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The globalization of economy and market led to increased networking in the field of manufacturing and services. These
manufacturing and service processes including supply chain became more and more complex. The supply chain includes in
many cases consignment stores. The design and operation of these complex supply chain processes can be described as NP-hard
optimization problems.These problems can be solved using sophisticated models andmethods based onmetaheuristic algorithms.
This research proposes an integrated supply model based on consignment stores. After a careful literature review, this paper
introduces a mathematical model to formulate the problem of consignment-store-based supply chain optimization.The integrated
model includes facility location and assignment problems to be solved. Next, an enhanced black hole algorithm dealing with
multiobjective supply chain model is presented. The sensitivity analysis of the heuristic black hole optimization method is also
described to check the efficiency of new operators to increase the convergence of the algorithm. Numerical results with different
datasets demonstrate how the proposed model supports the efficiency, flexibility, and reliability of the consignment-store-based
supply chain.

1. Introduction

In today’s economy, the pressure is on to make the operations
of supply chain from purchasing to distribution more and
more efficient. The competition is characterized as competi-
tion between supply chain networks rather than competition
between individual production and service companies. The
upstream and downstream linkages of involved organizations
like production and service companies, suppliers, 3PL or 4PL
providers, wholesalers, and retailers increase the complexity
of supply chain networks. This increased complexity led to
the implementation of new strategies and tools to make
supply chain structure more transparent, while the efficiency
and flexibility are increased. One of these tools is the con-
signment inventory concept. Consignment inventory gives
advantages for both the suppliers and the customers since the
supplier enjoys the advantages of close connection with cus-
tomers, decrease of own store capacity, and decreased trans-
portation and packaging costs. Meanwhile, customers using
consignment-inventory-based supply can enjoy advantages

provided by consignment inventory like low supply risk,
decreased supply costs, and transparency of inventories.

The design and operation of consignment inventory
or consignment-store-based supply chains include a huge
number of problems: facility location, routing, scheduling,
budgeting, transportation problem, inventory optimization,
assignment, and queuing problems.

The model presented in this work not only combines the
facility location of consignment stores and the assignment
problems of stores, suppliers, and customers but also takes
into account capacity of logistic resources. To the best of
our knowledge, the facility location of consignment stores in
supply chains and its assignment to customers and suppliers
has not been considered in the current literature.

The main contributions of this work include (1) an
integrated consignment-store-based supply chain model
that combines facility location planning and assignment of
involved organizations of the supply chain, (2) a black-hole-
optimization-based algorithm, which includes new heuristic
operators to increase the convergence, (3) a test of the
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Table 1: Selected papers related to topics of the research.

SN Author(s) Year Topics
1 Hallikas and Lintukangas 2016 Risk management in purchasing and supply chain
2 Matopoulos et al. 2016 Modelling in purchasing and supply chain
3 Immonen et al. 2016 Supply chain in B2B services
4 Zhang et al. 2017 In-plant supply chain design, production routing
5 Govindan and Soleimani 2017 Supply chain management in reverse logistics
6 Ma et al. 2016 Integrated supply chain design
7 Diabat and Deskoores 2016 Supply chain optimization with hybrid genetic algorithm
8 Pishvaee and Rabbani 2011 Responsive supply chain network design with heuristics
9 Liu and Chen 2011 Inventory routing in a supply chain with heuristics
10 Chávez et al. 2017 Simulation-based supply chain modelling
11 Dorigatti et al. 2016 Agent-based simulation of collaborative supply chain
12 Ge et al. 2016 Simulation and hybrid optimization of supply chain
13 Ben Othman et al. 2017 Resource scheduling with decision support system
14 Dey et al. 2017 Facility location in supply chain
15 Zahran et al. 2016 Consignment stock modelling with delay-in-payment
16 Hackett 1993 Consignment contracting
17 Bylka 2013 Noncooperative consignment stock strategies
18 Bazan et al. 2014 Consignment stock agreements for two-level supply chain
19 Li et al. 2014 Supply diversification
20 Batarfi et al. 2016 Strategy for dual-channel supply chain
21 Ru and Wang 2010 Consignment contracting
22 Fraser 2016 Schwarzschild radius
23 Piotrowski et al. 2014 Black hole optimization versus other heuristics
24 Dorigo and Gambardella 1997 Ant colony optimization
25 Yang 2014 Nature-inspired optimization algorithms
26 Bhargava et al. 2013 Cuckoo search optimization
27 Lozano et al. 2017 Artificial bee colony algorithm
28 Niknam et al. 2013 Bat-inspired heuristics
29 McKendall Jr. et al. 2006 Simulated annealing heuristics
30 Saha et al. 2014 Gravitation search algorithm
31 Srivastava 2015 Intelligent water drop optimization
32 Bányai et al. 2015 Harmony search optimization
33 Zhang et al. 2008 Random black hole particle swarm optimization
34 Yaghoobi and Mojallali 2016 Black hole algorithm with genetic operators
35 Wang et al. 2016 Black hole base optimization
36 Bouchekara 2013 Black-hole-based optimization technique
37 Wang et al. 2014 Parameter optimization based on black hole algorithm
38 Hatamlou 2013 Data clustering with black hole algorithm
39 Azizipanah-Abarghooee et al. 2014 Power system scheduling with black hole optimization
40 Bouchekara 2014 Power flow optimization with black hole algorithm

modified black hole algorithm with different datasets and
test functions based on CEC 2005, and (4) computational
results of consignment-store-based supply chain problems
with different datasets.

This paper is organized as follows. Section 2 presents
a literature review, which systematically summarizes the
research background of supply chain, consignment stores,
and black hole optimization. Section 3 describes the model
framework of the consignment-store-based supply chains.
Section 4 presents the black hole optimization and supposes
some modification to improve its convergence and enhance
its efficiency. Section 5 demonstrates the sensitivity analysis
of the algorithm based on CEC 2005 functions. For our
study, in Section 6, we focus on the optimization results

with numerical analysis. Conclusions and future research
directions are discussed in Section 7.

2. Literature Review

Since our study embraces several related research streams,
namely, supply chain management, consignment stores, and
black hole optimization, we provide a brief review on each
streambefore to elaborate themodel, algorithm, and solution.
Table 1 enlists the papers published in these areas related to
our research.

Only limited attention has been paid to consignment-
store-based supply chain optimization with metaheuristic
methods in the literature. There has recently been an
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increased interest in performance analysis of supply chains
[1–14] and some recent analysis has been targeted specifically
towards the integration of consignment stores into supply
chain processes [15–21] and optimizationwithmetaheuristics
based on swarming algorithms [22–40], especially black hole
optimization. Firstly, the relevant terms were defined and
the initial searches were conducted. The keywords used in
the search were supply chain management, supply, logistics,
consignment store, consignment contract, heuristics, meta-
heuristics, and black hole optimization.The literature sources
were found through scientific databases (ScienceDirect, Sco-
pus, andWeb of Science) and regular search engines (Google)
and included journal articles. Initially, more than 300 articles
were identified. This list was narrowed down to 42 titles by
selecting journal articles focusing on our research field. It is
worthmentioning that the search was conducted in February
2017; therefore new articles may have been published since
then.

2.1. Research on Supply Chain Management. Successful pro-
duction and service processes provide a significant com-
petitive advantage over other participants of the market.
Logistics-related operations such as warehousing, trans-
portation, loading unit building, packaging, customer ser-
vice, and inventory carrying account for up to 95% of the
total cost, depending on the corporate sector. For that reason,
it is important to take the logistics-related operations and
processes under control and turn logistics into the source of
competitive edges. Logistics can be divided into four impor-
tant parts: purchasing, production or service, distribution,
and recycling.

Supply chain management influences the efficiency of
purchasing, because supplier orientation, supplier depen-
dency, customer orientation, and purchasing strategy have
an effect on performance [1]. Supply chain modelling in
purchasing is important not just at the functional and
operational level but also at the organizational and strategic
level [2]. The relationship between purchasing strategies and
e-business solutions like business-to-business services has
been studied in the literature and provides new knowledge on
complex purchasing systems [3]. In-plant supply chain design
includes the problems of facility location, production routing,
and scheduling [4].

There is a growing interest in the field of closed-loop
supply chain design and green supply chain. Reverse logistic
systems play an important role in the end-of-life product
recycling and influence consumer’s return practices for col-
lecting used products, like wastes of electric and electronic
equipment [5]. The functional sequences of supply chain can
be taken into consideration as an integrated process; the
integration of production and distribution planning is a good
solution to avoid conflict in sales [6].

The increased complexity of industrial and service pro-
cesses led to the application of complex solution methods
and procedures to optimize the parameters of related supply
chains. Heuristic optimizationmethods are used to solve NP-
hard problems of supply chains: integrated supply chain prob-
lems can be solved by hybrid algorithms [7], graph-theory-
based heuristic supports responsive supply chain design [8],

and inventory routing and pricing problems in a supply chain
can be solved with Tabu Search [9]. Simulation-based meth-
ods support the optimization of deterministic and stochastic
models in the field of transportation [10], collaboration anal-
ysis for jointly working members [11], and supply chain opti-
mization to find the core parameters of supply chain strategies
to ensure cost efficiency [12]. Decision support systems make
it possible to find optimal solutions for resource scheduling
in supply chain [13] and group decision-making is an effective
tool for facility location problems of supply chains [14].

2.2. Research on Consignment Stores. There is a great body
of research dealing with consignment policies, consignment
stores, and consignment strategies. Within the frame of this
chapter, we give a short overview on this reach literature
source related to our research. Production companies usu-
ally have four types of inventories: raw materials, work-
in-process, finished products, and manufacturing supplies.
Holding inventories makes it possible to avoid losses of sales,
gain quantity discounts, reduce order costs, and achieve
efficient production run. Consignment is a special coordi-
nation mechanism of inventories, because the owner keeps
ownership of his goods and products until they are sold.
Consignment stock can improve the supply chain improve-
ment, because vendor uses its buyer’s warehouse capacity
to store goods. The operation of consignment-store-based
supply chain depends on the policy of its operation; therefore,
it is important to optimize its operation strategy [15]. The
first work investigated the consignment contracting and
defined the role of consignment; it can limit the middleman’s
commitment and increase the profitability of sales [16]. In a
later study, the importance of noncooperative stock strategies
was underlined and generalized consignment policies were
considered to minimize the average total costs by individual
decisions [17]. Another topic that has received significant
attention in the literature is the analysis of multilevel supply
chain with consignment stores. The result of these researches
showed the following advantages of using consignment stores
in supply chain [18]: improved customer service through
decreased reaction time on customer’s demands, levelling of
customer’s demands, decreased inventory on the side of the
supplier [19], and cost reduction [20]. The possible control
processes of consignment inventory have been studied in the
literature; consignment arrangements from the point of view
of suppliers and retailers are discussed [21].

2.3. Research on Black Hole Optimization. Black holes were
predicted by Einstein’s theory of general relativity. If the mass
of a dead star’s core is more than three times the solar mass,
the force of gravity overwhelms all other forces. In a black
hole, gravity pulls so much that nothing, not even particles,
light, or radiation, can escape from it.The boundary of a black
hole is called event horizon, beyond which events cannot be
observed and particles cannot move in any direction but only
closer to the core of the black hole. This boundary is called
Schwarzschild radius, which is given as

𝑟𝑠 = 2𝑔𝑀𝑐2 , (1)
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where 𝑔 is the gravitational constant, 𝑀 is the object mass,
and 𝑐 is the speed of light [22].

The black hole optimization (BHO) is based on this
phenomenon. Black hole optimization can be described as
simplification of thewell-known particle swarmoptimization
using inertia weight. The black hole optimization belongs
to heuristics inspired by the laws of nature, like Newton’s
three laws of motion, his law of gravitation, the ideal gas law,
and so on. The laws of nature may be as relevant sources
of inspiration for heuristics as living bodies or human-
depending phenomenon [23]. Living-bodies-inspired heuris-
tics are, for example, ant colony optimization [24], firefly
optimization [25], cuckoo search [26], artificial bee colony
optimization [27], bat algorithm [28], or bacterial algorithm.
Simulated annealing [29], gravitation search [30], intelligent
water drops [31], and black hole algorithms [23] are inspired
by physical laws, while harmony search [32] is based on a
strongly human-depending attitude.

BHO can be used for hybrid metaheuristics [33]. Genetic
operators can increase the convergence and the optimization
results of BHO performing a more diverse search in the
search space [34] and the convergence of the basic algorithm
can be increased by improved measurement of distances
in the search space [35]. The technique can be proposed
for the optimization of different scientific problems, like
pole face optimization of a magnetizer [36], optimization of
parameters of least squares support vector machine [37], data
clustering [38], scheduling of thermal power systems [39], or
power flow optimization [40].

2.4. Analysis of Recent Papers. More than 80% of the articles
were published in the last 4 years. This result indicates
the scientific potential of this research field including the
problems of supply chain, consignment stores, and heuristic
optimization. The articles that addressed the optimization of
supply chain processes are focusing on conventional manu-
facturing and service processes and only a few of them aimed
to identify the optimization aspects of consignment-store-
based supply chain. Therefore, the heuristic optimization of
consignment-store-based supply still needs more attention
and research, especially in the case of robust, networking
cases. It was found that heuristic algorithms are important
support tools for design, since a wide range of models
determines an NP-hard optimization problem. According to
that, the main focus of this research is on the modelling and
optimization of consignment-store-based supply chain.

The aim of this paper is to investigate the effect of location
of consignment stores on the performance of the whole
supply chain. The contribution of this paper to the literature
is twofold: description of a consignment-store-based supply
chain model including the optimization problem of facility
location and assignment and development of a black-hole-
based algorithm to solve an integrated optimization problem.

3. Model Framework

The model framework of the consignment-store-based sup-
ply chain is a two-level supply chain including suppliers,

consignment stores, and customers (Figure 1). The supply
chain has m suppliers that produce the needs of p different
customers. The supplier and the customer want to set up
a consignment store network to support the just-in-time
and just-in-sequence supply. Depending on the number and
location of consignment stores and consignment agreements,
the suppliers are able to ship their products to different
consignment stores and the customers are able to buy
their needs from different consignment stores. The decision
variables of this model are the following: optimal location
of the consignment stores, types of consignment agreements
between suppliers and customers, and assignment of objects
of supply chain and order quantities.These decision variables
include an integrated optimization problem: facility location
problem and assignment problem.

The decision variables describe the decisions to be made.
In this model, the following must be decided: (a) how
many products from suppliers through consignment stores
to customers should be transported; (b) location of each
consignment store. These two decisions represent the above-
mentioned assignment and facility location problem. With
this inmind, we define 𝑞𝑖𝑗𝑘 as amount of products transported
from 𝑖th suppliers through 𝑗th consignment store to the 𝑘th
customer and (𝑥𝑊𝑖 , 𝑦𝑊𝑖 ) as coordinates of the 𝑗th consign-
ment store.

The objective function of the problem describes the
minimization of the costs of both the suppliers and the
customers.

min 𝐶 = 𝑚∑
𝑖=1
𝐶𝑆𝑖 +

𝑝∑
𝑘=1
𝐶𝐶𝑘 , (2)

where 𝐶𝑆𝑖 represents the costs of suppliers and 𝐶𝐶𝑘 represents
the costs of customers.

The first part of the cost function (2) includes the sum
of transportation costs among suppliers and consignment
stores, the warehousing costs, and the manufacturing costs
of all suppliers.

𝐶𝑆𝑖 =
𝑛∑
𝑗=1

𝑝∑
𝑘=1
𝑞𝑖𝑗𝑘 [𝑐𝑊𝑗 + 𝑐𝑇𝑖𝑗 𝑙𝑖𝑗 (𝑥𝑊𝑗 , 𝑦𝑊𝑗 )] + 𝐶𝑀𝑖 , (3)

where 𝑐𝑊𝑗 is the specific warehousing cost in the 𝑗th con-
signment store, 𝑐𝑇𝑖𝑗 is the specific transportation cost between
the 𝑖th supplier and 𝑗th consignment store, 𝑙𝑖𝑗 is the length
of the transportation route between the 𝑖th supplier and 𝑗th
consignment store, 𝑥𝑊𝑗 and 𝑦𝑊𝑗 are the coordinates of the 𝑗th
consignment store, and 𝐶𝑀𝑖 is the manufacturing cost of the𝑖th supplier.

The second part of the cost function (2) includes the
transportation costs from consignment stores to customers
and the purchasing costs of products.

𝐶𝐶𝑘 =
𝑚∑
𝑖=1

𝑛∑
𝑗=1
𝑞𝑖𝑗𝑘 (𝑐𝑃𝑖 + 𝑐𝑇𝑗𝑘𝑙𝑗𝑘 (𝑥𝑊𝑗 , 𝑦𝑊𝑗 )) , (4)

where 𝑐𝑃𝑖 is the specific purchasing cost from the 𝑖th supplier,𝑐𝑇𝑗𝑘 is the specific transportation cost between the 𝑗th con-
signment store and 𝑘th customer, and 𝑙𝑗𝑘 is the length of the
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Figure 1: Model framework of consignment-store-based supply chain.

transportation route between the 𝑗th consignment store and𝑘th customer.
The values of the products supplied, stored, and bought

are limited by the following three constraints.

Constraint 1. Each time interval, no more than the capacity of
the consignment store may be transported from suppliers to
consignment stores (see the following equation):

𝑚∑
𝑖=1

𝑝∑
𝑘=1
𝑞𝑖𝑗𝑘 ≤ 𝑄max

𝑗 𝑗 ∈ (1, 2, . . . , 𝑛) , (5)

where 𝑄max
𝑗 is the capacity of the 𝑗th consignment store.

Constraint 2. All products manufactured by suppliers should
be transported to consignment stores each time interval (see
the following equation):

𝑛∑
𝑗=1

𝑝∑
𝑘=1
𝑞𝑖𝑗𝑘 = 𝑞𝑖 𝑖 ∈ (1, 2, . . . , 𝑚) , (6)

where 𝑞𝑖 is the total amount of product produced by the 𝑖th
supplier.

Constraint 3. Each time interval, amount of purchased prod-
ucts must reach the total demand of customers (see the
following equation):

𝑚∑
𝑖=1

𝑛∑
𝑗=1
𝑞𝑖𝑗𝑘 = 𝑞𝑘 𝑘 ∈ (1, 2, . . . , 𝑝) , (7)

where 𝑞𝑘 is the total required amount of the 𝑘th customer in
the planning period.

The decision variables can only assume nonnegative
values, so we associate sign restrictions with the above-
mentioned decision variables (see the following equation):

𝑞𝑖𝑗𝑘, 𝑥𝑊𝑗 , 𝑦𝑊𝑗 ≥ 0. (8)

4. Black Hole Algorithm

Black holes are places in the outer space where the gravitation
force is so high that no particles even light can get out. Black
holes are born when stars die. The environment of black
holes can be analyzed, but the black holes are invisible. The
Schwarzschild radius is the radius of the event horizon. If the
distance between a particle (star, proton, electron, photon,
etc.) is much higher than the Schwarzschild radius, then the
particle can move in any direction. If this distance is larger



6 Complexity

Black hole

Event horizon

r３３

≫ r３３rP-BH
≈ r３３rP-BH

< r３３rP-BH

Figure 2: Behavior of particles depending on the distance from
black hole.

than the Schwarzschild radius but this difference is not too
much, the space-time is deformed, and more particles are
moving towards the center of the black hole than in other
directions. If a particle reaches the Schwarzschild radius,
then it can move only towards the center of the black hole
(Figure 2). The black hole optimization is based on this
phenomenon of black holes.

The first phase of the black hole optimization is the so
called big-bang, when a new generation of stars is generated
in the search space. Each star represents one solution of the
optimization problem. The coordinates of the 𝑖th star in the𝑛-dimensional search space represent the decision variables
of the 𝑛-dimensional optimization problem.

󳨀→𝑥 𝑠𝑖𝑗 = (𝑥𝑆𝑖1 , 𝑥𝑆𝑖2 , . . . , 𝑥𝑆𝑖𝑛 ) . (9)

The second phase of the algorithm is the evaluation of the
stars. The stars are evaluated with the value of the objective
functions (gravity force represented by the star).

𝑓𝑆𝑖 = 𝑓𝑆𝑖 (𝑥𝑆𝑖1 , 𝑥𝑆𝑖2 , . . . , 𝑥𝑆𝑖𝑛 ) . (10)

The third phase is to choose one or more black holes. Black
holes are the stars with the highest gravity force.

𝑓BH = max
𝑖
(𝑓𝑆𝑖) . (11)

The fourth phase of the algorithm is to move the stars
towards the black holes in the search space.There are different
operators to calculate the new locations of the stars.The basic
operator uses only the gravity force of the black holes and the
gravity force of stars is not taken into consideration.There are
two main types of operators: the first type calculates the new
position of the stars depending on the gravity forces among
stars and black holes, and the second type does not take into
account the gravity forces (see the following equation):

𝑥𝑆𝑖𝑗 (𝑡 + Δ𝑡) = 𝑥𝑆𝑖𝑗 (𝑡) + Rnd ⋅ (𝑥BH𝑗 (𝑡) − 𝑥𝑆𝑖𝑗 (𝑡)) . (12)

The movement of stars towards the black hole changes the
decision variables of the solution represented by the moving
star so that the decision variables will move to the decision
variables of the best solution represented by the black hole
(Figure 3).

Stars reaching the event horizon will be absorbed and
a new star is generated in the search space. The radius of

the event horizon (the Schwarzschild radius) is calculated as
follows:

𝑅EH = 𝑓BH

∑𝑛𝑖=1 𝑓𝑆𝑖 , (13)

where 𝑅EH is the radius of event horizon, 𝑓BH is the gravity
force of the black hole, and 𝑓𝑆𝑖 is the gravity force of the 𝑖th
star.

The fifth phase is the evaluation of stars. Stars with the
best gravity force will be the new black holes, and the old
black holes become stars. This role of this fifth phase is
the same as the role of the mutation operator of genetic
algorithms: to avoid the local optimum. Termination criteria
of the algorithm can be the number of iteration steps,
computational time, or the measure of convergence.

If the location of the optimum is inside the event horizon,
it is impossible to find it, because all stars inside the event
horizon are absorbed. Stephen Hawking published a theoret-
ical argument for the existence of blackbody radiation [41].
Virtual particle-antiparticle pairs, like photons or neutrinos,
are being created near the event horizon of the black hole.
These particle-antiparticle pairs annihilate each other or one
of them falls into the black hole and the other one escapes
as Hawking radiation due to quantum effects. The black hole
loses a part of its energy and its mass.This Hawking radiation
is called black hole evaporation. It is possible to apply this
black hole evaporation to search inside the event horizon
[42]. This application means that a little change occurs in the
location of the black hole, so that a small part of the old event
horizon is available for the stars.

𝑥BH𝑗 (𝑡 + Δ𝑡) = 𝑥BH𝑗 (𝑡) + 𝜀, |𝜀| ≪ 𝑅EH. (14)

Another way to open the event horizon of black holes for the
stars to search for the best solution is to decrease the measure
of event horizon. The pseudocode shows the developed
approach (Pseudocode 1).

The described Pseudocode 1makes it possible to replicate
the implementation. It is also possible to have more than one
black hole; in this case, the movement of stars towards the
black holes is similar to the gravity search algorithm [43].

5. Sensitivity Analysis

Within the frame of this chapter, the sensitivity analysis
of the black hole algorithm is described. The following 10
different benchmark functions were used to evaluate the
above-described black hole algorithm:

(i) The 𝑛-dimensional nonconvex Shifted sphere func-
tion is evaluated on the hypercube 𝑥𝑖 ∈ [−100, 100].
It has a global minimum at 𝑓1(𝑠1, . . . , 𝑠𝑖, . . . , 𝑠𝑑) = 𝑏.

(ii) The 𝑛-dimensional shifted Schwefel function is evalu-
ated on the hypercube 𝑥𝑖 ∈ [−100, 100]. It has a global
minimum at 𝑓2(𝑠1, . . . , 𝑠𝑖, . . . , 𝑠𝑑) = 𝑏.

(iii) The 𝑛-dimensional shifted elliptic function is evalu-
ated on the hypercube 𝑥𝑖 ∈ [−100, 100]. It has a global
minimum at 𝑓3(𝑠1, . . . , 𝑠𝑖, . . . , 𝑠𝑑) = 𝑏.
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Figure 3: Moving of stars in BHO (step 1: initialization of stars; step 3: stars are moving in the direction of the black hole; step 5: stars are
nearing the event horizon; step 8: some stars cross the Schwarzschild radius, they are absorbed, and new stars are generated in the search
space).

Input: number of stars, objective function, constraints, sign restrictions, termination criteria
Output: optimal solution
// Initialization(1) generate feasible solutions randomly in the 𝑛-dimensional search space (9)
// Pre-evaluation(2) for each stars, evaluate the objective function ((2)–(4), (10))
// Loop until the termination criteria satisfy
While (termination criteria satisfy) do

// Selection of the black hole(3) select the best star that has the best value to become a black hole (11)
// Hawking radiation(4) change the position of the black hole (14)
// movement of stars towards the black hole(5) move the stars towards the black holes (12) while constraints ((5)–(8)) are taken into consideration
// Check the position of stars(6) if star is inside the Schwarzschild radius

absorb the star and generate a new one in the search space (13)
end if

// Evaluation(7) for each stars, evaluate the objective function ((2)–(4), (10))
End of while

Pseudocode 1: Pseudocode of BHA.
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Table 2: Error values of BHO in the case of 10 benchmark functions after 100 iteration steps.

Evaluation function Standard BHO
BHO with

moving black
hole location

BHO with
decreasing event

horizon

Complex
BHO

Shifted sphere function

𝑓1 (𝑥1, . . . , 𝑥𝑖, . . . , 𝑥𝑑) = 𝑑∑
𝑖=1
(𝑥𝑖 − 𝑠𝑖)2 + 𝑏 1,02𝐸 − 7 1,02𝐸 − 7 9,55𝐸 − 8 4,76𝐸 − 8

Shifted Schwefel function

𝑓2 (𝑥1, . . . , 𝑥𝑖, . . . , 𝑥𝑑) = 𝑑∑
𝑖=1
( 𝑖∑
𝑗=1
(𝑥𝑖 − 𝑠𝑖))

2

+ 𝑏 8,82𝐸 − 6 8,34𝐸 − 6 7,21𝐸 − 6 4,02𝐸 − 6
Shifted elliptic function

𝑓3 (𝑥1, . . . , 𝑥𝑖, . . . , 𝑥𝑑) = 𝑑∑
𝑖=1
(106)(𝑖−1)/(𝑑−1) (𝑥𝑖 − 𝑠𝑖)2 + 𝑏 4,32𝐸 − 7 4,12𝐸 − 7 2,62𝐸 − 7 1,92𝐸 − 7

Styblinski-Tang function

𝑓4 (𝑥1, . . . , 𝑥𝑖, . . . , 𝑥𝑑) = 12
𝑑∑
𝑖=1
(𝑥4𝑖 − 16𝑥2𝑖 + 5𝑥𝑖) 2,91𝐸 − 6 1,38𝐸 − 6 6,12𝐸 − 7 4,65𝐸 − 7

Rosenbrock function

𝑓5 (𝑥1, . . . , 𝑥𝑖, . . . , 𝑥𝑑) = 𝑑−1∑
𝑖=1
[100 (𝑥𝑖+1 − 𝑥2𝑖 )2 + (𝑥𝑖 − 1)2] 5,50𝐸 − 6 5,44𝐸 − 6 2,92𝐸 − 6 2,02𝐸 − 6

Rastrigin function

𝑓6 (𝑥1, . . . , 𝑥𝑖, . . . , 𝑥𝑑) = 10 + 𝑑∑
𝑖=1
[𝑥2𝑖 − 10 cos 2𝜋𝑥𝑖] 2,45𝐸 − 6 2,32𝐸 − 6 1,07𝐸 − 6 9,69𝐸 − 7

Ackley function
𝑓7 (𝑥, 𝑦) = −20 ⋅ 𝑒−0.2√0.5(𝑥2+𝑦2) − 𝑒(0.5(cos 2𝜋𝑥)+cos 2𝜋𝑦) + 𝑒 + 20 1,14𝐸 − 7 1,01𝐸 − 7 9,63𝐸 − 8 7,17𝐸 − 8
Beale function𝑓8 (𝑥, 𝑦) = (1.5 − 𝑥 + 𝑥𝑦)2 + (2.25 − 𝑥 + 𝑥𝑦2)2 + (2.625 − 𝑥 + 𝑥𝑦3)2 2,29𝐸 − 7 2,26𝐸 − 7 1,91𝐸 − 7 1,21𝐸 − 7
Booth function𝑓9 (𝑥, 𝑦) = (𝑥 + 2𝑦 − 7)2 + (2𝑥 + 𝑦 − 5)2 5,31𝐸 − 6 2,11𝐸 − 6 5,51𝐸 − 7 3,26𝐸 − 7
Goldstein-Price function𝑓10(𝑥, 𝑦) = [1 + (𝑥 + 𝑦 + 1)2(19 − 14𝑥 + 3𝑥2 − 14𝑦 + 6𝑥𝑦 + 3𝑦2)][30 +(2𝑥 − 3𝑦)2(18 − 32𝑥 + 12𝑥2 + 48𝑦 − 36𝑥𝑦 + 27𝑦2)] 3,34𝐸 − 8 8,22𝐸 − 9 6,31𝐸 − 9 3,12𝐸 − 9

(iv) The 𝑛-dimensional Styblinski-Tang function is eval-
uated on the hypercube 𝑥𝑖 ∈ [−5, 5]. It has a
global minimum at 𝑓4(−2.903534, . . . , −2.903534) =−39.16599.

(v) The 𝑛-dimensional Rosenbrock function is evaluated
on the hypercube 𝑥𝑖 ∈ [−∞,∞]. It has a global
minimum at 𝑓5(1, . . . , 1, . . . , 1) = 0.

(vi) The 𝑛-dimensional Rastrigin function is evaluated on
the hypercube 𝑥𝑖 ∈ [−5.12, 5.12]. It has a global
minimum at 𝑓6(0, . . . , 0, . . . , 0) = 0.

(vii) The 2-dimensional Ackley function is evaluated on
the 𝑥𝑖 ∈ [−5, 5] square. It has a global minimum at𝑓7(0, 0) = 0.

(viii) The 2-dimensional Beale function is evaluated on the𝑥𝑖 ∈ [−4.5, 4.5] square. It has a global minimum at𝑓8(3, 0.5) = 0.
(ix) The 2-dimensional Booth function is evaluated on the𝑥𝑖 ∈ [−10, 10] square. It has a global minimum at𝑓9(1, 3) = 0.

(x) The 2-dimensional Goldstein-Price function is eval-
uated on the 𝑥𝑖 ∈ [−2, 2] square. It has a global
minimum at 𝑓10(0, −1) = 3.

The aim of this evaluation is to analyze the effect of per-
manently decreased Schwarzschild radius and the changes
occurred in the location of black holes.

As Table 2 demonstrates, the permanently decreased
Schwarzschild radius and the moving black hole effect
decreased the error value after 100 iteration steps. The
problem size was fixed as a 10-dimensional problem in the
case of 𝑓1 to 𝑓6. The efficiency of the algorithm in the case of
different problem sizes (different search space dimensions) is
demonstrated in the next chapter.The average error valuewas
reduced by 36% with a deviation of 19% (Table 3).

In order to demonstrate how black hole implementation
performs when problem size increases, we tested the algo-
rithm both with test functions and with the consignment-
store-based supply chain problem.

As Table 4 shows, the increased size of the problem led
to the increase of the required iteration steps to reach the
predefined error value that is based on the performance of
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Energy crop fields
Technology:

Logistics

(i) Raising
(ii) Harvesting

(i) Building loading units 
(baling)

(ii) Loading
(iii) Identification

Warehousing of crop
Logistics:

(i) Loading and unloading
(ii) Storage

(iii) Identification

Power plant
Technology:

Logistics:
(i) Use in plant

(i) Loading
(ii) Storage

Customers
Logistics:

(i) Distribution
(ii) Loading

Briquetting
Technology:

Logistics:
(i) Briquetting

(i) Storage
(ii) Loading

Consignment store
Logistics:

(i) Loading
(ii) Storage

(iii) Identification

Figure 4: Complex power plant supply chain.

Table 3: Error value decline using moving black holes and perma-
nently decreasing Schwarzschild radius.

Evaluation function Error value decline
Shifted sphere function 47%
Shifted Schwefel function 46%
Shifted elliptic function 44%
Styblinski-Tang function 16%
Rosenbrock function 37%
Rastrigin function 40%
Ackley function 63%
Beale function 53%
Booth function 6%
Goldstein-Price function 9%

the algorithm in the case of a 10-dimensional search space
(Table 2).Thehighest iteration stepwas required in the case of
the consignment-store-based supply chain problem because
of the specific constraints and sign restrictions.

6. Numerical Analysis of Consignment-Store-
Based Supply Chain

Within the frame of this chapter, a case studywill be analyzed.
The aim of this chapter is to analyze the design of an energy
crop supply chain of biomass-fired power plants, especially
from the point of view of integrated facility location. The
model shown in Figure 4 includes the whole energy crop
supply chain from harvesting crop in the crop fields through

briquetting plants to the distribution for power plants
and customers through consignment stores. The following
parameters are taken into consideration: the total amount of
harvested energy crop, required briquette amount by each
power plant and the cluster of customers, transportation
distances, specific transportation costs, type of transportation
devices (average truck capacity), and location of crop fields,
power plants, and customers. The objective function is a cost
function based on the transportation processes from energy
crop fields to briquetting plants and from briquetting plants
to power plants and communal customers. The decision
variables are the following: (a) how many energy crops from
crop field through consignment stores to customers and
power plants should be transported; (b) location of each
consignment store.

Figure 5 demonstrates the results of the optimization
of the above-mentioned complex supply chain. The datasets
represent simple specification of the system so that the results
of the optimization can be checked.

In the first case, customers and power plants need the
same quantity of briquette; therefore the central position of
both consignment stores is correct. The first power plant and
the first and second customer’s clusters are assigned to the
first consignment store, while the second power plant and the
third and the fourth customer’s clusters are assigned to the
second consignment store.

In the second case, the third customer’s cluster has
a greater demand of briquette. In this case, the second
consignment store’s location is not centralized in order to
minimize the materials handling costs of the whole supply
chain.
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Table 4: Number of required iteration steps to reach the predefined error value (PEV).

Evaluation function Problem size
𝑑 = 5 𝑑 = 10 𝑑 = 25

Shifted sphere function

𝑓1(𝑥1, . . . , 𝑥𝑖, . . . , 𝑥𝑑) = 𝑑∑
𝑖=1
(𝑥𝑖 − 𝑠𝑖)2 + 𝑏

PEV = 4,76𝐸 − 8
94 100 122

Shifted Schwefel function

𝑓2(𝑥1, . . . , 𝑥𝑖, . . . , 𝑥𝑑) = 𝑑∑
𝑖=1
( 𝑖∑
𝑗=1
(𝑥𝑖 − 𝑠𝑖))2 + 𝑏

PEV = 4,02𝐸 − 6
92 100 134

Shifted elliptic function

𝑓3(𝑥1, . . . , 𝑥𝑖, . . . , 𝑥𝑑) = 𝑑∑
𝑖=1
(106)(𝑖−1)/(𝑑−1)(𝑥𝑖 − 𝑠𝑖)2 + 𝑏

PEV = 1,92𝐸 − 7
81 100 156

Styblinski-Tang function

𝑓4(𝑥1, . . . , 𝑥𝑖, . . . , 𝑥𝑑) = 12
𝑑∑
𝑖=1
(𝑥4𝑖 − 16𝑥2𝑖 + 5𝑥𝑖)

PEV = 4,65𝐸 − 7
85 100 162

Rosenbrock function

𝑓5(𝑥1, . . . , 𝑥𝑖, . . . , 𝑥𝑑) = 𝑑−1∑
𝑖=1
[100(𝑥𝑖+1 − 𝑥2𝑖 )2 + (𝑥𝑖 − 1)2]

PEV = 2,02𝐸 − 6
93 100 133

Rastrigin function

𝑓6(𝑥1, . . . , 𝑥𝑖, . . . , 𝑥𝑑) = 10 + 𝑑∑
𝑖=1
[𝑥2𝑖 − 10 cos 2𝜋𝑥𝑖]

PEV = 9,69𝐸 − 7
84 100 144

Consignment-store-based supply chain problem
PEV = 5,63𝐸 − 7 89 100 168
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Figure 5: Results of the facility location and assignment problem of energy crop supply chain.
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The optimization of this complex supply chain problem
can lead to the decrease of different costs, like transportation
costs, warehousing costs, andmaterials handling costs (pack-
aging, loading, unloading, and building of loading units).

7. Conclusions and Further
Research Directions

This study developed a methodological approach for design
of consignment-store-based supply chains. In this paper,
firstly, we reviewed and systematically categorized the recent
works presented for consignment-store-based supply chain
optimization. Then, motivated by the gaps in the literature,
a model for companies performing their purchasing through
consignment stores is developed. Twomodels were proposed:
the framework model shows the levels of supply chain, while
the second model as a case study focuses on power plant
supply. The integrated model included facility location and
assignment problems, which were solved with black hole
optimization algorithm. The sensitivity analysis showed the
efficiency of two advanced BHO operators and a numerical
example shows the efficiency of the algorithm.

The scientific contributions of this paper are the fol-
lowing: integrated model for consignment-store-based sup-
ply chain, black-hole-optimization-based heuristic algorithm
with enhanced convergence through integration of phenom-
ena of real black holes, like dynamic black hole location,
and decreased event horizon. The results can be general-
ized, because the model can be applied for in-plant supply,
especially in the case of milk-run-based just-in-sequence
supply. The described methods make it possible to support
managerial decisions; the operation strategy of the supply
chain and the consignment contract can be influenced by the
results of the above-described contribution.

However, there are also directions for further research.
First, although the transportation routes as distances among
the locations are considered in this paper, the capacities
of vehicles are not taken into consideration. In further
studies, the model can be extended to a more complex
model including capacities of vehicles and store capacities
of locations. Second, this study only considered the black
hole optimization method as possible solution algorithm for
the described NP-hard problem. In reality, other heuristic
methods can be also suitable for the solution of the problem.

Third, the convergence of the described algorithm can be
improved using other operators and the behavior of BHO
to other optimization approaches can be tested. However,
there is a great body of research dealing with testing of per-
formance of different metaheuristic optimization methods,
especially from the point of view of “novel” algorithm, but
these tests are sometimes inconsistent. This inconsistency
can be caused by the optimization behavior. For exam-
ple, the comparison of black hole algorithm and particle
swarm optimization showed that the performance of BHO
is poorer than the performance of PSO [44], while the
test in another source showed that the performance of
BHO is better than the performance of genetic algorithm
or PSO [45]. This should be also considered in the future
research.
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