. To that purpose, we assume that some natural
(weighted) formulas are provable in the Pavelka-style logic we work with (we
mention them in the course of our demonstration). In particular, we assume that
we have formulas guaranteeing reflexivity, symmetry, transitivity, and com-
patibility of ≈, and formulas guaranteeing the required properties of logical
connectives as axioms. As we will work with truth constants (for every a ∈ L
we consider a truth constant a), we need to assume the appropriate bookkeep-
ing axioms for the constants [22]. Namely, for � we assume � � a ⇐⇒ a∗.
We use the following deduction rules: modus ponens (MP; from 〈ϕ, a〉 and
〈ϕ i ψ, b〉 infer 〈ψ, a ⊗ b〉) logical constant introduction [29] (from 〈ϕ, a〉
infer 〈a i ϕ, 1〉), and truth confirmation [22, 23] (from 〈ϕ, 1〉 infer 〈�ϕ, 1〉).
For convenience, we write � ϕ instead of � 〈ϕ, 1〉 .
Let Supp(P ) = {〈

t1, t
′
1

〉
, . . . ,

〈
tn, t

′
n

〉}
and put P(ti, t ′i ) = pi for every i =

1, . . . , n.
(Ext): Let P i (t ≈ t ′). We show � p i (P i (t ≈ t ′)) for p = P(t, t ′).

Observe that for P(t, t ′) = 0, the claim is trivial. Thus, suppose there is some
j ∈ {1, . . . , n} with t = tj and t ′ = t ′j . Therefore, p = P(tj , t

′
j ) = pj . We have

� �Vni=1(pi ⇒ (ti ≈ t ′i ))i
Vn
i=1(pi ⇒ (ti ≈ t ′i )),

[instance of �ϕ i ϕ,]

� Vni=1(pi i (ti ≈ t ′i ))i (pj i (tj ≈ t ′j )),
[using � (ϕ c ψ)i ϕ,]

� �Vni=1(pi i (ti ≈ t ′i ))i (pj i (tj ≈ t ′j )),
[by � (ϕ i ψ)i ((ψ i χ)i (ϕ i χ)),MP, ]

� pj i
(�Vni=1(pi i (ti ≈ t ′i ))i (tj ≈ t ′j )

)
,

[by � (ϕ i (ψ i χ))i (ψ i (ϕ i χ)),MP, ]

showing that � p i (P i (t = t ′)).
(Mon): We show that if � b i (P i (t ≈ t ′)) and � ai i (Qi (ti ≈ t ′i ))

for every i = 1, . . . , n then � (
bo
Nn

i=1 �(pi i ai)
)
i (Qi (t ≈ t ′)). First,

� Qi (ai i (ti ≈ t ′i )),
[by � (ϕ i (ψ i χ))i (ψ i (ϕ i χ)),MP, i = 1, . . . , n,]

� Qi Vni=1(ai i (ti ≈ t ′i )),
[using � (ϕ i ψ)i ((ϕ i χ)i (ϕ i (ψ c χ))),MP,]
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� �(
Qi

Vn
i=1(ai i (ti ≈ t ′i ))

)
,

[truth confirmation,]

�Qi �Vni=1(ai i (ti ≈ t ′i )),
[by � �(ϕ i ψ)i (�ϕ i �ψ),MP,]
� Qi �Q,
[instance of �ϕ i � �ϕ (Q is of the form �ϕ),]
� Qi �Vni=1(ai i (ti ≈ t ′i )),
[by � (ϕ i ψ)i ((ψ i χ)i (ϕ i χ)),MP.]

Now �(ψ i χ)i((ϕoψ)i (ϕoχ)) and �(�ϕo�ψ)i �(ϕoψ) give

�(Nn
i=1 �(pi i ai)oQ

)
i

(Nn
i=1 �(pi i ai)o�Vni=1(ai i (ti ≈ t ′i ))

)
,

�(Nn
i=1 �(pi i ai)o�Vni=1(ai i (ti ≈ t ′i ))

)
i

i �(Nn
i=1(pi i ai)o

Vn
i=1(ai i (ti ≈ t ′i ))

)
.

By � (ϕo(ψ c χ))i ((ϕoψ) c (ϕoχ)),

� (ϕoψ)i ϕ,� ((ϕ i ψ)o(ψ i χ))i (ϕ i χ), and using truth confirma-
tion with isotony of o and � �(ϕ i ψ)i (�ϕ i �ψ):

� �(Nn
i=1(pi i ai)o

Vn
i=1(ai i (ti ≈ t ′i ))

)
i

i �(Vn
i=1((pi i ai)o(ai i (ti ≈ t ′i )))

)
,

� �(Vn
i=1((pi i ai)o(ai i (ti ≈ t ′i )))

)
i �(Vn

i=1(pi i (ti ≈ t ′i ))
)
.

Using transitivity applied on previous formulas, isotony, and MP:

� (Nn
i=1 �(pi i ai)oQ

)
i �(Vn

i=1(pi i (ti ≈ t ′i ))
)
,

� (
bo
Nn

i=1 �(pi i ai)oQ
)
i

(
bo�(Vn

i=1(pi i (ti ≈ t ′i ))
))
.

Taking into account � bi (P i (t ≈ t ′)), we have

� (
bo�(Vn

i=1(pi i (ti ≈ t ′i ))
))
i (t ≈ t ′),

[by � (ϕ i (ψ i χ))i ((ϕoψ)i χ),MP,]

� (
bo
Nn

i=1 �(pi i ai)oQ
)
i (t ≈ t ′),

[using transitivity, MP,]

� (
bo
Nn

i=1 �(pi i ai)
)
i (Qi (t ≈ t ′)),

[by � ((ϕoψ)i χ)i (ϕ i (ψ i χ)),MP,]

which is the desired weighted formula. One can proceed similarly for the rest of
the deduction rules. Note that the rule of truth confirmation and axioms

�ϕ i ϕ,

�(ϕ i ψ)i (�ϕ i �ψ),
�ϕ i � �ϕ,
(�ϕo�ψ)i �(ϕoψ)
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being used in the previous demonstration naturally correspond to properties of
implicational truth stressers, see (6), (7), (8), (16), and (v) of Lemma 1.

The following theorem shows the relationship between deductive closure of � and
the degree of provability from �.

Theorem 12. Suppose � is an L-set of P-Horn clauses, and ∗ is a Horn truth
stresser. Then

∣∣P i (t ≈ t ′)
∣∣
�

= ��
P (t, t

′)

for every P ∈ P and t, t ′ ∈ T (X).
Proof. “≤”: It is sufficient to check that for every member

〈
P i (t ≈ t ′), a

〉
of an

L∗-weighted proof from �, we have a ≤ ��
P (t, t

′). We proceed by induction over
the length of an L∗-weighted proof.

Suppose
〈
P i (t ≈ t ′), a

〉
is a member of an L∗-weighted proof from � where

a = �(P i (t ≈ t ′)) = �P (t, t
′). Using (33), we have a = �P (t, t

′) ≤ ��
P (t, t

′).
Otherwise,

〈
P i (t ≈ t ′), a

〉
was derived using one of (Ref)–(Mon). We check “≤”

for all of these rules separately.
(Ref): If 〈P i (t ≈ t), 1〉 was inferred by (Ref), we directly obtain 1 ≤

��
P (t, t) = 1 due to (34).

(Sym): If
〈
P i (t ′ ≈ t), a

〉
was inferred from

〈
P i (t ≈ t ′), a

〉
, then induction

hypothesis together with (35) give a ≤ ��
P (t, t

′) ≤ ��
P (t

′, t).
(Tra): Suppose

〈
P i (t ≈ t ′′), a ⊗ b

〉
was inferred from

〈
P i (t ≈ t ′), a

〉
and〈

P i (t ′ ≈ t ′′), b
〉
. By induction hypothesis, a ≤ ��

P (t, t
′), b ≤ ��

P (t
′, t ′′). Hence,

(36) yields a ⊗ b ≤ ��
P (t, t

′)⊗ ��
P (t

′, t ′′) ≤ ��
P (t, t

′′).
(Rep): If

〈
P i (s ≈ s′), a

〉
was inferred by (Rep) from

〈
P i (t ≈ t ′), a

〉
,

induction hypothesis and (37) give a ≤ ��
P (t, t

′) ≤ ��
P (s, s

′).
(Ext): Almost trivial using (38).
(Sub): If

〈
P(x/r)i (t (x/r) ≈ t ′(x/r)), a

〉
was inferred from P-Horn clause〈

P i (t ≈ t ′), a
〉
, induction hypothesis and (39) yield

a ≤ ��
P (t, t

′) ≤ ��
P(x/r)

(
t (x/r), t ′(x/r)

)
.

(Mon): Suppose
〈
Qi (t ≈ t ′), c

〉
was inferred from

〈
P i (t ≈ t ′), b

〉
and〈

Qi (ti ≈ t ′i ), ai
〉
’s with Supp(P ) = {〈

ti , t
′
i

〉 | i = 1, . . . , k
}
. Thus, we have

c = b ⊗ ⊗k
i=1

(
P(ti, t

′
i ) → ai

)∗. Using the induction hypothesis, we have b ≤
��
P (t, t

′), and ai ≤ ��
Q(ti, t

′
i ) for each i = 1, . . . , k. Thus, by (40) we obtain

c = b ⊗
⊗k

i=1

(
P(ti, t

′
i ) → ai

)∗

≤ ��
P (t, t

′)⊗
⊗k

i=1

(
P(ti, t

′
i ) → ��

Q(ti, t
′
i )

)∗ ≤ ��
Q(t, t

′).

“≥”: Let D = {
DP ∈ LT (X)×T (X) |P ∈ P

}
be a P-indexed system of L-rela-

tions, where DP (t, t ′) = ∣∣P i (t ≈ t ′)
∣∣
�

for every P ∈ P, and t, t ′ ∈ T (X). We
show that D satisfies (33)–(40) from which S�� ≤ D follows immediately by defi-
nition of ��. Observing that S�� ≤ D means ��

P (t, t
′) ≤ ∣∣P i (t ≈ t ′)

∣∣
�

, then
finishes the proof. Thus, let us check (33)–(40).
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(33): Since
〈
P i (t ≈ t ′), �P (t, t ′)

〉
is an L∗-weighted proof of length 1, we

have DP (t, t ′) = ∣∣P i (t ≈ t ′)
∣∣
�

≥ �P (t, t
′), verifying (33).

(34): Evidently, DP (t, t) = 1 since 〈P i (t ≈ t), 1〉 is a proof by (Ref).
(35): Using (Sym), each proof δi1 , . . . , δini,

〈
P i (t ≈ t ′), ai

〉
can be extended

to a proof

δi1 , . . . , δini,
〈
P i (t ≈ t ′), ai

〉
,
〈
P i (t ′ ≈ t), ai

〉
.

Hence, DP (t, t ′) = ∣∣P i (t ≈ t ′)
∣∣
�

≤ ∣∣P i (t ′ ≈ t)
∣∣
�

= DP (t
′, t).

(36): Let DP (t, t ′) = ∨
i∈I ai and DP (t

′, t ′′) = ∨
j∈J bj where for ev-

ery i ∈ I and j ∈ J there are proofs δi1 , . . . , δini,
〈
P i (t ≈ t ′), ai

〉
and

δj1 , . . . , δjnj,
〈
P i (t ′ ≈ t ′′), bj

〉
. Concatenating the proofs and using (Tra) we get

a proof

δi1 , . . . , δini,
〈
P i (t ≈ t ′), ai

〉
,

δj1 , . . . , δjnj,
〈
P i (t ′ ≈ t ′′), bj

〉
,
〈
P i (t ≈ t ′′), ai ⊗ bj

〉
.

Hence, P i (t ≈ t ′′) is provable in degree at least ai ⊗ bj and so

DP (t, t
′)⊗DP (t

′, t ′′) = ∨
i∈I ai ⊗ ∨

j∈J bj = ∨
i∈I

∨
j∈J (ai ⊗ bj )

≤ ∣∣P i (t ≈ t ′′)
∣∣
�

= DP (t, t
′′).

That is, D satisfies (36).
(37): Similarly, for a term s′ resulting from s by substitution of one occurrence

of t in s by t ′, every proof δi1 , . . . , δini,
〈
P i (t ≈ t ′), ai

〉
can be extended by (Rep)

to a proof

δi1 , . . . , δini,
〈
P i (t ≈ t ′), ai

〉
,
〈
P i (s ≈ s′), ai

〉
.

It follows that DP (t, t ′) = ∣∣P i (t ≈ t ′)
∣∣
�

≤ ∣∣P i (s ≈ s′)
∣∣
�

= DP (s, s
′).

(38): Since
〈
P i (t ≈ t ′), P (t, t ′)

〉
is a proof, P(t, t ′) ≤ ∣∣P i (t ≈ t ′)

∣∣
�

=
DP (t, t

′).
(39): Let DP (t, t ′) = ∨

i∈I ai where for every i ∈ I there is a proof
δi1 , . . . , δini,

〈
P i (t ≈ t ′), ai

〉
. Using (Sub), such proofs can be extended to

δi1 , . . . , δini,
〈
P i (t ≈ t ′), ai

〉
,
〈
P(x/r)i

(
t (x/r) ≈ t ′(x/r)

)
, ai

〉
.

Hence, DP (t, t ′) ≤ DP(x/r)
(
t (x/r), t ′(x/r)

)
.

(40): This is the second time we are using condition (30). Suppose P,Q ∈ P

and Supp(P ) = {〈
tk, t

′
k

〉 | k = 1, . . . , n
}
. For every t, t ′ ∈ T (X), let DP (t, t ′) =∨

i∈I bi , where for every i ∈ I there is a proof δi1 , . . . , δini,
〈
P i (t ≈ t ′), bi

〉
.

Moreover, let DQ(tk, t ′k) = ∨
jk∈Jk ak,jk , k = 1, . . . , n, where for every jk ∈ Jk ,
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there is a proof δjk,1, . . . , δjk,njk,
〈
Qi (tk ≈ t ′k), ak,jk

〉
. We can take any i ∈ I ,

j1 ∈ J1, . . . , jn ∈ Jn, concatenate the proofs, and apply (Mon) to get a proof

δj1,1, . . . , δj1,nj1
,

1:
〈
Qi (t1 ≈ t ′1), a1,j1

〉
, proof of

〈
Qi (t1 ≈ t ′1), a1,j1

〉

...
...

...
...

δjn,1, . . . , δjn,njn ,

n:
〈
Qi (tn ≈ t ′n), an,jn

〉
, proof of

〈
Qi (tn ≈ t ′n), an,jn

〉

δi1 , . . . , δini ,

n+1:
〈
P i (t ≈ t ′), bi

〉
, proof of

〈
P i (t ≈ t ′), bi

〉

n+2:
〈
Qi (t ≈ t ′), bi ⊗

⊗n

k=1

(
P(tk, t

′
k) → ak,jk

)∗〉
.(Mon) on 1, . . . , n+ 1

Hence,
∣∣Qi (t ≈ t ′)

∣∣
�

is greater or equal to bi ⊗ ⊗n
k=1

(
P(tk, t

′
k) → ak,jk

)∗.
Using (30) we get

DP (t, t
′)⊗

⊗n

k=1

(
P(tk, t

′
k) → DQ(tk, t

′
k)

)∗

= ∨
i∈I bi ⊗

⊗n

k=1

(
P(tk, t

′
k) → ∨

jk∈Jk ak,jk
)∗

= ∨
i∈I bi ⊗

⊗n

k=1

∨
jk∈Jk

(
P(tk, t

′
k) → ak,jk

)∗

= ∨
i∈I bi ⊗ ∨

j1∈J1,...,jn∈Jn
⊗n

k=1

(
P(tk, t

′
k) → ak,jk

)∗

= ∨
i∈I
j1∈J1,...,jn∈Jn

(
bi ⊗

⊗n

k=1

(
P(tk, t

′
k) → ak,jk

)∗) ≤ DQ(t, t
′),

which gives (40). Note that since
〈
Qi (tk ≈ t ′k), �Q(tk, t

′
k)

〉
is a proof, every Jk is

nonempty. This justifies the application of (30). ��
Now we have the following consequence.

Theorem 13 (completeness theorem). Let L∗ be a complete residuated lattice
equipped with a Horn truth stresser ∗. Let P be a proper family of premises of type
F in variablesX, where every P ∈ P is finite. For every L-set � of P-Horn clauses
we have

∣∣P i (t ≈ t ′)
∣∣
�

= ��
P (t, t

′) = ��
P (t, t

′) = ∥∥P i (t ≈ t ′)
∥∥
�

for every P ∈ P and t, t ′ ∈ T (X).
Proof. Consequence of Theorem 8, Theorem 11, and Theorem 12. ��

For finite L, we can avoid (30) by using an analogous argument as in proof of
Theorem 10. For this purpose we introduce an additional deduction rule:

(Sup) :

〈
P i (t ≈ t ′), a

〉
,

〈
P i (t ≈ t ′), b

〉

〈P i (t ≈ t ′), a ∨ b〉 ,

where P ∈ P, a, b ∈ L, t, t ′ ∈ T (X).
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Theorem 14 (completeness theorem for finite L). Let L∗ be a finite residuated
lattice with an implicational truth stresser ∗ satisfying (29). Let P be a proper
family of premises of type F in variables X, where every P ∈ P is finite and let
R∨ denote the L∗-deductive system resulting from R by adding (Sup). Then for

every L-set � of P-Horn clauses we have
∣∣P i (t ≈ t ′)

∣∣R∨
�

= ∥∥P i (t ≈ t ′)
∥∥
�

for every P ∈ P and t, t ′ ∈ T (X).
Proof. Using Theorem 8 and Theorem 11, we only check that

∣∣P i (t ≈ t ′)
∣∣R∨
�

= ��
P (t, t

′).

“≤”: If
〈
P i (t ≈ t ′), a ∨ b〉 was inferred from weighted P-Horn clauses〈

P i (t ≈ t ′), a
〉

and
〈
P i (t ≈ t ′), b

〉
using (Sup), then assuming a ≤ ��

P (t, t
′)

and b ≤ ��
P (t, t

′), we have a ∨ b ≤ ��
P (t, t

′). The rest follows from the “≤”-part
of the proof of Theorem 12.

“≥”: Put DP (t, t ′) = ∣∣P i (t ≈ t ′)
∣∣R∨
�

for every P ∈ P, and t, t ′ ∈
T (X). We check that D = {DP |P ∈ P} satisfies (33)–(40). We focus only on
(40) since the rest follows from the proof of Theorem 12. Since L is finite,
we have DP (t, t ′) = ∨k

i=1

{
ai |� �R∨

〈
P i (t ≈ t ′), ai

〉}
, i.e. there are proofs

δi,1, . . . , δi,ni ,
〈
P i (t ≈ t ′), ai

〉
(i = 1, . . . , k). We can concatenate these proofs

and using (Sup) we get a proof of
〈
P i (t ≈ t ′), a1 ∨ · · · ∨ ak

〉
. As a consequence,

DP (t, t
′) = a implies � �R∨

〈
P i (t ≈ t ′), a

〉
.

Suppose P,Q ∈ P and Supp(P ) = {〈
tk, t

′
k

〉 | k = 1, . . . , n
}
.

Take t, t ′ ∈ T (X). LetDP (t, t ′) = b, i.e. due to the previous observation, there is a
proof δ1, . . . , δn,

〈
P i (t ≈ t ′), b

〉
. Moreover, let DQ(tk, t ′k) = ak (k = 1, . . . , n)

and denote δk,1, . . . , δk,nk ,
〈
Qi (tk ≈ t ′k), ak

〉
the corresponding proofs. Concate-

nating the proofs and applying (Mon), we get

DP (t, t
′)⊗

⊗n

k=1

(
P(tk, t

′
k) → DQ(tk, t

′
k)

)∗

= b ⊗
⊗n

k=1

(
P(tk, t

′
k) → ak

)∗ ≤ ∣∣Qi (t ≈ t ′)
∣∣R∨
�

= DQ(t, t
′).

��
Example 6. The following are examples of L∗ for which we have a complete fuzzy
Horn logic.

(a) Take a finite Heyting algebra L. We can define ∗ by a∗ = a for all a ∈ L.
Trivially, ∗ is an implicational truth stresser. (29) is satisfied since ⊗ = ∧.

(b) For any finite residuated lattice, let ∗ be defined by (9). In this case, (29) holds
since 1 ⊗ a = 1 ∧ a = a, and 0 ⊗ a = 0 ∧ a = 0. The usage of globaliza-
tion as a truth stresser has an important influence on the deduction rule (Mon).
If P(ti, t ′i ) � ai for some i ∈ I , then the resulting formula Qi (t ≈ t ′) is
inferred in degree 0 (not interesting). On the other hand, when P(ti, t ′i ) ≤ ai
for all i ∈ I , Qi (t ≈ t ′) is inferred in degree b. To sum up, for ∗ being the
globalization, (Mon) simplifies to

(BMon) :

{〈
Qi (ti ≈ t ′i ), ai

〉; i = 1, . . . , n
}
,
〈
P i (t ≈ t ′), b

〉

〈
Qi (t ≈ t ′), b

〉 ,
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where P,Q ∈ P, Supp(P ) = {〈
ti , t

′
i

〉 | i = 1, . . . , n
}
, and P(ti, t ′i ) ≤ ai for all

i = 1, . . . , n.
(c) There are other examples of Horn truth stressers. Suppose L is a finite BL-chain.

Prelinearity of L implies a ⊗ ∧
i∈I bi = ∧

i∈I (a ⊗ bi). Due to Theorem 1, we
can define ∗ on L by (20), i.e. ∗ sends every element a ∈ L to the greatest idem-
potent of L which is less or equal to a. (29) is a consequence of divisibility.

∗ ∗ ∗
The truth degree

∥∥P i (t ≈ t ′)
∥∥

M,v
depends on both ∗ and→. Using→ is clear

(we deal with implications). We saw that the use of ∗ naturally unifies two possible
meanings of P i (t ≈ t ′). Clearly, if ∗ is defined by (9) then

∥∥P i (t ≈ t ′)
∥∥

M,v

does not depend on →. The effect of → is completely displaced by ∗. Surprisingly,
an analogy applies also to general implicational truth stresser satisfying (29).

Since
∥∥P i (t ≈ t ′)

∥∥
M,v

equals a∗ → ∥∥t ≈ t ′
∥∥

M,v
for

a =
∧

s,s′∈T (X)
(
P(s, s′) → ∥∥s ≈ s′

∥∥
M,v

)
,

we are interested in truth degrees of a∗ → b. For a∗ ≤ b we have a∗ → b = 1.
When a∗ � b, a∗ → b is the greatest element of {c | a∗ ⊗ c ≤ b}. Due to (29),
a∗ → b is the greatest element of {c | a∗ ∧ c ≤ b}. That is, a∗ → b is the relative
pseudo-complement of a∗ to b. For instance, when L is a chain, then a∗ → b = b

for a∗ > b.
Note that the truth degree a = ∧

s,s′∈T (X)
(
P(s, s′) → ∥∥s ≈ s′

∥∥
M,v

)
itself is

defined using →. However, the following theorem shows that a∗ = ‖P ‖M,v is not
influenced by the definition of →. As a consequence, it immediately follows that
the truth degree

∥∥P i (t ≈ t ′)
∥∥

M,v
is (for given M, v) fully determined by the

lattice structure of L and the implicational truth stresser ∗ satisfying (29).

Theorem 15. Let L1 = 〈L,∨,∧,⊗1,→1, 0, 1〉, L2 = 〈L,∨,∧,⊗2,→2, 0, 1〉
be complete residuated lattices. Let ∗ be an implicational truth stresser satisfying
(29) for both L1 and L2. Then (a →1 b)

∗ = (a →2 b)
∗ for all a, b ∈ L.

Proof. For every a ∈ L, let H(a) = {c∗ | c ∈ L and c∗ ≤ a}. We claim that

H(a →1 b) = H(a →2 b) (42)

for all a, b ∈ L. Indeed, for every a, b, c ∈ L we have c∗ ∈ H(a →1 b) iff
c∗ ≤ a →1 b iff a ⊗1 c

∗ ≤ b by adjointness, iff a ⊗2 c
∗ = a ∧ c∗ = a ⊗1 c

∗ ≤ b

by (29), iff c∗ ≤ a →2 b by adjointness, iff c∗ ∈ H(a →2 b). Hence, (42) holds
true for all a, b ∈ L. Clearly, (a →1 b)

∗ ≤ (a →1 b) due to (7). Thus, (42)
yields (a →1 b)

∗ ∈ H(a →1 b) = H(a →2 b). That is, (a →1 b)
∗ ≤ a →2 b.

Analogously, we have (a →2 b)
∗ ≤ a →1 b. Now using monotony of ∗ together

with (16) we have (a →1 b)
∗ = (a →1 b)

∗∗ ≤ (a →2 b)
∗ and (a →2 b)

∗ =
(a →2 b)

∗∗ ≤ (a →1 b)
∗. Hence, (a →1 b)

∗ = (a →2 b)
∗ for every a, b ∈ L. ��

Now an easy inspection of (10) and (11) shows that
∥∥P i (t ≈ t ′)

∥∥
M,v

is not
influenced by the definition of →. This is an immediate consequence of previous
observations. A summary follows.
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Corollary 2. Let L1 = 〈L,∨,∧,⊗1,→1, 0, 1〉, L2 = 〈L,∨,∧,⊗2,→2, 0, 1〉 be
complete residuated lattices. Let ∗ be an implicational truth stresser satisfying (29)
for both L1 and L2. Let M be an Li-algebra (for both i = 1, 2) and v be a valuation
on M. Then,

∥∥P i (t ≈ t ′)
∥∥L∗

1
M,v = ∥∥P i (t ≈ t ′)

∥∥L∗
2

M,v

for every P-implication P i (t ≈ t ′). ��

Remark 20. One should not be mislead. Even though the effect of residuum is elim-
inated as shown in Corollary 2, multiplication and residuum are still relevant. For
instance, the notion of compatibility of functions with ≈ is based on multiplication.
Generally, there are L1-algebras which are not L2-algebras and vice versa. Hence,
the semantic consequence and graded provability are different for L∗

1 and L∗
2. Vari-

ous definitions of truth stressers on the same structure of truth values yield various
semantics of implications.

6. Implications with crisp premises

From now on, we will restrict ourselves to P-Horn clauses with crisp premises, i.e.
every P ∈ P is crisp. Our motivation is twofold. First, with crisp premises, impli-
cations are les fuzzy and correspond better to ordinary ones. Second, restriction to
crisp premises might lead to completeness for a wider class of structures of truth
values (which is indeed the case, as we will see).

Let P = {P ∈ LT (X)×T (X) |P is finite and crisp}. In such a case, h(P ) ={〈
h(t), h(t ′)

〉 | 〈
t, t ′

〉 ∈ P }
for everyP ∈ P and arbitrary endomorphism h on T(X).

Since every P ∈ P is crisp, we have either P(s, s′) = 1, or P(s, s′) = 0. Thus, we
have

∥∥P i (t ≈ t ′)
∥∥

M,v
= (∧

〈s,s′〉∈P
∥∥s ≈ s′

∥∥
M,v

)∗ → ∥∥t ≈ t ′
∥∥

M,v
.

For crisp premises, conditions (21) and (23) simplify to

〈
t, t ′

〉 ∈ P implies �P (t, t
′) = 1, (43)

(∧

〈s,s′〉∈P�Q(s, s
′)
)∗ ≤ S(�P , �Q). (44)

Moreover, (44) is equivalent to

�P (t, t
′)⊗ (∧

〈s,s′〉∈P�Q(s, s
′)
)∗ ≤ �Q(t, t

′).

Analogously, (38) and (40) simplify to

〈
t, t ′

〉 ∈ P implies ��
P (t, t

′) = 1, (45)

��
P (t, t

′)⊗
⊗

〈s,s′〉∈P�
�
Q(s, s

′)∗ ≤ ��
Q(t, t

′). (46)
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We are going to show that completeness in case of crisp premises can be established
without (30) and without limitation to finite residuated lattices. First, observe that
(30) follows from the following conditions:

a → ∨
i∈I bi = ∨

i∈I (a → bi) for every nonempty index set I , (47)
(∨

i∈I bi
)∗ = ∨

i∈I bi
∗ for every index set I . (48)

Moreover, since a → ∨
i∈I bi ≥ ∨

i∈I (a → bi) and
(∨

i∈I bi
)∗ ≥ ∨

i∈I bi∗ are
always true, (47) and (48) are equivalent to a → ∨

i∈I bi ≤ ∨
i∈I (a → bi) and(∨

i∈I bi
)∗ ≤ ∨

i∈I bi∗, respectively.

Remark 21. Condition (48) does not hold for a general implicational truth stresser.
For instance, for L = 〈{0, a, b, 1},∨,∧,⊗,→, 0, 1〉 being a four-element Boolean
algebra (i.e., a, b ∈ L are incomparable), we define an implicational truth stresser ∗
by (9). We have a ∨ b = 1, i.e. (a ∨ b)∗ = 1. On the other hand a∗ = b∗ = 0, thus
a∗ ∨ b∗ = 0.

Consider the L∗-deductive system R as it has been introduced in Section 5. The
rules of extensivity and monotony can be equivalently replaced by

(CExt) :
〈
P i (t ≈ t ′), 1

〉
for every

〈
t, t ′

〉 ∈ P,

(CMon) :

{〈
Qi (ti ≈ t ′i ), ai

〉; i = 1, . . . , n
}
,
〈
P i (t ≈ t ′), b

〉

〈
Qi (t ≈ t ′), b ⊗ a∗

1 ⊗ · · · ⊗ a∗
n

〉 ,

where P,Q are crisp sets of premises, P = {〈
ti , t

′
i

〉 | i = 1, . . . , n
}
, t, t ′, ti , t ′i ∈

T (X), and a1, . . . , an, b ∈ L. The key observation is that we do not need (30) in the
full scope. Since the truth value of a in (30) is either 1 or 0, a moment’s reflection
shows that (30) simplifies to (48).

Theorem 16. Suppose� is an L-set of Horn clauses with crisp premises, and ∗ is an
implicational truth stresser satisfying (29), (48). Then

∣∣P i (t ≈ t ′)
∣∣
�

= ��
P (t, t

′)
for every P ∈ P and t, t ′ ∈ T (X).

Proof. “≤”: Follows from the proof of the “≤”-part of Theorem 12.
“≥”: We will check only the critical part where (48) is used. The rest follows

directly from the proof of the “≥”-part of Theorem 12. We have to check that
D = {DP |P ∈ P}, where DP (t, t ′) = ∣∣P i (t ≈ t ′)

∣∣
�

satisfies (40) which is in
our case simplified to (46).

Let P = {〈
tk, t

′
k

〉 | k = 1, . . . , n
}
. We can assume that DP (t, t ′) = ∨

i∈I bi ,
where for every i ∈ I there is a proof δi1 , . . . , δini,

〈
P i (t ≈ t ′), bi

〉
. Moreover,

let DQ(tk, t ′k) = ∨
jk∈Jk ak,jk , k = 1, . . . , n, where for every jk ∈ Jk , there is

an L∗-weighted proof δjk,1, . . . , δjk,njk,
〈
Qi (tk ≈ t ′k), ak,jk

〉
. Analogously as in

Theorem 12, we can claim that the provability degree
∣∣Qi (t ≈ t ′)

∣∣
�

is greater
or equal to bi ⊗ a∗

1,j1
⊗ · · · ⊗ a∗

n,jn
for all i ∈ I , j1 ∈ J1, . . . , jn ∈ Jn. Now, using

(48) we have
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DP (t, t
′)⊗

⊗n

k=1
DQ(tk, t

′
k)

∗ = ∨
i∈I bi ⊗

⊗n

k=1

(∨
jk∈Jk ak,jk

)∗

≤ ∨
i∈I bi ⊗

⊗n

k=1

∨
jk∈Jk a

∗
k,jk

=∨
i∈I bi ⊗ ∨

j1∈J1,...,jn∈Jn
⊗n

k=1
a∗
k,jk

= ∨
i∈I
j1∈J1,...,jn∈Jn

(
bi ⊗ a∗

1,j1
⊗ · · · ⊗ a∗

n,jn

) ≤ DQ(t, t
′).

which proves the simplified inequality (46). Hence, D satisfies (40). ��
Summarizing previous observations, we get the following.

Corollary 3. Let L∗ be a complete residuated lattice equipped with an implication-
al truth stresser ∗ satisfying (29), (48). For every L-set � of Horn clauses with crisp
premises we have

∣∣P i (t ≈ t ′)
∣∣
�

= ��
P (t, t

′) = ��
P (t, t

′) = ∥∥P i (t ≈ t ′)
∥∥
�

for every P ∈ P and t, t ′ ∈ T (X). ��
As the next theorem shows, (30) can be replaced by (48) even in Theorem 9.

Since Theorem 9 and Theorem 12 were the only ones where we used (30) in the
proof, we see that in case of crisp premises, (48) equivalently replaces (30).

Theorem 17. Let L∗ be a complete residuated lattice with an implicational truth
stresser ∗ satisfying (29) and (48). Let � be an L∗-implicational PFin-theory, where
P is a proper family of crisp premises which is closed under finite restrictions. Then
putting

�P = ⋃
P ′ ∈ Fin(P ) �P ′ , for P ∈ P,

� is an L∗-implicational P-theory. Moreover, � is the least L∗-implicational
P-theory with � = �Fin.

Proof. The proof is analogous to that of Theorem 9 and therefore omitted. Let us
note, that the crucial observation is that

⊗k

i=1

∨
Q′∈ Fin(Q)

(
P ′(ti , t ′i ) → �Q′(ti , t

′
i )

)∗ =
⊗k

i=1

∨
Q′∈ Fin(Q) �Q′(ti , t

′
i )

∗

=
⊗k

i=1

(∨
Q′∈ Fin(Q) �Q′(ti , t

′
i )

)∗

=
⊗k

i=1

(
P ′(ti , t ′i ) → ∨

Q′∈ Fin(Q) �Q′(ti , t
′
i )

)∗
,

where P,Q ∈ P, P ′ ∈ Fin(P ), Supp
(
P ′) = {〈

ti , t
′
i

〉 | i = 1, . . . , k
}
, and t, t ′ ∈

T (X) are arbitrary. The rest follows from the proof of Theorem 9. ��
∗ ∗ ∗

Now we will show some examples of implicational truth stressers satisfying
(29) and (48). This will demonstrate that crispness of premises allows for a larger
class of truth value structures.
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Example 7. (a) Let L be any complete Heyting algebra (i.e. a complete residuated
lattice, where ⊗ = ∧, the residuum is then a relative pseudo-complement). The
implicational truth stresser ∗ defined by a∗ = a, for all a ∈ L, satisfies (29)
and (48) trivially. In other words, for every complete Heyting algebra, we have
a syntactico-semantically complete calculus for reasoning about Horn clauses
with crisp premises.

(b) Let L be an arbitrary complete residuated lattice equipped with an implication-
al truth stresser ∗ defined by (9). Evidently, ∗ satisfies (29) trivially, because
0 ⊗ a = 0 ∧ a, and 1 ⊗ a = 1 ∧ a for all a ∈ L. Furthermore, ∗ satisfies
(48) iff 1 (the greatest element of L) is ∨-irreducible, i.e. iff for every family
{bi < 1 | i ∈ I } we have

∨
i∈I bi < 1. Indeed, suppose 1 is ∨-irreducible. It

suffices to check that
(∨

i∈I bi
)∗ = 1 implies

∨
i∈I b∗

i = 1. But
(∨

i∈I bi
)∗ = 1

yields
∨
i∈I bi = 1, i.e. there is an index i0 such that bi0 = 1 since 1 is assumed

to be ∨-irreducible. Hence,
∨
i∈I b∗

i = 1. Conversely, if 1 is not ∨-irreduc-
ible, then there exists a family {bi < 1 | i ∈ I } such that

∨
i∈I bi = 1. As a

consequence, we have 1 = (∨
i∈I bi

)∗
�

∨
i∈I b∗

i = ∨
i∈I 0 = 0.

Unlike the case of fuzzy equational logic [5], there are still structures of truth
values for which we do not have completeness even for the globalization taken as
the truth stresser. We are going to show that each complete residuated lattice can
be slightly modified in such a way that for the modified L′, the globalization sat-
isfies (29) and (48), i.e. conditions which guarantee completeness in case of crisp
premises. The modified L′ results from L by adding new top element. Clearly, this
element is ∨-irreducible (supremally irreducible). There are two aspects here. First,
an epistemic one: The top element of a structure of truth values represents full truth,
while the other elements represent partial truths. Therefore, ∨-irreducibility of 1
then means that full truth cannot be approximated by (better and better) partial
truths, which might seem appropriate. Second, a technical one (however, related to
the first one): The degree of provability of a formula ϕ equals 1 (in Pavelka’s style)
iff there is a proof . . . , 〈ϕ, 1〉, i.e. a proof with degree 1.

In what follows, we use the well-known construction of ordinal sum (see [26–
28] for L = [0, 1] and [21] for BL-algebras). Namely, we add a new top element
to L by ordinally adding the two-element Boolean algebra 2 to L, i.e. we get
L′ = L ⊕ 2. For the sake of completeness, we present a definition of ordinal sum
of finitely many residuated lattices.

Definition 15. Suppose 〈I,≤〉 is a finite chain with the least element 0 and the
greatest element 1. For i, j ∈ I put i ≺ j iff j covers i (i.e. i ≤ j and i ≤ k ≤ j

implies i = k or j = k). Let {Li | i ∈ I } be a family of complete residuated lat-
tices Li = 〈Li,∨i ,∧i ,⊗i ,→i , 0i , 1i〉. Furthermore, let us assume that for every
i, j ∈ I , i ≺ j , we have 1i = 0j and Li ∩ Lj = {

0j
}
, and for every i, j ∈ I such

that i �= j , i ⊀ j , j ⊀ i we have Li ∩ Lj = ∅.
An ordinal sum

⊕
i∈I Li of the family {Li | i ∈ I } is a complete residuated

lattice L = 〈L,∨,∧,⊗,→, 0, 1〉, where L = ⋃
i∈I Li , 0 = 00, 1 = 11 and a ≤ b

iff either a, b ∈ Li , a ≤i b, or a ∈ Li , b ∈ Lj and i < j . The lattice operations
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1

1

0

L

Fig. 1. Complete residuated lattice with new top element

∨,∧ are naturally induced by ≤, and ⊗, → are defined by

a ⊗ b =
{
a ⊗i b if a, b ∈ Li,
a ∧ b otherwise,

a → b =





1 if a ≤ b,

b if a ∈ Lj − Li, b ∈ Li − Lj , i < j,

a →i b if a � b, a, b ∈ Li.
Remark 22. An ordinal sum of {Li | i ∈ I } is indeed a complete residuated lattice
[21] (proof in [21] uses BL-algebras but it applies to all residuated lattices).

In particular, for an ordinal sum L′ = L ⊕ 2, i.e. I = {0, 1}, where L0 = L,
L1 = 2 = 〈{1, 1},∨,∧,⊗,→, 1, 1〉, and 1 is the greatest element of L, we have

a ⊗L′
b =






a for b = 1,
b for a = 1,
a ⊗L b otherwise.

a →L′
b =






1 for a ≤L′
b,

b for a = 1,
a →L b otherwise.

Constructing L ⊕ 2 corresponds to adding a new top element to L, see Fig. 1. That
is, we have

Corollary 4. Globalization (9) defined on L ⊕ 2 is an implicational truth stresser
satisfying (29) and (48). ��

This gives a syntactico-semantically complete calculus for reasoning about
Horn clauses with crisp premises. In this case, if

∥∥P i (t ≈ t ′)
∥∥

M,v
= 1, then it

follows that either for some
〈
s, s′

〉 ∈ P we have
∥∥s ≈ s′

∥∥
M,v

�= 1, or
∥∥t ≈ t ′

∥∥
M,v

=
1. Thus, the notion of a validity in degree 1 is very similar to that of bivalent case.
Nevertheless, we are still capable to prove partially true statements from a given
L-set of Horn clauses with crisp premises.

Complete residuated lattices with implicational truth stressers satisfying (29)
and (48) can be ordinally added yielding new structures with nontrivial implica-
tional truth stressers satisfying (29) and (48). This is justified by the next lemma.

Lemma 5. Let 〈I,≤〉 be a finite chain with the least element 0 and the great-
est element 1. Let

{
L∗i
i | i ∈ I} be a family of complete residuated lattices Li =

〈Li,∨i ,∧i ,⊗i ,→i , 0i , 1i〉 with implicational truth stressers ∗i satisfying (29) and
(48). Suppose {Li | i ∈ I } can be ordinally added. Then the operation ∗ on

⋃
i∈I Li

defined by a∗ = a∗i for a ∈ Li is an implicational truth stresser on
⊕

i∈I Li
satisfying (29) and (48).
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Proof. Clearly, conditions (6), (7), (16), and (17) follow directly from the definition.
Denote the operations on

⊕
i∈I Li by ∧,∨,⊗,→, 0, 1.

(8): We consider three separate cases. If a ≤ b then clearly a∗ ≤ b∗, i.e.
(a → b)∗ = 1 = a∗ → b∗. If a → b = b, then (a → b)∗ = b∗ ≤ a∗ → b∗.
Finally, when a � b and a → b = a →i b, i.e. a, b ∈ Li , then we have
(a → b)∗ = (a →i b)

∗ = (a →i b)
∗i ≤ a∗i →i b

∗i ≤ a∗ → b∗.
(18): Take

{
aj | j ∈ J}

.
Let k = min

{
i ∈ I | there is j ∈ J such that aj ∈ Li

}
. For J ′ = {

j | aj ∈ Lk
}
,

we have
∧
j∈J aj = ∧

j∈J ′ aj . Thus,
∧
j∈J a∗

j = ∧
j∈J ′ a

∗k
j = (∧

j∈J ′ aj
)∗k =

(∧
j∈J aj

)∗.
(29): If a, b∗ ∈ Li , the claim is trivial. If b∗ ∈ Li and a �∈ Li , we have

a ⊗ b∗ = a ∧ b∗ by definition.
(48): For

{
bj | j ∈ J}

, take l = max
{
i ∈ I | there is j ∈ J such that bj ∈ Li

}
,

put J ′ = {
j | bj ∈ Ll

}
, and observe that

(∨
j∈J bj

)∗ = (∨
j∈J ′ bj

)∗l =
∨
j∈J ′ b

∗l
j = ∨

j∈J b∗
j . ��

Remark 23. (1) The construction of Lemma 5 applied to Li ⊕ 2 from Corollary 4
is illustrated in Fig. 2.

(2) The idea of having crisp premises can be naturally generalized. Suppose L∗
is a complete residuated lattice with implicational truth stresser ∗ satisfying (29).
Take a finite chainK ⊆ L such that {0, 1} ⊆ K and consider P ⊆ LT (X)×T (X) such
that P ∈ P iff

{
P(s, s′) | s, s′ ∈ T (X)} ⊆ K and P is finite. P is a proper family

of finite premises (for K = {0, 1}, we obtain exactly the family of all finite crisp
premises). An inspection of the proof of Theorem 12 shows that it is sufficient to
consider (30) for any bi’s (I �= ∅) and all a ∈ K sinceK consists of all truth values
used in premises of P-Horn clauses under consideration. For instance,

⊕
i∈I (Li⊕2)

(see Fig. 2) satisfies (30) for any a ∈ K , where K = {00} ∪ {
1i | i ∈ I} (easy to

check using Corollary 4 and Lemma 5).

7. Fuzzy equational logic and equation implications

We are going to show that the fuzzy equational logic [5] is a special case of
our approach. Putting P = {∅}, P-implications are exactly formulas of the form
∅i (t ≈ t ′), i.e. P-implications with empty premises. It is easily seen that

∥∥∅i (t ≈ t ′)
∥∥

M,v
= ‖∅‖M,v → ∥∥t ≈ t ′

∥∥
M,v

= ∥∥t ≈ t ′
∥∥

M,v
.

Hence, an identity t ≈ t ′ can be thought of as the implication ∅i (t ≈ t ′). Clearly,
the truth degree

∥∥∅i (t ≈ t ′)
∥∥

M,v
does not depend on ∗.

In [5], the algebraic counterpart of a semantically closed L-set � of identities
is a fully invariant closure θFI(�) of the corresponding L-relation on T (X). Now,
in our approach, we can consider S� , which is a one-element system S� = {�∅},
where �∅ = �. Hence, due to Corollary 1 and Theorem 8, the semantic closure
of S� is a one-element system S�� = {��

∅ }, where ��
∅ is the least congruence

on T(X) which contains � and S�� satisfies (21)–(23). (21), i.e. ∅ ⊆ ��
∅ , is a
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11 = 1

11

1i = 01

1i

0i

10

10

00 = 0

L1

Li

L0

Fig. 2. Ordinal sum of {Li ⊕ 2 | i ∈ I }

trivial property. (23) holds trivially as well since S(��
∅ , �

�
∅ ) = 1. Thus, the only

one nontrivial property of S�� is (22), i.e. ��
∅ (t, t

′) ≤ ��
∅ (h(t), h(t

′)). But this is
nothing but the full-invariance of ��

∅ . That is, ��
∅ is the least fully invariant con-

gruence on T(X) which contains �. Hence, up to a slightly different formalism,
the representation of semantic consequence from [5] and Section 3 coincides. As a
consequence,

∥∥t ≈ t ′
∥∥
�

= ∥∥t ≈ t ′
∥∥

T(X)/��
∅
.

As to the notion of provability, [5] uses the following equational deduction
rules:

(ERef) : 〈t ≈ t, 1〉 , (ESym) :

〈
t ≈ t ′, a

〉

〈t ′ ≈ t, a〉, (ETra) :

〈
t ≈ t ′, a

〉
,
〈
t ′ ≈ t ′′, b

〉

〈t ≈ t ′′, a ⊗ b〉 ,

(ERep) :

〈
t ≈ t ′, a

〉

〈s ≈ s′, a〉, (ESub) :

〈
t ≈ t ′, a

〉

〈t (x/r) ≈ t ′(x/r), a〉,

where t, t ′, t ′′, s ∈ T (X), a, b ∈ L are arbitrary, x ∈ X, term s has an occurrence
of t as a subterm and s′ is a term resulting from s by substitution of one occurrence
of t by t ′.

Evidently, (ERef)–(ESub) are instances of (Ref)–(Sub) for P = ∅. Further-
more, for P = {∅}, both rules (Ext) and (Mon) can be omitted. Namely, (Ext)
yields

〈
t ≈ t ′, 0

〉
and (Mon) derives

〈
t ≈ t ′, b

〉
from

〈
t ≈ t ′, b

〉
. It is thus easily seen

that the degree of provability of t ≈ t ′ from an L-set of identities as defined in
[5] coincides with the degree of provability of ∅i (t ≈ t ′) from the L-set �′ of
P-implications where �′(∅i (t, t ′)) = �(t, t ′).

Similarly as for semantic closure, P = {∅} leads to a simplified notion of a
deductive closure �� which in fact coincides with that of [5] (we omit details).



Fuzzy Horn logic I 49

Now it is essential to observe that the proof of Theorem 12 does not involve (30)
any longer. Hence, Theorem 12 yields that

∣∣t ≈ t ′
∣∣
�

= ��
∅ (t, t

′) for every L-set�
of {∅}-implications (i.e. identities). The latter relationship is true for every complete
residuated lattice L since for every L we can define an implicational truth stresser
satisfying (29), e.g. by (9). Finally, Theorem 11 yields

∥∥t ≈ t ′
∥∥
�

= ∥∥t ≈ t ′
∥∥

T(X)/��
∅

= ��
∅ (t, t

′) = ∣∣t ≈ t ′
∣∣
�
.

which is just the same completeness theorem as presented in [5].
∗ ∗ ∗

In his paper [32], Selman has proven a completeness theorem for the so-called
equation implications. An equation implication is simply a formula either of the
form (s ≈ s′)i (t ≈ t ′) or t ≈ t ′, where s, s′, t, t ′ are arbitrary terms. In our
terminology, these formulas are P-implications determined by a proper family of
premises P = {P | | Supp(P )| ≤ 1}, and L = 2. Equation implications are very
simple formulas. From this point of view, we may ask how does the class of com-
plete residuated lattices narrow down if we inspect the completeness considering
(weighted) equation implications instead of (weighted) identities.

We can introduce a slightly more general concept. For every n ∈ N let Pn denote
a proper family of premises defined by

Pn = {
P ∈ LT (X)×T (X) | | Supp(P )| ≤ n

}
.

Clearly, P1 is a proper family of (weighted) equation implications. Note that Pn is
a proper family for every n ∈ N since the support of an endomorphic image h(P )
of P ∈ P can have at most n elements.

But unlike the equational case or the case with crisp premises, an inspection
on theory in previous sections shows that Pn simplify neither the properties of ∗
sufficient to express a semantic consequence nor the deduction rules. In certain
sense, the general rule (Mon) simplifies so that it is not necessary to formalize it by
infinitely many rules, but only by n + 1 rules. For instance, in case of equational
implications, it is sufficient to consider

〈
t ≈ t ′, b

〉

〈r ≈ r ′, a′〉i 〈t ≈ t ′, b〉
and

〈
r ≈ r ′, a′〉

i
〈
s ≈ s′, a

〉
,
〈
s ≈ s′, b′〉

i
〈
t ≈ t ′, b

〉

〈r ≈ r ′, a′〉i 〈t ≈ t ′, b ⊗ (b′ → a)∗〉
instead of the general (Mon). However, we have to keep (30) to be able to prove
completeness.
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