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This paper shows that authors who have recently argued that higher-order vagueness is 
incoherent, paradoxical, illusory or non-existent1 invariably confound elements of higher-order 
vagueness (of the kind relevant to the Sorites paradox) with elements of a different paradigm of 
borderline borderline cases; and that, once the elements of that other paradigm are removed from 
the description of higher-order vagueness, the basis for the claims of paradoxicality, etc., 
disappears.2   
 
The paper sets out in detail the two paradigms (higher-order vagueness and borderline nestings) 
and their logics (iterated modalities vs. mixed-order non-empty predicates), illustrates how the 
prevalent notion of hierarchical higher-order vagueness gains its persuasiveness largely from a 
conflation of these paradigms, and shows how the alternative of columnar higher-order 
vagueness not only preserves coherence, but also is the sort of higher-order vagueness that is 
relevant to the Sorites paradox. As a corollary, the paper provides support for the increasing 
number of vagueness theorists who renounce clear borderline cases (such as Sainsbury, Wright, 
Williamson, Shapiro, Fara, Raffman, Cobreros and Smith).3  
 
The paper is structured as follows: Section 1 presents the notion of hierarchical vagueness. 
Section 2 introduces and compares two ordinary language uses of “borderline case”: epistemic 
and classificatory use. Section 3 lays out the basic logical requirements for higher-order 

                                                            
* This paper is dedicated to the memory of Ruth Barcan Marcus. 
1 e.g. Sainsbury 1990, 1991; Wright 1992, 2010, Williamson 1994, Greenough 2003, Shapiro 2005, 2006, Raffman 
2010.   
2 This paper is concerned only with the kind of higher-order vagueness that manifests itself in borderline borderline 
cases. For the  question of the vagueness of “vague”, whether there is a sharp border between the vague and the non-
vague linguistic expressions, cf. e.g. Varzi (2003), Hyde (2003).  
3 Sainsbury 1990, 1991; Shapiro 2005, 2006, Williamson 1994, 1999; Smith 2008, Wright for example 2010, 
Raffman 2010, for example 513; Fara 2003; Cobreros 2011, 219-20. In this paper we discuss neither 
supervaluationism nor degree theories of vagueness. Even so, the logic of columnar radical higher-order vagueness 
(as set out in Section 3.3) can be utilized by such theories to explain the transition from the super-true or degree-1-
true cases, respectively, to the borderline cases. 
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vagueness and shows that higher-order vagueness can be columnar rather than hierarchical. 
Section 4 presents the paradigm of borderline nestings and its logic. Section 5 lists possible 
sources for the conflation of the classificatory use of “borderline” plus borderline /2/ nestings 
with the epistemic use plus higher-order vagueness. Section 6 shows how such conflation 
undermines the arguments against higher-order vagueness by Sainsbury, Shapiro, Raffman, 
Wright, and Williamson. Section 7 concludes with a note on columnar higher-order vagueness 
and the Sorites. 
  
 
1. Hierarchical Vagueness  
First, the most-discussed type of – presumed – higher-order vagueness, which Mark Sainsbury 
has fittingly dubbed “hierarchical vagueness” (Sainsbury 1991, 1990). Sainsbury’s 1991 is also 
the locus classicus for hierarchical vagueness. Because it is so apt (and we return to it later) we 
quote his description in full:  
 

“Here is one way in which the notion of higher-order vagueness might arise. The first 
thought is to represent the sense of a predicate like “green” or “child” by its effecting a 
division of categorially appropriate objects into three sets. This is supposed to do justice 
to the actuality or possibility of borderline cases: surfaces intermediate between blue and 
green, people intermediate between childhood and adulthood. It thus does justice to 
“tolerance” intuitions: a very small difference in shade cannot make the difference 
between something being green and being blue, so we need a class of borderlines; a very 
small difference in age cannot make the difference between childhood and adulthood, so 
we need a class of borderlines. On the classical conception I am investigating, this is an 
adequate representation of the lowest level of vagueness − vagueness1.  
 
However, with most or even all vague predicates, it soon appears that the idea that there 
is a sharp division between the positive cases and the borderline ones, and between the 
borderline cases and the negative ones, can no more be sustained than can the idea that 
there is a sharp division between positive and negative cases. We find a new type of 
borderline case: for example, those things which seem intermediate between being 
definite cases of children, and being borderline cases of children. We decline to accept 
that there can be any sharp boundary here. If there were, it would remain true that there 
would be such a thing as the last heartbeat of my childhood, or at any rate the last 
heartbeat of my definite childhood, and that seems as crazy as the idea that the predicate 
“child” divides the universe into a set and its complement within the universal set. Hence 
we allow for the more than theoretical possibility of a higher order of vagueness − call it 
vagueness2 − which consists in a five-fold division: into the definite positive cases for the 
predicate, the definite borderlines and the definite negative cases, together with the cases 
which are borderline between being definite positive cases and definite borderlines, and 
those borderline between being definite borderlines and definite negative cases. A 
predicate whose sense was correctly described by its effecting this fivefold division 
would count as vague2.  /3/ 
 
The generalization is straightforward: a vaguen predicate is one whose sense can be 
described by its drawing 2n boundaries, thus dividing the categorially appropriate objects 
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into 2n + 1 sets. A vague predicate is vaguen for some n > 0. A higher-order vague 
predicate is vaguen for some n > 1. A radically higher-order vague predicate is vaguen for 
all n.” (Sainsbury 1991, 168-9) 

 
Radical hierarchical vagueness is commonly first presented as a possible way to escape the 
Sorites paradox; then criticized as itself leading to paradox or incoherence. Sometimes 
hierarchical vagueness is simply given as an illustration of higher-order vagueness. Frequently it 
is introduced by example. It comes in variations. But it always aims at characterizing or 
explaining the borderline cases of vague expressions. Typically, hierarchical vagueness and 
borderline cases are represented with the help of modal expressions (“clear”, “definite”, 
“determinate”). The standard way is to give an account of “a is a borderline case of F” in terms 
of clarity (definiteness, determinacy) as    
 
1.1  ¬CFa ∧¬C¬Fa 

with C (or D, Def, DET, ∆, etc.) as a modal operator standing for “it is clear (definite, etc.) that”. 
Some authors introduce a special operator for borderlineness, e.g. “it is indeterminate that”. 
Some have the operator(s) take unanalyzed sentences. Others use first-order predicate notation, 
so they can discuss vague predicates. For now, we use BL for “is a borderline case of” and F and 
G for simple vague predicates.4 
 
The hierarchy of radical hierarchical vagueness can be tentatively represented in modal terms as 
in Figure 1. (The point of the brackets in Figure 1 becomes clear in Section 4.6.) 
                        
              (C)F            BLF               (C)¬F                  
        (C2)F                     BL2F                     (C)BLF                    BL2F                        (C2) ¬F.……….           
.  (C3)F         BL3F    (C)BL2F          BL3F           (C2)BLF             BL3F        (C)BL2F           BL3F             (C3) ¬F....… 
           ...   
 

(Cn)F      BLnF   (C)BLn-1F         ...          BLnF   (Cn-1)BLF   BLnF              ...                    (C)BLn-1F     BLnF    (Cn)¬F  

 
Figure 1:  provisional representation in modal terms of the hierarchy of radical hierarchical vagueness 
 
In Sainsbury’s terms, the first line describes a vague1 predicate that draws 21 boundaries, 
dividing the relevant objects into 21 + 1 sets. The nth line has 2n boundaries and 2n + 1 sets.5 
Some authors restrict their description of the hierarchy to the first pair of formulae on each line. 

                                                            
4 We disregard the question whether a is a borderline case of (being) F or whether a is a borderline case of the 
predicate “F”, since for present purposes this is irrelevant. For some remarks why it is not irrelevant altogether for 
theories of vagueness see Bobzien 2011.1, 324-6. 
5 We do not find Williamson’s criticism of Sainsbury’s hierarchical vagueness (Williamson 1999, 135 footnote 6) 
convincing.  Williamson’s first objection, that hierarchical vagueness only accounts for one-dimensional domains 
can be countered with the fact that modifications for two or more dimensional domains are possible. Williamson’s 
second objection, that the partition in hierarchical vagueness is too coarse grained in that it does not account for the 
difference between predicates for which all objects are borderline and those for which no objects are borderline is 
(also) irrelevant for standard Sorites paradoxes. 
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Some give only the first formula and, instead of the second, the negation of the first. In either 
case the context indicates that a hierarchy similar to that in Figure 1 is intended.6    /4/ 
 
2. Ordinary language uses of “borderline” and “borderline case” 
In this section we introduce and discuss two ways in which the expressions “borderline” (in its 
adjectival use) and “borderline case” are used in non-technical language. We use “is (a) 
borderline …” and “is a borderline case of (being) …” interchangeably.7  
 
2.1.  Some general features of the non-technical use of “borderline”  
We start with some features characteristic of all relevant non-technical uses of “borderline” and 
“borderline case”: 
• If something is borderline, or a borderline case, it is so regarding some predicate Φ, or some 

pair of predicates Φ and Ψ, etc.  
• If something is borderline, it is so with respect to some parameter or dimension D or 

parameters or dimensions D1 … Dn (e.g. height).  
• If something is borderline regarding some Φ and with respect to some D, then there are some 

things of the same sort that are Φ and not borderline Φ or that are ¬Φ and not borderline Φ 
(usually both). Moreover, such cases include the normal or standard ones.8  

We add some restrictions as to what cases we consider, since our present interest is in borderline 
cases only insofar as they may play a rôle in standard Sorites paradoxes. From a perspective of 
language use, these restrictions are arbitrary. 
• We do not consider cases which are borderline with respect to three or more predicates 

(“This is borderline yellow/orange/brown”). 
• We do not consider cases which are borderline with respect to more than one dimension 

(“This is borderline big with respect to height-cum-circumference”).   /5/ 
• We do not consider cases which are borderline with respect to evaluative expressions 

(“good”, “nice”) or expressions of personal taste (“tasty”, “fun”) or absolute gradable 
adjectives (“pure”, “straight”). 

• We only consider objects that can be denoted by designators of first-order logic. We do not 
consider types of objects or generics or properties (as in “Magenta is borderline red,” 
“Pudding is borderline solid”).9  

All seven points are satisfied in the standard Sorites paradoxes discussed in the literature on 
higher-order vagueness understood as hierarchical, as introduced in Section 1.  
 

                                                            
6 Descriptions and discussions of hierarchical vagueness, of varying detail and various kinds, can be found in Fara 
2003, 196-2004; Greenough 2005, 180-4; Keefe/Smith 1997, 15; Keefe 2000, 31-1, Raffman 2010, 509-10; Shapiro 
2005, 147-9, 2006, 125-6; Soames 2003, 136-49; Williamson 1994, 157-8,  1999, 127, 136-7; Wright 1992, 2010 
and Bobzien 2012, 190-4, to mention just some.   
7 Examples: “a borderline heap” / “a borderline case of a heap”; “borderline green” / “a borderline case of being 
green” (or “a borderline case of “green” “, see note 4). 
8 The paradigmatic cases which lack either non-borderline cases that are Φ or non-borderline cases that are not Φ are 
the so-called absolute gradable adjectives. For these see e.g. Kennedy 2007. 
9 Such cases have been discussed in Sorensen 2001, and are not always distinguished from those relevant to the 
Sorites paradox (e.g. Dummett, 1978, 182, Sorensen 2010, Wright, 2010, 526, 544 put them together). This lack of 
distinction goes back to antiquity. The Greek used “Sorites” to refer to arguments with series of both types. See e.g. 
Williamson 1994, 21, 25, Bobzien, 2002, 227. 
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Next, we present two distinct ordinary language uses of the expression “borderline” as applied to 
vague predicates: epistemic and classificatory. For each use, we provide an illustration and spell 
out some distinctive logical features. Each use corresponds to a conceptual paradigm which finds 
application in different basic types of everyday situations. Moreover, each use seems to be 
ingrained in our structuring and interacting with the world from an early age. We introduce these 
pre-theoretical notions of borderlineness, as they have an impact on how humans generally, and 
philosophers in particular, conceive of borderline and borderline borderline cases.10 We are not, 
at this point, concerned with philosophical theories of vagueness. We simply zoom in on those 
more specific uses of “borderline” that may appear to be relevant to Sorites vagueness.  
 
2.2 The classificatory use of “borderline” 
This ordinary language use has its paradigm in situations of sorting. Someone sorting colour 
patches on the blue-to-green spectrum into boxes may utter this soliloquy: “The blue patches go 
into the box labeled ‘blue’. The green patches go into the box labeled ‘green’. Hm. This patch is 
on the border between the blue patches and the green patches. It is borderline blue/green. So I”ll 
need to get a third box for borderline blue/green patches.” In the classificatory use, something is 
a borderline Φ/Ψ case only if it can be (since it has been or would be) identified as neither Φ nor 
Ψ. It is characteristic of the classificatory use that the speaker classifies an object a as belonging 
to a class of objects that, with respect to some dimension D, falls between two other classes 
which are denoted by (or to which otherwise correspond) two predicates Φ and Ψ. We abbreviate 
this as BL(Φ/Ψ)Da. A logical feature of the classificatory use is this: For there to be /6/  
BL(Φ/Ψ)D cases, the two predicates Φ and Ψ have to be contraries; that is, with regard to D    
  
2.2.1  ∃x BL(Φ/Ψ)Dx    → ∀x [Φx → ¬Ψx],    (CONTRARIETYclass)  
      
Sorting items into categories is a very basic activity which eighteen months old babies tend to 
have mastered (as long as the objects are sufficiently distinct). It seems to be a critical skill for 
the early mental development of humans.11 As a consequence, the paradigm of sorting has been 
internalized by every human being long before they encounter a Sorites paradox. Long before 
they encounter a Sorites paradox, if somewhat later than age eighteen months, they also have 
acquired sorting strategies for dealing with cases that do not fit pre-given categories. One of 
these strategies is adding a new category, if circumstances permit. Another is leaving items 
unsorted, if circumstances permit. Our exposition of the classificatory use is meant to represent 
simple everyday occurrences of sorting items into categories and of creating new categories if 
required. The purpose of the exposition is not (and we repeat: is not) to represent any 
philosophical theories of vagueness.  
 
We can add further observations about the non-technical classificatory use of “borderline”, if we 
add two restrictions motivated by our interest in cases that are potentially relevant to Sorites 
paradoxes. Thus we restrict the predicates under consideration to atomic vague predicates F, G 

                                                            
10 There are two further non-technical uses of “borderline”: factive use, which understands “x is borderline Φ” as “x 
is Φ, but only just”, and has as characteristic logical feature [BLΦa → Φa]; and anti-factive use, which understands 
“x is borderline Φ” as “x is not quite Φ”, and has as characteristic logical feature [BLΦa → ¬Φa]. Raffman 2005 
develops a theory of borderlineness that combines elements of the anti-factive use (see e.g. p.2) and of the 
classificatory use (see e.g. p.9). 
11 Cf. e.g. the  recent work by Barbara A Younger. 
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and the objects under consideration to a set Uordered of ordered objects a1 to as on D, with as being 
(one of) the last object(s) and the set being finite or dense. We call a1 and as polar cases. The 
dimensions are thus effectly restricted to directional dimensions (e.g. from green to blue, from 
short to tall).12 If the series at issue displays tolerance, there will be subsets of Uordered that are 
Sorites series13 with regard to F and D. The two restrictions allow us to add the following 
principles. Polar cases can be represented as governed by 
 
2.2.2   Fa1∧Gas.       (POLARclass)    
 
Furthermore, there are two continuity principles. First, any ai  to the left of an a that is F is itself 
F and any ai to the right of an a that is G is itself G, or  
 
2.2.3   [Fap→Fap-i]∧[Gap→Gap+i].     (CONTINUITYF,G) 
 
Second, any object between two objects that are borderline Φ/Ψ is itself  borderline Φ/Ψ, i.e.  
 
2.2.4  If BL(Φ/Ψ)Dap and BL(Φ/Ψ)Daq, then any ai, with p≤i≤q, is also  BL(Φ/Ψ)D.  
          (CONTINUITYBL(Φ/Ψ)) 
/7/ 
In light of these two continuity relations, it is appropriate to describe the classificatory use with 
regard to an ordered series of objects Uordered on D in terms of segments. We call a segment SΦ 
regarding D and Uordered the non-empty set of objects from Uordered that are categorized or 
identified as Φ regarding D. (In particular, the identification of borderline Φ/Ψ cases is a 
necessary condition for there to be a borderline segment SBL(Φ/Ψ).14) Basically, the segment SΦ 
are the things that are put in the box with the label “Φ”. If there are no such things, there is no 
such segment on D. Thus we have by definition:  
 
2.2.5     For each segment SΦ there is an a such that Φa.      (NO-EMPTY-SEGMENT)  
 
With the notion of a segment in place, 2.2.2, 2.2.3 and 2.2.4 can be combined into the following 
general continuity principle: 
 
2.2.6   Every segment SΦ is continuous regarding D in the sense that for any ap, aq of SΦ, 

any ai  with p≤i≤q will also be in SΦ.     (CONTINUITYS) 
 
And  borderline Φ/Ψ cases can – provisionally15 – be defined in terms of segments thus:  

 
2.2.7    BL(Φ/Ψ)Da   =df   a is located on D between two segments SΦ and SΨ.   
 

                                                            
12  These restrictions do not make the classificatory use technical. Compare everyday sorting of objects into 
categories by height or weight. 
13 A Sorites series or Sorites sequence is a series of ordered objects that, regarding a predicate F, is prone to a Sorites 
paradox. 
14 A segment is a borderline segment iff it is of the form SBL(Φ/Ψ). It is a non-borderline segment iff it is not of that 
form. 
15 Section 4.2  below explains why this is provisional. 
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A further restriction that is motivated by our interest in cases that are potentially relevant to 
Sorites paradoxes is this:  
 
2.2.8   F and G are predicates that are at least prima facie thought together to cover the 

entire dimension at issue,     (PRIMA-FACIE-EXHAUSTIVE) 
 
for example, “red” and “pink”, “tall” and “of average height”, as opposed to “red” and “white”, 
“tall” and “short” –  context will be pertinent here, of course. The rationale behind (PRIMA-FACIE-
EXHAUSTIVE) is this: if, when starting out sorting, we already anticipated that there are cases 
between the red and the pink ones that go into a box labeled “red-pink”, the Sorites relevance 
would from the start concern the pair of atomic predicates “red”, “red-pink” (or the pair “red-
pink”, “pink”).   
 
2.3. The epistemic use of “borderline” 
The second non-technical use of “borderline” is what we call its epistemic use. A fictitious 
monologue characteristic for this use is: “This patch is borderline blue. One really can”t tell (say, 
know, identify) whether it’s blue. It’s on the border of being blue and not being blue.” It is 
characteristic of this use that the speaker expresses epistemic inaccessibility with regard to 
whether an object a is Φ; /8/ or alternatively, with regard to whether a corresponding sentence 
Φa is true. In the epistemic use, something is a borderline case of Φ only if it can be identified 
neither as Φ nor as ¬Φ. A distinctive logical feature of the epistemic use can be expressed thus  
 
2.3.1   [BLΦa ↔ BL¬Φa].       
 
2.3.1 reveals the similarity of the epistemic use with contingency, which has a corresponding 
principle.16  
 
This non-technical epistemic use of “borderline” is on two counts appropriate for describing the 
borderline zone of a Sorites paradox in a way the classificatory use is not.17 First, the epistemic 
use is suitable to express the basic difficulties one encounters with a Sorites series: that there is a 
region on D that is, or seems, epistemically inaccessible with regard to F. Second, a Sorites 
paradox occurs only with a series of objects insofar as it runs from objects that satisfy F to 
objects that don’t satisfy F (which in classical logic is equivalent to a series that runs from 
objects that satisfy F to objects that satisfy ¬F). It does not occur with a series insofar as it runs 
from objects that satisfy F to objects that satisfy G.  
 
For the epistemic use of “borderline”, the restriction to directional dimensions, or Uordered, makes 
possible the following two specifications.  One regards polar cases: the first object in the series is 
F and not borderline so, the last is not F and not borderline so, or   
 
2.3.2  [Fa1∧¬BLFa1] ∧ [¬Fas∧¬BL¬Fas].     (POLARBL) 
 
This is equivalent to stating that both Fa1 and ¬Fas are clear (cf. 1.1) 
                                                            
16 “It is contingent that A iff it is contingent that ¬A”. For the logic of contingency, see e.g. Montgomery & Routley 
1966, Kuhn 1995. 
17 So also Greenough 2003.  
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2.3.3  CFa1 ∧ C¬Fas.       (POLARC) 
 
The other specification is a continuity relation for non-borderline cases: Any ai  to the left of an a 
that is F is itself F and any ai to the right of an a that is not F is itself not F  
 
2.3.4   [CFap → CFap−1]∧[C¬Fa p → [C¬Fap+1].   (CONTINUITYC) 
 
From 2.3.4 and the standard modal account of BL (1.1) it follows that   
 
2.3.5   If BLFap  and BLFaq, then any ai, with p≤i≤q is also BLF. (CONTINUITYBL) 
 
For, if BLFap and BLFaq and p<q, then by application of 2.3.4 (using the contraposition of each 
conjunct) any aj, with p≤j≤q is both ¬CF and  ¬C¬F, and hence also BL. The case with p=q is 
trivial.  /9/ 
     
2.4.  The difference between the epistemic and the classificatory use of “borderline” 
The most significant difference between the epistemic and the classificatory use is not 
immediately obvious. It may seem that it is the fact that one use concerns only one predicate, the 
other two. But this is not so. It is possible to introduce a variation of the epistemic use with two 
contrary predicates which retains its epistemic element. This results in epistemic inaccessibility 
with regard to a pair of predicates. Someone may say: “It just seems impossible to tell whether 
this is blue or green. It’s borderline.” Call this the contrarietous epistemic use of “borderline”, as 
contrasted with the contradictorious epistemic use from Section 2.3. In this use, immediate 
relevance to the Sorites paradox – which requires contradictories – would be lost.18 On the other 
hand, (CONTRARIETYclass) would not automatically hold, since nothing precludes that some 
borderline cases are both blue and green.  
 
The crucial distinction between the epistemic and classificatory uses is both more profound and 
more subtle. It concerns the scopes of negation, possibility and conjunction that are part of the 
respective construal of their accounts. This comes out when one juxtaposes the two partial 
descriptions from Sections 2.2. and 2.3 above. (We use the contrarietous epistemic use to bring 
out the relevant difference more clearly. The contradictorious epistemic use can be recovered by 
substitution of “¬Φ” for “Ψ”.) 
 
2.4.1”“ In the epistemic use, something is a borderline case only if it can be identified 

neither as Φ nor as Ψ.     
2.4.2”“ In the classificatory use, something is a borderline case only if it can be (since has 

been) identified as neither Φ nor Ψ. 
 
We here use “identify” as an umbrella term. That is, we understand the expressions “can tell”, 
“can know”, “can say”(that a is F), and “a can be classified as F”, “a can be sorted as F” in such 
a way that they entail “a can be identified as F”. We also use “identifiable”, “classifiable”, 

                                                            
18 By the same token, one could substitute ¬Φ for Ψ in the classificatory use. For this special case, i.e. the 
contradictorious classificatory use, we refer the reader to Section 5.1.  
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“knowable”, etc. as factive: something is identifiable, …, as F only if it is F.19 The significant 
difference in logical structure can be brought out with the use of standard paraphrases from 
predicate and modal logics:  
 
2.4.1”  Epistemically speaking, a is borderline Φ/Ψ only if a is such that both it is not 

possible to identify it as Φ and it is not possible to identify it as Ψ.  
2.4.2”  Classificatorily speaking, a is borderline Φ/Ψ only if a is such that it is possible to 

identify it as being both not Φ and not Ψ.     /10/ 
 

Or, in a somewhat lax semi-formalized manner: 
 
2.4.1  Epistemically speaking, BL(Φ/Ψ)Da only if [¬◊ to identify that Φa] ∧ [¬◊ to 

identify that Ψa]. 
2.4.2  Classificatorily speaking, BL(Φ/Ψ)Da only if ◊ to identify that [¬Φa ∧ ¬Ψa]. 

 
From these formulations one can read off the following three substantial differences between 
borderline cases as marked out by classificatory use and epistemic use respectively. (i) In 
epistemic use, it is possible for a to be both BL(Φ/Ψ) and Φ; and to be both BL(Φ/Ψ) and Ψ. In 
classificatory use, neither is possible. Rather, its account has the following implication:  
 
2.4.3            [BL(Φ/Ψ)Da → ¬Φa] ∧ [BL(Φ/Ψ)Da → ¬Ψa]      (THIRD-KIND)  
 
(ii) Epistemic use is compatible with a sharp border between the Φ and the Ψ on D. 
Classificatory use is not.20 (iii) Epistemic use expresses a limitation of human epistemic ability; 
classificatory use does not. If anything, it marks progress in our ability to discriminate between 
things. Thus, although they can look similar, logically, the non-technical epistemic and 
classificatory uses of “borderline” are quite distinct. (For how they may be and have been 
combined or confounded in theories of vagueness cf. Sections 5 and 6 below.) 
 
 
3. Higher-order vagueness 
In ordinary language, the expression “borderline” is sometimes, if rarely, iterated. In 
philosophical discussions of hierarchical vagueness we regularly encounter iterations of the 
expression, often two or more. In Sections 3 and 4 we discuss two very different models of 
iterating “borderline”. One is higher-order (borderline) vagueness, in its strict sense, couched in 
terms of modal logic. It harmonizes best with – but is not restricted to – the epistemic use of 
“borderline”. The other type of iteration we call, for lack of a better term, borderline nestings. It 
is a natural expansion of our representation of the classificatory use of “borderline”. 
 
3.1. Syntax and terminology for higher-order vagueness 
                                                            
19 Of course it is possible for people to make mistakes both when sorting things and when stating or believing that 
they can tell or know or assert that Fa. We are not concerned with those cases, since we maintain that any 
identifiability (tellability, sortability) that is germane to the Sorites is independent of the errors or handicaps of 
individual judgers.   
20 By a sharp border between the Φ and the Ψ on D we mean the following: There are on D no ai , an , am, with 
n<i<m, such that Φan is true, Φam is false, and Φai  is  neither (or both) - with the continuity principles presupposed. 



Susanne Bobzien, “Higher-Order Vagueness and Borderline Nestings – A Persistent Confusion”,  in: Analytic Philosophy 54.1, 2013, 1-43.  

 

 
10 

 

In Section 1 we gave the standard modal account of “a is a borderline case of F” in terms of 
clarity (definiteness, determinacy) as ¬CFa ∧¬C¬Fa. We now generalize this, saying that (for 
any arbitrary formula A) 
  
3.1.1  BLA    ↔    ¬CA ∧¬C¬A.    /11/ 
 
The modal operator C (or D, Def, DET, ∆, etc.) is modeled on the logic that governs the 
necessity operator □ and takes open or closed sentences in its scope. The syntax of C and of the 
connectives and quantifiers used is that of normal modal systems with □. CBLFa states that a is a 
clear borderline case of F; BLCFa that a is a borderline clear case of F.  
 
Next we introduce the terminology of orders and of ranks. Thus a is a first-order borderline case 
of F, written BL1Fa, iff BLFa. And a is an (n+1)th-order borderline case (for n≥1), written 
BLn+1Fa, iff BLBLnFa.21  For example, using 3.1.1, we get 
 
3.1.2  BL2Fa    ↔   BL[¬Cfa∧¬C¬Fa].  
 
Using 3.1.1 again, we get 
 
3.1.3  BL2Fa    ↔   ¬C[¬Cfa∧¬C¬Fa] ∧¬C¬[¬Cfa∧¬C¬Fa].  
 
Generally, a is an nth-order borderline case of F iff a is a borderline case of (being) n−1th-order 
borderline F.  A formula is of rank 0 if it is without any occurrences of C or BL. A formula is of 
rank n+1 if it has a formula of rank n within the scope of an occurrence of C or BL and has no 
formula of a rank larger than n within the scope of any occurrence of C or BL. Thus, e.g., BLFa 
is of rank 1, BL2Fa and CBLFa are of rank 2, etc.22  
 
3.2. Minimal constitutive elements of higher-order vagueness   
The following are the minimal constitutive elements of higher-order vagueness, or higher-order 
borderlineness, as we understand it:  
 
Elements of modal logic: 
3.2.1  Closed modalized sentences are bivalent.23  
 
3.2.2   If  A and  B are theorems, then A∧B is a theorem.               (∧-INTRODUCTION)  
 
3.2.3   CA→A.                 (Tc)  
 
3.2.4   [CA∧CB]→C[A∧B]               (K2c) 24   

                                                            
21 Cf. also Shapiro 2005, 148, 2006, ch.5. 
22 Our notion of a modal rank corresponds to that of a modal degree in Carnielli & Pizzi 2009, p.28, where also a 
formal definition is given. 
23 This semantic requirement is not a necessity; see e.g. Keefe 2000, ch.8. Still, if this condition is waved, the point 
of representing higher-order vagueness in modal terms in order to prevent sharp borderline-region borders seems to 
become moot. 
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The existence of borderline cases is not logically precluded, i.e.  
 
3.2.5   ¬CA→C¬A  is not a theorem.       /12/ 
 
Lastly, “borderline” and “borderline case” are understood modally as expressed in 3.1.1. The 
introduction of a modal operator BL, or similar, is optional.  
 
Elements regarding series of ordered objects: 
We have a series Uordered of objects a1 to as ordered on some dimension D with regard to a 
(vague) predicate F. The ordering is strict.25  It can be finite or dense. The principles 2.3.2 
(POLARC) and 2.3.4 (CONTINUITYC) from Section 2.3 hold; and hence so does 2.3.5 
(CONTINUITYBL). In addition, the existence of borderline cases within the ordered series (i.e. on 
D between cases that satisfy CF and cases that satisfy C¬F) is not precluded:  
 
3.2.6 It cannot be ruled out that there are ap , ai, aq with p≤i≤q and  [CFap  ∧ [¬CFai ∧ 

¬C¬Fai]] ∧ C¬Faq.  
 
Moreover, it should be possible to supplement a theory of higher-order vagueness with some 
kind of “forward continuity principle” that links the elements of a Sorites series, such as the 
Sorites premise Fan  → Fan+1 or, more likely, some weakened form of it.26 Otherwise it will be 
useless as a theory that advances the solution of the Sorites paradox.27 
 
Compositionality: 
For there to be genuine higher orders, the compositionality of the C operator needs to be 
reflected in the operator”s account. Here is a simple example (one which we do not condone). 
Interpret C as “it is knowable that”. Second-order clarity of Fa then requires that it is knowable 
that it is knowable that Fa. If there is a BL operator, the same holds. For example, if you 
interpret BL as “it is unknowable whether”, second-order borderlineness of Fa requires that it is 
unknowable whether it is unknowable whether Fa. So far this is trivial. Less trivial – in the sense 
that it has been repeatedly discounted – is the fact that, if there is no borderline operator in the 
modal system, the account of higher-order borderline cases must in the same way correspond to 
the equivalent of BLnFa expressed in terms of the C operator.28 Finally, for something to be a 

                                                                                                                                                                                                
24 The agglomeration (or collection) axiom K2 is weaker than axiom K. Even if bivalence is assumed, systems of 
genuine higher-order vagueness need not be normal modal systems, i.e. extensions of system K. 
25 The requirement that the ordering is strict is not a necessity either. It provides the simplest case, and also the case 
that is most directly relevant to the Sorites. Non-strict orderings can be mapped on strict ones via equivalence 
classes. 
26 Examples for weakened forms discussed in the literature are Williamson’s KFan  → ¬Fan+1 and  versions of 
Dk(DmFan  → ¬D ¬Dm-1Fan+1) with m ≥ 1 and k ≥ 0, for which see e.g. Wright 1992, Asher, Dever & Pappas 2009. 
27 Other such desiderata are (ii) that a theory of higher-order vagueness help explain the intuition that there appears 
to be a seamless transition  in a Sorites series with regard to Φ from the cases where Φ applies to those where it 
doesn’t (cf. Fara 2003, 197); and (iii) that it tally with the boundarylessness intuition that there is no determinable 
boundary that marks the non-borderline cases from the (totality of the) borderline cases in a Sorites series (cf. 
Sainsbury 1990).  
28 Such compositionality is absent  e.g. in the formal systems provided by Williamson 1999 and in the account of 
higher-order vagueness discussed in Shapiro 2006.  
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clear /13/ borderline case, the accounts of clarity and of borderlineness both need to be 
compositional in the way described. 
 
Levels and level generation:  
For an understanding of the rôle different axioms of modal iteration play in different theories of 
higher-order vagueness, it is expedient to distinguish higher orders by levels. Levels are the result 
of sorting basic formulae29 by rank and applying the result to an arbitrary series of ordered 
objects Uordered. Thus each level n has only basic formulae of rank n. Take the pair of predicates 
F, ¬F of some series Uordered as base level or level 0 (since there are zero modal operators). 
Higher levels n are generated by prefixing C or ¬C to each predicate of level n−1. The resulting 
basic formulae are those of level n. Generally, there are 2n+1 possible basic formulae at level n. 
They can be paired up, so that there are 2n possible (and not necessarily extensionally distinct) 
ways of dividing D and a maximum of 2n+1 possible distinct regions on D thus partitioned. 
 
Level 1 has CF and C¬F and their negations ¬CF and ¬C¬F. The conjunction of the latter two 
describes first-level first-order borderline cases. Evidently, such conjunctions have the same 
rank as their conjuncts. Level 2 has the four pairs obtained by prefixing either C or ¬C to the 
formulae of Level 1, i.e. C2F, ¬C2F, C2¬F, ¬C2¬F, C¬CF, ¬C¬CF, C¬C¬F, ¬C¬C¬F. Using 
conjunction, we get two types of second-level first-order borderline cases, cases which can be 
described as ¬C2Fa∧¬C¬CFa and ¬C2¬Fa∧¬C¬C¬Fa respectively. At Level 2, there may, but 
need not, be clear borderline cases. Such cases could be described as C¬CFa∧C¬C¬Fa.30  
 
There are various coherent modal theories of higher-order vagueness. They are in the main 
determined by what additional axioms, rules and further constraints are introduced. These may, 
but need not, include any of the following: classical logic for the non-modalized sentences; 
modus ponens; and for the C operator axioms K, B, S4, S5 and the Rule of Necessitation (RN). 
Some combinations of these restrict the number of logically distinct (i.e. non-equivalent) orders, 
preclude the existence of clear borderline cases or have some other significant consequences. 
The semantics of higher-order vagueness depends on what additional rules and axioms are 
chosen.  
  
3.3. Columnar higher-order vagueness  
We now explain why higher-order vagueness as such does not entail a hierarchy of orders as 
introduced in Section 1 – not even the beginning of such a hierarchy, i.e. cases on D that satisfy 
C[¬CFx∧¬C¬Fx] (clear borderline cases), “buffered” on one side by cases that satisfy neither 
C[¬CFx∧¬C¬Fx] nor C2Fx, on the other by cases that satisfy neither C[¬CFx∧¬C¬Fx] nor 
C2¬Fx.  /14/ 
 
The following deliberations show this. With higher-order vagueness, it is possible for there to be 
first-order borderline cases at each level. They all would be describable by the formula 
¬CΦa∧¬C¬Φa with CnF for Φ, and with n increasing with each level (n=1 at level 1, n=2 at level 
2, etc.).31 However, the only (non-negotiable) relation between levels of borderline cases and/or 
                                                            
29 By a basic formula we here mean a formula that contains no operators other than the C operator and the negation 
operator.  
30 Given (K2c), this formula entails C[¬CFa∧¬C¬Fa] and thus CBLFa. 
31 See also Wright 2010, 529. 
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clear cases is provided by (TC). And (TC) only minimally regiments the extensional relations 
between first-order borderline cases of different levels.32   
 
In particular, if we consider the case of maximal possible intersection of the extensions of the 
basic modal formulae with regard to D, we may have no more than four extensions that cut out 
no more than three areas on D − similar to the classical four modal notions with contingency 
added. 33 With four extensions and three areas, the description in terms of first-level first-order 
modalities would be as in Figure 2. 
 
 

.              CFx            ¬CFx 
      ¬C¬Fx       C¬Fx         .    
      BLFx     

 
Figure 2:  Representation of maximal possible intersection of the extensions of the basic modal formulae 
described in terms of first-level first-order modalities 
 
All other descriptions of the four extensions in terms of higher-order clarity and higher-order 
borderlineness would follow the co-extension rules: 
• Formulae starting with C and containing an even number of ¬ are co-extensional with CFx. 
• Formulae starting with C and containing an odd number of ¬ are co-extensional with C¬Fx. 
• Formulae starting with ¬C and having an even number of ¬ are co-extensional with ¬C¬Fx. 
• Formulae starting with ¬C and containing an odd number of ¬ are co-extensional with ¬CFx.  
This may look arbitrary. But it is not, as some reflection makes clear. (If you substitute G for ¬F 
you get perfect left-right symmetry.) We call this maximal overlap scenario columnar (as 
opposed to hierarchical) higher-order vagueness. In it, the columnar borderline region in the 
middle of D could be described as  
 
3.3.1  ¬CnF∧¬Cn¬F  for any n.  
 
This shows that higher-order vagueness of any order is compatible with there being (no section 
for clear borderline cases and hence) no clear borderline cases.  /15/ 
 
If to the assumption of maximal overlap we add the assumption that n in the above description is 
indefinite (i.e. there is no limit on modal iterations), we obtain columnar radical higher-order 
vagueness. Columnar radical higher-order vagueness is a theory of radical unclarity. 
Borderlineness of Fa is characterized not only by the fact that it is unclear whether Fa, but also 
by the fact that it is unclear whether BLFa, BL2Fa,and so forth. 
 
If to columnar radical higher-order vagueness we add the further assumption that C is defined in 
terms of epistemic accessibility (i.e. that the use of “borderline” is epistemic),34 then it cannot be 

                                                            
32 Cf. also Asher, Dever & Pappas 2009, 921. 
33 Of course the overlap is not strictly maximal – that would be the case in which CFx↔¬C¬Fx, resulting in only 
two areas on D. 
34 This latter assumption also preserves or warrants direct relevance to the description of the borderline region in a 
Sorites paradox. 
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ruled out that there are no borderline cases at all (i.e. of no borderline case is it epistemically 
accessible that it is a borderline case). For, at any level n and for any a in the columnar 
borderline region, it cannot be ruled out that a does not satisfy the description of the borderline 
region, but rather the description of one of the regions bordering it at the left or right. This is so, 
since ¬C¬CnF∧¬C¬Cn¬F also holds of the same region. For, by the above co-extension rules, 
¬CnF and ¬C¬Cn¬F have the same extension, and so do ¬Cn¬F and ¬C¬CnF.35   
 
Thus, if we combine columnar radical higher-order vagueness with an epistemic reading of the 
C-operator, we have a theory in which it is epistemically inaccessible (at least for humans) 
whether, with respect to D,  there is any a at all that satisfies the – co-extensive – predicates 
BLF, BL2F, …, BLnF. In other words, in this theory it is epistemically inaccessible whether, on 
D there are any borderline cases of any order. Thus radical higher-order vagueness is compatible 
with there being no borderline cases at all.36  
 
With an epistemic reading of the C-operator, columnar radical higher-order vagueness is 
naturally complemented by the “forward continuity principle” for Sorites series that one cannot 
ever rule out that it is not the case that a clear case of F is followed by a clear case of ¬F. This 
can be expressed more formally as: for any ai of a Sorites series, it cannot be ruled out that 
¬[CFai∧C¬Fai+1]. This should provide a satisfactory logical underpinning for the persuasiveness 
of the conditional Sorites premise.37   /16/ 
 
Columnar radical higher-order vagueness can be formally described with the help of two 
principles, one for clarity, one for borderlineness (in addition to the modal-logical minimal 
constitutive elements from 3.2 and modus ponens). The first principle is the C-equivalent to the 
S4 axiom: 
 
3.3.2  CA→ CCA      (MAXIMAL-OVERLAPC) 
 
The second essentially states that if something is borderline, it is borderline borderline:38 
 
3.3.3           [¬CA∧¬C¬A]→ [¬C¬CA∧¬C¬C¬A]                           (MAXIMAL-OVERLAPBL) 
                                                            
35 Cf. Asher, Dever & Pappas 2009, 923-5, for a suggestion of a similar minimal model of higher-order vagueness 
(couched in the terminology of gap principles) that is columnar in our sense. They conclude that “[t]he insistence 
that gap principles be arbitrarily determinately true is in effect an insistence that vagueness is an ineliminable feature 
of language. But there seems to be no good reason to accept this.” If one interprets the modal operator epistemically 
(describing the epistemic inaccessibility of the borderline zone) rather than semantically, one is not bound by the 
conclusion that vagueness is an ineliminable feature of natural languages (although we believe it may well be). 
36 Those who consider the existence of borderline cases as constitutive of vague predicates would have to add the 
existence of borderline cases as an independent postulate.  It would then follow that one can tell or know of none of 
these borderline cases that it is a borderline case.  
37  Epistemically interpreted columnar radical higher-order vagueness also fulfills the other two desiderata for 
theories of higher-order vagueness (see note 27). (ii) All borderline cases are  (epistemically) indistinguishable from 
the cases adjacent to the borderline zone on the left and on the right, insofar as for each of them it cannot be ruled 
out that they, too, are CnF or Cn¬F respectively. (iii) Since it cannot be ruled out that there are no borderline cases at 
all, there is no determinable boundary between the non-borderline cases and the (totality of the) borderline cases.   
38 Bobzien 2010 sets out columnar radical higher-order vagueness in terms of an unclarity or BL operator rather than 
a clarity operator, which gives the characteristic axiom the form BLA→ BL2A rather than (MAXIMAL-OVERLAPBL). 
This brings out the nature of columnar higher-order vagueness more directly. 
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In the normal modal system S4 (for which one needs to further add (RN) and axiom K and 
eliminate uncountably infinite series), 3.3.3 is co-extensional with the McKinsey Axiom 
C¬C¬A→ ¬C¬CA. Put differently, in normal modal logic the modal system that underlies 
columnar radical higher-order vagueness is equivalent to the system S4M. Generally, if columnar 
radical higher-order vagueness is combined with bivalence-preserving and agnostic theories of 
vagueness, Axiom B (i.e. A→C¬C¬A) fails to hold for the C operator.39   
 
To sum up the main results of this section: 
• Higher-order vagueness can be columnar rather than hierarchical  
• Higher-order vagueness of any order is compatible with there being no clear borderline cases 

on D.  
• Radical higher-order vagueness is compatible with there being no borderline cases of any 

order.   
 
3.4 Intersective Unclarity 
Genuine higher-order borderline cases are sometimes confounded with what we call intersective 
unclarity (U∩). For any order n, a is intersectivelyn unclear iff it is not nth-order clear that F and it 
is not nth-order clear that ¬F:  /17/ 
 
3.4.1  U∩nFa   =df  ¬CnFa  ∧ ¬Cn¬Fa  
 
Intersectiven unclarity is named after the fact that it is the result of intersecting the cases that are 
not nth-order clearly F with the cases that are not nth-order clearly ¬F. We call intersectiven 
borderline cases the cases that are intersectivelyn unclear. They are in the intersection of the 
cases that are not nth-order clearly F with those that are not nth-order clearly ¬F. The account of 
the clarity operator used in the definition of intersective unclarity may well preserve 
compositionality for higher orders of clarity. In that case, the higher-order clarity is genuine. 
However, the “higher-order” intersectiven borderline cases (such as U∩2Fa U∩3Fa, etc.) are not 
genuine higher-order borderline cases. The account of U∩nFa is not compositional in the required 
sense. Nor does intersective unclarity provide a hierarchy of borderline regions the way 
hierarchical vagueness does. This is so since there is always only one borderline region per 
level.40 
  
 
4. The classificatory use of “borderline” and borderline nestings  

                                                            
39 The reason is the following. It is a constitutive element of genuine higher-order vagueness that, for any vague 
predicate F, one cannot rule out that there are borderline cases of F. Now, if bivalence holds, it hence cannot be 
ruled out that there is an ai such that BLFai and Fai are both true. But if BLFai is true, so is ¬C¬C¬Fai (by 
(maximal-overlapbl)). Hence both Fai and ¬C¬C¬Fai are true.  Hence Axiom B does not hold. The same result 
ensues if instead of a theory that preserves bivalence we have a theory that is agnostic in that it neither postulates nor 
precludes bivalence for borderline cases. For a detailed explanation and the basics of a philosophical justification of 
an agnostic theory that combines S4 and (MAXIMAL-OVERLAPBL) and hence forsakes Axiom B, see Bobzien 2010. 
40 The borderline cases in Williamson’s Logic of Clarity (Williamson 1994, Appendix; Williamson 1999) are 
intersective borderline cases, and the relevance of the Logic of Clarity to the Sorites paradox can be questioned. See 
Bobzien 2012, Section 8.3 for details. 
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Descriptions of hierarchical vagueness (as introduced in Section 1) rarely fit the model of higher-
order vagueness as set out in Sections 3.1 and 3.2. Rather, they tend to include various 
assumptions and descriptive elements that instead match the classificatory use of “borderline” 
and situations of sorting objects into categories. In this section, we expand the sorting paradigm 
so as to include borderline borderline (etc.) cases, and provide a formal representation of this 
expansion (as borderline nestings). This will facilitate the identification of elements of the 
sorting paradigm that have found their way, perhaps subliminally, into theories of – presumed – 
higher-order vagueness. We emphasize that in this section we do not intend in any way 
whatsoever to represent any theories of borderlineness from the literature on higher-order 
vagueness.  
  
4.1. Borderline borderline cases in the classificatory use of “borderline” 
Back to the classificatory use of “borderline” in everyday situations of sorting objects. What 
happens if in such situations it is not just possible to identify borderline blue/green cases, but  
also, say, cases that are on the border between the green cases and the borderline blue/green 
cases?  That is, what happens, if there are borderline (borderline blue/green)/green cases? No 
doubt, such classifications of borderline borderline cases can and do occur. Here is a possible 
scenario. At some point, sorters can identify cases that are between the blue and the green cases 
and add for them a box labeled “borderline blue//18/green” to their initial two boxes. After some 
further sorting, they learn to identify cases that are between the borderline blue/green and the 
green cases and add an additional box, labeled “borderline (borderline blue/green) / green” for 
those cases. The objects going into this box would reasonably be called borderline borderline 
cases.41 It is conceivable that there also turn out to be identifiable cases between the green and 
the borderline (borderline blue/green)/green cases. These borderline (borderline (borderline 
blue/green)/green)/green cases would reasonably be called borderline borderline borderline 
cases. The sorters” interests, circumstances, discriminatory abilities and practice will determine 
how far this can go and what additional categories are introduced.    
 
There are several distinctive features of this kind of sorting, i.e. sorting which includes the 
addition of new labeled boxes (or labeled categories) for cases identified as borderline,  
borderline borderline, etc.   

• There are no empty boxes.  
• The introduction of new boxes is stepwise. A box for borderline (borderline 

blue/green)/green cases can only be introduced if a box for borderline blue/green cases was 
previously introduced. Consequently, it is not possible to have a box for non-borderline cases 
and one for borderline borderline cases, but none for simple borderline cases.  

• The labels on the boxes are mutually distinct.  
• Box labels of existing boxes do not change with the introduction of new boxes. 

Consequently, at any stage of a sorting process that contains a box or boxes for borderline 

                                                            
41 Google  “borderline borderline, borderline lepromatous”, “borderline-borderline/borderline-tuberculoid (BB/BT) 
patients” for possible examples of borderline borderline cases.  
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cases, there will be boxes with base labels (like “green”), with simple borderline labels,  and 
possibly with borderline borderline labels and so on.42  

• No item is in more than one box – both regarding any one time and regarding the entire 
sorting process (i.e. no item changes boxes).43 In particular, no item is classified both as 
borderline and as borderline borderline; and no item is classified both as non-borderline (e.g. 
green) and as borderline (e.g. borderline (borderline blue/green)/green).   
 

If the objects-to-be-sorted are ordered, we additionally have the following concatenation feature 
when there is at least one box for borderline cases: /19/ 
 
• With the boxes lined up in accordance with the order-numbers of their objects, for every two 

labels of adjacent boxes, the label of one of the boxes forms part of the label of the other.   
 
The semantics for objects a1 to as that can be ordered with regard to some dimension D and have 
been sorted into labeled boxes, as in our blue/green example, is straightforward. It is the 
semantics of exclusive and exhaustive disjunction with n for the number of boxes labeled “Φ1”, 
…, “Φn”, and with the predicates Φ1, …, Φn bound by a universal quantifier. Using “⊕“ for 
exlusive and exhaustive disjunction, this is  
 
4.1.1  ∀x [Φ1x ⊕ Φ2x ⊕ … ⊕ Φnx] 
 
which is the same as 
 

4.1.2  ∀x [ [Φ1x ∨ Φ2x ∨… ∨ Φnx]   ∧   ˄   ¬[Φix ∧ Φjx]].44  
                    1≤i<j≤n    

The latter is logically equivalent to 
 

4.1.3  ∀x  [Φ1x ∨ Φ2x ∨… ∨ Φnx]       ∧  ∀x ˄   ¬[Φix,∧ Φjx].   
           1≤i<j≤n    

The first conjunct of 4.1.3 expresses exhaustiveness, the second exclusiveness. If we include 
unsorted objects in our consideration, naturally, exhaustiveness for the box labels Φ1 … Φn no 
longer holds. 
 
4.2. Domain, syntax, elements and generation of borderline nestings 

                                                            
42 Sorters may of course resort to relabeling boxes, especially when labels become too long: “blue-green” or “teal” 
for “borderline blue/green” are possible examples. We disregard relabeling, since the results do away with 
borderline borderline, etc., cases, and are not relevant to our present endeavor. 
43 We acknowledge that in some real-life sorting processes the introduction of borderline cases and borderline 
segments may lead to a reassessment of cases already sorted. (Cf. also Wright 2010, 545.) However, our interest 
here is solely in the subset of sorting processes that are factive/veridical and with the context of sorting fixed. Does 
this include an element of  idealization? Perhaps. In any case, our choice is based on the assumptions made in the 
works on higher-order vagueness we criticize in Section 6.  
44 Cf. e.g. Pelletier & Hartline 2008, p.78.  
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We suggest that everyday sorting situations like those laid out in Section 4.1 are best represented 
by what we call nestings of borderline cases, or borderline nestings. In this section we introduce 
domain, syntax, basic elements, some terminology and generation rules for borderline nestings.  
 
The domain for borderline nestings is a set of objects U. The syntax is as follows: 
• a, a1, …, as are designators. 
• F, G are atomic vague predicates. 
• BL(F/G)D is a well-formed predicate.  
• The brackets indicate the scope of a “BL” in the usual way. We call the bracket that indicates 

the scope of a “BL” the scope bracket of that “BL”. 
• If BL(Φ/Ψ)D is a well-formed predicate, then BL(BL(Φ/Ψ)/Ψ)D is a well-formed predicate. 
• If BL(Φ/Ψ)D is a well-formed predicate, then BL(Φ/BL(Φ/Ψ))D is a well-formed predicate. 

/20/ 
• For connectives and quantifiers, the syntax of classical predicate logic applies.45  
 
For every predicate Φ, the segment SΦ is the non-empty set of things that satisfy Φ (i.e. 2.2.5 or  
(NO-EMPTY-SEGMENT) holds). The letters a, a1, …, as represent the things to be sorted. The 
segments represent the boxes. The predicates (devoid of any connectives or quantifiers) Φ1, …, 
Φn represent the labels for the boxes.  
 
We sort types of borderline cases and borderline segments by their nesting ordinals. A borderline 
nesting (or nesting of “BL”) is the occurrence of “BL” within the scope brackets of a “BL”.  
• A zeroth-nesting borderline case is one which satisfies a BL formula that contains no 

borderline nesting. 
• A first-nesting borderline case is one which satisfies a BL formula that contains a single 

nesting as greatest nesting of “BL”.  
• A second-nesting borderline case is one which satisfies a BL formula that contains a double 

nesting (i.e. a nesting of “BL” in the scope of a singly nested “BL”) as greatest nesting of 
“BL”.  

• An nth-nesting borderline case is one which satisfies a BL formula that contains an n-tuple 
nesting (i.e. a nesting of “BL” in the scope of an n−1-tuply nested “BL”) as greatest nesting 
of “BL”. 

Given the two base predicates F and G and the nesting syntax, there is one possibility for zeroth-
nesting borderline cases; and there are 2n possibilities for nth-nesting borderline cases, with n≥1. 
With infinite n, we have radical nestings. The nesting terminology is applied to segments thus: A 
segment SBL(Φ/Ψ) is an nth-nesting borderline segment iff its objects are nth-nesting borderline 
cases. A nesting formula Φ is of rank n iff it contains an n-1th nesting of “BL” as greatest 
nesting. 
 
Since borderline nestings are designed to represent the classificatory use of “borderline”, we 
adopt from Section 2.2, as minimal constitutive elements of borderline nestings, the following 
principles introduced there to represent the classificatory use.  
 

                                                            
45 This does not make formulae with quantifiers or connectives within the BL scope brackets well-formed.  



Susanne Bobzien, “Higher-Order Vagueness and Borderline Nestings – A Persistent Confusion”,  in: Analytic Philosophy 54.1, 2013, 1-43.  

 

 
19 

 

Elements based on the account of “BL”: 
2.2.1  ∃x BL(Φ/Ψ)Dx  → ∀x [Φx → ¬Ψx],        (CONTRARIETYclass)  
2.4.3                [BL(Φ/Ψ)Da → ¬Φa] ∧ [BL(Φ/Ψ)Da → ¬Ψa]    (THIRD-KIND)  
 
Elements regarding series of ordered objects:  
The domain is restricted to Uordered, i.e. to a series of objects a1 to as ordered on some dimension D 
with regard to a (vague) atomic predicate F, where the ordering is strict and can be finite or 
dense. The principles 2.2.2 (POLARclass), /21/ 2.2.6 (CONTINUITYS), and 2.2.8 (PRIMA-FACIE-
EXHAUSTIVE) hold. Two segments SΦ and SΨ are said to share a border, or to be bordering 
segments, regarding a dimension D  and a domain Uordered iff on D for any ap ∈ SΦ, aq ∈ SΨ there 
is no ai  with p<i<q such that ai ∈ SΧ  and X≠Ψ≠Φ. 
   
Levels, generation rules, and admissible nesting combinations:  
Once it is possible to identify BL(Φ/Ψ)D cases, we have on D a new segment SBL(Φ/Ψ). Such new 
segments correspond to newly added labeled boxes in a sorting process. We represent the 
process of adding new boxes by three rules that govern the generation of  borderline segments.  
 
We start with a pair of predicates F, G and a dimension D on which (a set Uordered of) objects of 
the relevant kind are ordered. To these correspond two non-borderline segments: the left-most 
segment SF and the right-most segment SG  (by CONTRARIETYclass, POLARclass and CONTINUITYS). 
Somewhere on D the two segments share a border (by PRIMA-FACIE-EXHAUSTIVE). This set-up is 
level 0, since there are zero borderline segments. The following rules govern the generation of 
borderline segments with nestings of any number at progressively higher levels.   
 
Rule 1: Take any pair of segments at level n that share a border on D. The level n+1 borderline 

cases between these two segments are the objects that satisfy the predicate one obtains by 
substituting the subscript of the left-hand level-n segment for Φ and the subscript of the 
right-hand level-n segment for Ψ in BL(Φ/Ψ)D. If there are such objects, the resulting 
predicate provides the subscript of a new borderline segment at level n+1. The borderline 
cases of this new segment are nth-nesting borderline cases. (SEGMENT INTRODUCTION)   

Rule 2: Take any level n segment. For each such segment there is a corresponding level n+1 
segment identical with it. There is no change of nesting ordinals of the segments. 
(SEGMENT ASCENT) 

Rule 3: Order the segments of level n+1 on dimension D in accordance with the location of their 
objects on D.46 (SEGMENT ORDERING) 
  

An admissible nesting combination of predicates regarding some dimension D and set Uordered is 
any possible combination of the predicates that are segment subscripts of the segments one 
obtains as a result of the exhaustive application of Rules 1 to 3 to the segments of some level n 

                                                            
46 There is an alternative way of ordering the segments on D, without reference to the location of the objects. Take 
the borderline segment(s) with the highest nesting number. Each has the form SBL(Φ/Ψ). For each such segment 
identify which of Φ and Ψ has the highest nesting number. If it is Φ, there will be a segment SΦ. Put this segment to 
the left of SBL(Φ/Ψ). If it is Ψ, there will be a segment SΨ. Put this segment to the right of SBL(Φ/Ψ). Repeat with all 
segments that have at least one “open” or as yet “unconnected” side until you have them all lined up and 
concatenated in this way. Cf. also (CONCATENATION) below in 4.3. 
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with regard to D and Uordered. Each admissible nesting combination corresponds to a possible 
situation of sorting.  /22/ 
 
Idealization of borderline nestings:  
Relative to Uordered, at any level the border shared by two segments SΦ, SΨ may be sharp or non-
sharp. The border is non-sharp, iff there are p, i, q with p<i<q such that ap ∈ SΦ, aq ∈ SΨ  and ai  
belongs to (is in) neither SΦ nor SΨ. It is sharp iff it is not non-sharp. At any level, if there is a 
sharp border, there are no further applications of Rule 1 possible. For any non-sharp borders, the 
possibility of further applications of Rule 1 depends on whether further cases are identifiable as 
located between the relevant two segments.47 Once Rule 1 can no longer be applied at a level, 
higher levels are identical with that level with regard to their segments (by Rule 2).  
 
If we disregard any limitations on available objects (say Uordered is dense on D) and on 
identifiability (i.e. we allow for beings with the capacity for developing indefinitely finer powers 
of discrimination), repeated application of Rules 1 to 3 produces the following idealization of 
borderline nestings:  
• At each level n, with n≥1, we have nth-nesting borderline segments alternating with less-than-

nth-nesting segments.  
• There is an increase of segments at each progressively higher level, with the following 

sequence pattern of segments. The number of segments at each level n is twice that of the 
previous level minus one, or, what is the same, the number of segments at each level n is  
2n+1  (2, 3, 5, 9, 17, 33 …).  

• The sequence pattern of nestings (with 1 for non-borderline segments, 2 for zeroth-nesting 
segments, 3 for first-nesting segments, etc.) on D, with dense Uordered, is the series starting 11, 
121, 13231, 143424341, 15453545254535451 … . (The generation of the series, with an for 
the nth number of the series and a1 = 11, works thus: an is obtained by filling the space 
between any neighboring entries of an-1 by n − where the two digits of a1 and each inserted 
numeral count as an entry.)  

Each level of the idealized nesting pattern provides an admissible nesting combination.   
 
Definition and compositionality: 
The introduction of a new segment SBL(Φ/Ψ) has the effect that, strictly, SΦ and SΨ no longer share 
a border. Consequently, the definiens of the tentative definition of BL(Φ/Ψ)D cases in 2.2.7 needs 
to be relativized to a point before the introduction of those cases. The three rules take care of 
this. The adjusted definition for borderline nestings is  
 
4.2       BL(Φ/Ψ)Da    =df  at the level from which a”s segment is generated, a is  located on D 

between the two bordering segments SΦ and SΨ.  /23/ 
 
Example: “BL(BL(BL(F/G)/G)/G)Da iff (at level 2) a is located on D between the two bordering 
segments SBL(BL(F/G)/G and SG.” This can be unraveled in terms of the accounts for each of the 
borderline-segment generations roughly as follows: “(at level 2) a is located on D between [the 

                                                            
47 If we have density of objects on D, the limit on higher nestings is not set by the available number of objects, but 
by the ability to discriminate ever more finely. (Sainsbury’s 1991 version of the higher-order vagueness paradox 
accounts for the possibility of a dense ordering; so does  Shapiro’s 2006 version (Shapiro 2006, 128).) 
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segment whose members are (at level 1) located on D between [[the segment whose members are 
(at level 0) located on D between SF and SG]] and SG] and SG.”48 Borderline nestings thus display 
a compositionality of sorts.  
 
4.3. Borderline nestings as representation of sorting processes of ordered objects at a level  
In Sections 4.3 and 4.4 we show that borderline nestings accurately represent borderline 
borderline cases, etc., as they may occur in everyday sorting processes of ordered objects into 
categories, as presented in Section 4.1.  
 
First, it was required that there are no empty boxes. To this feature corresponds the (NO-EMPTY-
SEGMENT) principle 2.2.5. Second, the introduction of new boxes (categories) could only be done 
stepwise. A corresponding principle holds for borderline nestings:  
 
4.3.1 nth-nesting borderline cases can only be introduced stepwise, that is, after (i.e., a level up 

from the level at which) the bordering n−1th-nesting borderline cases have been 
introduced.                (STEPWISE GENERATION) 

 
This follows directly from generation Rule 1. Third, it was a required feature for successful 
sorting that no two boxes (or categories) carry the same label (or name). A corresponding result 
holds for borderline nestings:  
 
4.3.2 For each admissible combination, no two predicates are the same.   (UNIQUENESS) 
 
Or, in terms of segments, for each admissible nesting combination it holds that, no two segments 
have the same subscript. 4.3.2 follows from generation Rules 1 and 2.49 Fourth, corresponding to 
the fact that existing box labels do not change when new labeled boxes are added, it holds that  
/24/ 
 

                                                            
48 The sorter’s identification of a as between SΦ and SΨ always works the same way, regardless of level and nesting 
numbers: a is identified as located on D between SΦ and SΨ  by whatever method the first borderline cases were 
identified as between SF and SG  – e.g. by looking at those cases and comparing them with the sorted members of SF 
and SG (plus application of the continuity principles).  
49 Here is an informal proof: 
(1) The two segments at level 0 have different names. 
(2) Rule 1 
(3) Rule 2 
(4) From (2) it follows that if no two segments at level n have the same name, then no segments generated by Rule 

1 for level n+1 have the same name.  
(5) From (3) it follows that if no two segments at level n have the same name, then no two segments generated by 

Rule 2 for level n+1 have the same name. 
(6) From (2) it follows that all segments generated by Rule 1 are nth-nesting borderline segments. 
(7) From (3) it follows that all segments generated by Rule 2 are either less than nth-nesting borderline segments or 

non-borderline segments. 
(8) From (1), (4), (5), (6), and (7) it follows that (with exhaustive  application of Rules 1 and 2) no two segments at 

level n+1, with n≥0,  have the same name. 
(9) Since at each level, the admissible combinations are a subset of the segment names, it follows from (8) that in 

each admissible combination no two predicates are the same. 
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4.3.3 Segments that ascend from lower to higher levels do not change their subscript in the 
process.            (NO-LABEL-CHANGE)  

 
This follows directly from Rule 2. Fifth, the concatenation feature is also represented.  For any 
admissible combination of predicates at levels 1 and up, any two bordering segments SΦ, SΨ are 
concatenated in the following way:  
 
4.3.4 For any two bordering segments SΦ, SΨ, the predicate (= subscript) of one is in the 

immediate scope of the largest-scope BL of the predicate of the other.  
     (CONCATENATION) 

 
This follows from generation Rules 1 to 3.  Moreover, it is characteristic of borderline nestings 
that each admissible combination (except the one at level 0) contains predicates of unequal rank: 
 
4.3.5 All (non-basic) admissible combinations of predicates include predicates of different rank 

(i.e. with different nesting ordinals).              (UNEQUAL-RANKS-AT-A-LEVEL) 
 
This follows from (STEPWISE GENERATION) and generation Rule 2. 
 
4.4. The semantics of admissible nesting combinations 
In this section we demonstrate that the semantics of borderline nestings corresponds to the 
semantics for ordered objects a1 to as that have been sorted, or are sortable, into labeled boxes, as 
set out in Section 4.1. Technically, one can conceive of BL(F/G)Dx as a three-place mixed-order 
predicate that takes two first-order one-place predicates and one object as arguments; and of 
BL(F/BL(F/G))Dx as a four-place mixed-order predicate that takes three first-order one-place 
predicates and one object as arguments; and so forth.50 The predicates of the admissible nesting 
combinations would thus be of ever-increasing complexity. What we show in this section is that, 
despite such complexity of the predicates in admissible nesting combinations, the semantics for 
admissible nesting combinations is nothing but the semantics of exclusive and exhaustive 
disjunction (4.1.1).    
/25/ 
In our representation of the sorting process in terms of borderline nestings, the counterpart to the 
ordered objects sorted into labeled boxes at some particular sorting stage is a sub-domain of 
Uordered associated with a particular admissible nesting combination. We call such a sub-domain 
Usorted. Usorted can be described as the members of the union of segments of an admissible nesting 
combination with regard to some D. There will be a one-to-one correspondence between box 
labels of that sorting stage and the subscripts of the segments. Our goal is to show that 4.1.1 
(exclusive exhaustive disjunction) is true for any admissible nesting combination of n predicates 
over Usorted (i.e. for any a in Usorted). We make use of the logical equivalence of 4.1.1 with 4.1.2 
and 4.1.3 and show separately for  
 
4.4.1  ∀x  [Φ1x ∨ Φ2x ∨… ∨ Φnx]          (EXHAUSTIVENESS) 
 

and  

                                                            
50 This is not the only way of construing nesting predicates, but this is irrelevant for present purposes. 
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4.4.2    ∀x  ˄    ¬[Φix,∧ Φjx]     (EXCLUSIVENESS) 
                  1≤i<j≤n    

that they hold for any particular admissible nesting combination of n predicates.  
 

(EXHAUSTIVENESS) holds trivially:  Since Usorted is nothing but the members of the union of the 
segments of the nesting combination, for each admissible combination the domain under 
consideration (Usorted) does not surpass the set of objects which satisfy at least one of the 
predicates of the combination.  
 
We show (EXCLUSIVENESS) as follows. Of any admissible combination of predicates it holds that 
each of its pairs of predicates corresponds either to (i) SF, SG; or to (ii) two bordering segments 
SΦ, SΨ of which at least one is a borderline segment; or to (iii) two non-bordering segments SΦ, 
SΨ – all with regard to some D. (This follows from the generation of segments by means of Rules 
1 to 3 from the base segments, together with the definitions of “bordering segment” and “non-
bordering segment” from Section 4.2.) We show that ∀x [Φx→¬Ψx] holds for any pair of 
predicates Φ, Ψ of an admissible combination that corresponds to (i) or (ii) or (iii). Thereby we 
will have shown that (EXCLUSIVENESS) holds for any admissible combination of n predicates.  
 
Take an arbitrary admissible nesting combination of predicates. It consists of two vague 
predicates F, G, together with any BL-predicates for which segments have been generated as part 
of the generation of borderline segments. Then  

• Regarding (i), for the pair of predicates F, G, (CONTRARIETYclass) warrants ∀x[Φx→¬Ψx].  
• Regarding (ii), for all pairs of predicates that correspond to two bordering segments of 

which one is a borderline segment (CONCATENATION) in tandem with (THIRD-KIND) 
warrant ∀x[Φx→¬Ψx]  

• Regarding (iii), i.e. for the case of the non-bordering segments we sketch an informal 
proof. Suppose ∃x[Φx∧Ψx]. This requires SΦ and SΨ to intersect. By definition of non-
bordering segments, for any pair of non-bordering segments SΦ and SΨ there exists a 
segment SΧ between /26/ them on D. By (NO-EMPTY-SEGMENT) we have ∃xΧx. Since the 
objects of Usorted are ordered on D, and we have (CONTINUITYS), there is an object in SΧ 
with an order-number larger than those of the objects that satisfy Φ and smaller than 
those of the objects that satisfy Ψ (or vice versa).51 Hence, regarding D and Usorted, SΦ and 
SΨ cannot intersect. Hence ∀x[Φx→¬Ψx] holds for any pair of predicates Φ, Ψ 
corresponding to two non-bordering segments.  

Thus both 4.4.1 and 4.4.2 hold for any admissible nesting combination of n predicates. Hence so 
does 4.1.1, i.e. exclusive and exhaustive disjunction.  
 
This is the semantics for admissible nesting combinations; more precisely, for combinations of 
borderline nestings for the domain Usorted at a level n, with regard to D and the predicates Φ1 … 
Φm that correspond to the m segments on n, as generated by Rules 1 to 3 from the atomic vague 
predicates F and G at level 0. At any level, borderline nestings concern sorted objects only. This 
is why the semantics can be handled in classical first-order logic. No surprise here. The sorting 

                                                            
51 This holds also if SΦ, SΨ and SΧ each correspond to a dense ordering of objects: there still will be a first and a last 
object in each segment. 
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of (ordered) things into boxes, and the representation of the sorted things at any stage of the 
sorting process is in no way paradoxical, even if the labels on the boxes are vague predicates.  
 
4.5. The relations of borderline nestings across levels 
For statements regarding the relation between borderline cases from different levels, unsorted 
cases need to be taken into account. This is so, because the ascent to higher levels represents the 
sorting of formerly unsorted items into added boxes. Thus the domain needs to be enlarged from 
Usorted back to Uordered. As a result, (EXHAUSTIVENESS) is lost, while (EXCLUSIVENESS) still holds. 
(EXCLUSIVENESS) together with the rules that govern nestings suffices to show that borderline 
nestings accurately represent the characteristic feature of veridical sorting processes that during a 
sorting process an item is only ever in one and the same box. This can be done by showing the 
corresponding feature of borderline nestings that even across levels no object can ever be in two 
distinct segments. We here prove the weaker claim that even across levels no nth-nesting 
borderline case can ever be a non-borderline case or an mth-nesting borderline case (with m ≠ n 
and m, n ≥ 0), since this is all we need for Section 6. We proceed in two parts. We start with 
 
4.5.1 An object a that is an nth-nesting borderline case at some level l cannot be an mth-

nesting borderline case (with m ≠ n) at any level.     (NO-BORDERLINE-OVERLAP) 
 
The proof is as follows. First, a direct consequence of 4.4.2 (EXCLUSIVENESS) is  
 
4.5.2 At any level, no nth-nesting borderline case can also be an mth-nesting borderline 

case, with n≠m.          (NO-BORDERLINE-OVERLAP-AT-A-LEVEL) 
/27/ 
Second, it follows immediately from Rule 2 (SEMANTIC ASCENT) that, given a is an nth-nesting 
borderline case at level l, a is an nth-nesting borderline case at all levels ≥ l, and subsequently 
from 4.5.2 that a is not an mth-nesting borderline case at any level ≥ l. Third, suppose a was an 
mth-nesting borderline case at some level < l. Then, by Rule 2, a would be an mth-nesting 
borderline case at all levels higher than that level, including level l. But by assumption, a is an 
nth-nesting borderline case at level l, and by 4.5.2 not an mth-nesting borderline case at level l. 
Hence the supposition is false. Consequently 4.5.1 holds. Mutatis mutandis the same proof can 
be given for  
 
4.5.3 An object a that is an nth-nesting borderline case at some level l cannot be a non-

borderline case at any level.52           (NO-NON-BORDERLINE-OVERLAP) 
 
4.5.1 and 4.5.3 are the counterpart to the axioms that govern modal iteration in theories of 
higher-order vagueness. The proof that across levels no object can ever be in two distinct 
segments works along the same lines of that for 4.5.1 and 4.5.3, with individual segments rather 

                                                            
52 There are two possibilities for the levels < l here: (i) that a is sorted at some level as F (or G); (ii) that a is unsorted 
at any level, or unsortable. The sub-proof for (i) runs exactly parallel to the proof in the main text, with “F (or G)” 
instead of “an m-th nesting borderline case”. The sub-proof for (ii) is: If a is unsorted at any level, or unsortable, 
then it is unsorted at level l. Yet, by assumption it is sorted at l. For the possibility of integrating unsortable objects 
into the paradigm of borderline nestings by combining it with the epistemic use of “borderline” see below, section 
5.4. 
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than nth-nestings. Thus all the features of the sorting paradigm based on the classificatory use of 
“borderline” are adequately represented by the model of borderline nestings.  
 
4.6  Sorter versus observer perspective in classificatory use and borderline nestings 
Situations of sorting like the ones characteristic for the classificatory use of “borderline” and for 
borderline nestings can be considered and described from two points of view. One is the 
perspective of the sorter. The other is the perspective of someone who observes the sorting, i.e. 
an observer. The sorter normally describes the sorted objects in direct correspondence with the 
labels on the boxes: a1 is blue, a40 is borderline blue/green, a100 is green. The observer would 
standardly describe the sorted objects qua sorted into the labeled boxes (qua sorted into some 
category or other): a1 is sorted/categorized/classified as blue, a40 as borderline blue/green, a100 as 
green.  
 
In everyday life, the sorter perspective is the norm. Ordinarily, people asked what is in the box 
labeled “F”,”BL(F/G)”, etc., will respond “the blue things”, not “the things 
sorted/categorized/classified as blue”, etc. (Instructions to sorters will be of the kind “put the Φ 
things in the box labeled “Φ”“, so for the sorters  themselves it is natural to describe the  things 
in the box labeled “Φ” as Φ rather than as the items sorted as Φ.) So far, in Sections 2 and 4, we 
have described classificatory use and borderline nestings entirely from the sorter /28/ 
perspective. However, the observer perspective is a potential source for the conflation of higher-
order vagueness with borderline nestings, and for this reason we here say something more about 
it. In particular, someone may conceive of “sorted (as)” as akin in function to the modal 
expressions “clear” or “determinate” as they are used in the vagueness literature, with “unsorted” 
paralleling unclarity or indeterminacy. Such an assumption of similarity in function is however 
misguided. To highlight the dissimilarity, we introduce a “sorted (as)” operator for the 
representation of the classificatory use from the observer perspective. (This is the only purpose 
of the operator.) 
 
We express the sorting situation from the observer perspective using an operator (“SORTED”) that 
expresses that an object a has been categorized as (or put by the sorter into the box labeled) Φ, or 
in any case would be categorized (or boxed) thus if it came up for sorting.53 In analogy with 
formulations like “a is definitely/clearly F” and “It is definite/clear that Fa”, we could use “a is 
sortedly F” or “It is sorted that Fa” for “a is sorted as F”.54 Formally, where Fa, BL(F/G)Da, etc. 
express the sorter perspective, SORTEDFa, SORTEDBL(F/G)Da, etc., express the observer 
perspective. Note that from the observer perspective, borderline cases are to be described as 
SORTEDBL(Φ/Ψ)Da, not as SORTEDBL(SORTEDΦ/SORTEDΨ)Da. The observer observes them as being 
sorted by the sorter as BL(Φ/Ψ)Da, not as being sorted as BL(SORTEDΦ/SORTEDΨ)Da.  
 
In Section 2.2, we presented the principles that represent the classificatory use of “borderline” 
from the sorter perspective. We here rephrase the principles to make them represent the observer 
perspective by prefixing “SORTED” to the relevant sub-formulae. We add “O” to the names of the 
principles as indicator of the observer perspective :  
                                                            
53 This added disjunct is intended to provide for all and only the cases covered by the continuity principles and by 
(POLARclass), which each represent commonly accepted idealized features of the classificatory use that are 
independent of whether an item has actually been sorted.  
54 The awkwardness of such formulations is but an indicator of how forced such an analogy is. 
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4.6.1  ∃x SORTEDBL(Φ/Ψ)x → ∀x [Φx → ¬Ψx],      (O-CONTRARIETYclass)  
4.6.2  SORTEDFa1∧SORTEDGas         (O-POLARclass)  
4.6.3  [SORTEDFan→SORTEDFan-i]∧[SORTEDGan→SORTEDGan+i].        (O-CONTINUITYF,G)  
4.6.4 If SORTEDBL(Φ/Ψ)Dan and SORTEDBL(Φ/Ψ)Dam, then any ai, with n≤i≤m, will also be 

SORTEDBL(Φ/Ψ)D.       (O-CONTINUITYBL(Φ/Ψ)) 
4.6.5     For each segment SΦ there is an a such that SORTEDΦa.55 

     (O-NO-EMPTY-SEGMENT) 
4.6.6  [SORTEDBL(Φ/Ψ)Da → ¬Φa] ∧ [SORTEDBL(Φ/Ψ)Da → ¬Ψa]56          (O-THIRD-KIND)  
/29/ 
The O-counterpart to the definition of “borderline” is 
  
4.6.7    SORTEDBL(Φ/Ψ)Da   =df   a is such that, at the level from which a”s segment is 

generated, a has been sorted as located on D between two bordering segments 
SΦ and SΨ (or in any case would be thus sorted if it came up for sorting).  

 
The modal principle 2.4.2 (i.e. “BL(Φ/Ψ)Da only if it is possible to identify that [¬Φa ∧¬Ψa]”) is 
not impacted by the perspective chosen. It is not an explicit part of the definition from either 
perspective. Rather, it is as a result of having been identified and sorted as BL(Φ/Ψ) that a is in 
the box or category labeled BL(Φ/Ψ); moreover, that there even is a box or category labeled 
BL(Φ/Ψ). From the fact that a has been identified and sorted as BL(Φ/Ψ) (or in any case would 
be thus sorted if it came up for sorting) we, as well as the sorter and any observers, can infer that 
a is identifiable and classifiable as BL(Φ/Ψ). The truth of 2.4.2 is based on the fact that veridical 
classifying of something as Φ presupposes identifying that thing as Φ. Perspective aside, Φ and 
SORTEDΦ do not differ in any significant way. They have the same extension. Accordingly, each 
principle, as well as the definition, taken from the observer perspective is materially equivalent 
to its counterpart of the sorter perspective.57   
 
For borderline nestings, too, the switch to the observer perspective is straightforward. We adjust 
the syntactic rules by adding the rule “SORTEDF, SORTEDG are well formed predicates” and 
prefixing “SORTED” to the “BL” with the largest scope in each BL formula. The generation of 
nestings starts with a pair of predicates SORTEDF, SORTEDG, instead of the pair F, G; the principles 
used are as given above; finally, Generation Rule 1 is rewritten thus (with changes in italics) 
 
Rule 1' :Take any pair of segments at level n that share a border on D. The level n+1 borderline 

cases between these two segments are the objects that satisfy the predicate one obtains by 
substituting the subscript of the left-hand level-n segment for Φ and the subscript of the 

                                                            
55 Segment indices do not have the SORTED operator, since they correspond to the labels on the boxes, and those labels 
give the sorter perspective. So 2.2.6 remains unaltered. (Alternatively, one could have such an operator and think of 
SSORTEDΦ as consisting of “SSORTED” as “the segment, from the observer perspective” and “Φ” as “the label from the 
observer perspective” (which is the same as the label from the sorter perspective.)  
56 Should it not be [SORTEDBL(Φ/Ψ)Da → ¬SORTEDΦa] ∧ [SORTEDBL(Φ/Ψ)Da → ¬SORTEDΨa]? No. In order to be sorted as 
BL(Φ/Ψ), a needs to be identified as ¬Φ and as ¬Ψ, not as ¬SORTEDΦ and ¬SORTEDΨ. 
57 We disregard questions regarding whether the existence of an observer is required for the truth of the observer 
sentences, since this issue is irrelevant here. In any event, one could argue that the sorter may double as observer.  
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right-hand level-n segment for Ψ in SORTEDBL(Φ/Ψ)D. If there are such objects, the 
resulting predicate minus its prefix “SORTED” provides the subscript of a new borderline 
segment at level n+1. The borderline cases of this new segment are nth-nesting borderline 
cases.  (O-SEGMENT INTRODUCTION) 

 
Just as the observer version of zeroth-nesting borderline cases is SORTEDBL(F/G) and not 
SORTEDBL(SORTEDF/SORTEDG), so the observer version of BL(BL(F/G)/G), say, is 
SORTEDBL(BL(F/G)/G), and not SORTEDBL(SORTEDBL(SORTEDF/SORTEDG)/SORTEDG). The sorter and 
observer do not interact. The observer observes the sorter sort objects into boxes labeled without 
a sorting operator and introduce new boxes labeled without sorting operators.  /30/ 
 
There is also no substantial difference in the ranks of the formulae at a level. If one were to think 
of the iterated “BL”  and the “SORTED” as each counting equally towards the rank of a formula, 
one could say this: The sequence pattern of nestings displayed by the idealization of borderline 
nestings (11, 121, 13231, …, see Section 4.3) describes the nesting ranks at a level from the 
observer perspective (with 11 for level 0).  From the sorter perspective, in the idealized case the 
nesting ranks at a level are those of the observer perspective minus one (00, 010, 02120, 
032313230, …).58 Thus 4.3.5 (UNEQUAL-RANKS-AT-A-LEVEL) would hold regardless of whether 
one takes the sorter or the observer perspective.59 Overall a switch to the observer perspective 
does not change anything of substance.  
 
 
5. Merging classificatory and epistemic use of “borderline”  
In this section we briefly present five ways in which the classificatory and epistemic uses of 
“borderline” may be, and quite possible have been, merged.60  We do so, because conflations of 
the two uses often go hand-in-hand with the confusion of higher-order vagueness and borderline 
nestings. 
 
5.1. First way of merging the two uses: The most basic amalgamation is the replacement of the 
contrary-but-not-contradictory vague base predicates F and G in the classificatory use of 
“borderline” with a vague base predicate F and its negation ¬F, thus incorporating an element 
from the epistemic use. The result is what in Section 2.3 we called the contradictorious 
classificatory use. Here are two formulations that each bring out the elements of both types of 
use:  
 
5.1.1 a is borderline F/¬F iff a is identifiable (at the base level) as located on D between 

the things that are F and the things of which it is not the case that they are F.  
 
                                                            
58 It is of course arbitrary that the sequence pattern of nesting coincides with the ranks of the observer perspective. If 
we had chosen to start with zero rather than one for non-borderline segments, the sequence patterns would coincide 
with the ranks of the sorter perspective. (Our choice is motivated by non-philosophical reasons which we will not to 
go into here.) 
59 This would be true even if someone insisted that the observer perspective is one in which the observers add their 
knowledge that the cases at issue are all sorted cases into the description, so that we have 
SORTEDBL(SORTEDF/SORTEDG), SORTEDBL(SORTEDBL(SORTEDF/SORTEDG)/SORTEDG), etc. In this case, the nesting rank 
pattern would be obtained by adding n+1 to each rank number n of the sorter perspective.  
60 We provide an in-depth discussion of these possibilities of combining the two uses elsewhere.  
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5.1.2 a satisfies “is borderline F/¬F” iff a is identifiable (at the base level) as located on 
D between the a1-aq that satisfy “F” and the ar-as that do not satisfy “F”.   /31/ 

 
Those who suggest that something along these lines is the kind of borderlineness relevant to the 
Sorites paradox face the tasks of explaining what its relation is to the paradox, and how they 
would deal with the higher-order vagueness paradoxes. (The proposal of some non-classical 
logic is no substitute for answering either question.)  
 
5.2. Second way of merging the two uses: Another simple way to mix the classificatory with 
epistemic use is the characterization of borderline and non-borderline cases in terms of the 
following categorization scheme: There is a category in which the F things belong, a category in 
which the G things belong, and a category for the cases where one can”t tell whether they are F 
or G. Or, combined with the amalgamation described in 5.1: There is a category for the things 
that are F, a category for the things that are not F, and a category for those cases where one can”t 
tell whether they are F or not F.  
 
5.3. Third way of merging the two uses: Still another way of  merging the two uses is in answer 
to this question: Is it possible to have objects a that are both in the epistemic and in the 
classificatory use borderline cases with respect to the same predicate F (or pair of predicates F, 
¬F)? If we take an epistemic verb of identifiability for epistemic use and a sorting verb for 
classificatory use and then form the conjunction of the two descriptions of borderline uses (from 
2.4), we get something of the kind: a is borderline F/¬F iff 
 
5.3.1  [¬◊ to tell whether or not Fa] ∧ [◊ to classify a as not being F ∧ as not being ¬F]. 
5.3.2  [¬◊ to tell whether or not Fa] ∧ [◊ to classify both Fa and  ¬Fa as  not true]. 
 
This kind of fusion combines in the rendering of BLF (or BL(F/¬F) (i) a description of the 
epistemic inaccessibility that is a defining element of the phenomenon of the borderline zone in a 
Sorites series with (ii) a philosophical (metaphysical, semantic, pragmatic) explanation of this 
very phenomenon, where the explanation is of the kind Crispin Wright has dubbed “Third 
Possibility”.61  If such a conjunction is intended as an account of borderlineness, it is doubtful 
that compositionality can be preserved for second-and-higher-order borderline cases. Hence 
there would be no genuine higher-order vagueness. In any event, it is difficult to see how set-ups 
like this one can avoid the objection that they entail sharp borders between the non-borderline 
cases of F and the borderline cases of F.  /32/ 
 
5.4. Fourth way of merging the two uses: A subtler way of combining the classificatory and 
epistemic uses of “borderline” is in response to the question: Is it possible to have Fa appear in 
the same coherent formula both in the scope of BL epistemically used, and in the scope of BL 
classificatorily used? This seems possible:  
 
5.4.1  [[¬◊IFa]∧[¬◊I¬Fa]] ∧ ◊I[[¬◊IFa]∧[¬◊I¬Fa]] 
 

                                                            
61 E.g. Wright 2003, 2010. 
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(with ◊I for “it is possible to identify that”, and “identify” as a term used indiscriminately for 
epistemic and classificatory purposes). The first conjunct of the largest-scope conjunction applies 
the (partial) account of BL in the epistemic use to Fa. The second conjunct applies the (partial) 
account of BL in the classificatory use to ◊IFa and ◊I¬Fa, which are, as required, contraries. In 
effect, the result is one way of expressing genuine clear borderlineness of Fa:  
 
5.4.2  [[¬CFa]∧[¬C¬Fa]] ∧ C[[¬CFa]∧[¬C¬Fa]]. 
 
There is nothing incoherent per se with such genuinely clear borderline cases. 62  However, 
coherent as they may be, they raise various problems, if they are employed as part of a Sorites 
solution. Most markedly, with the introduction of clear borderline cases the whole caboodle of 
higher-order vagueness paradoxes returns through the back door.63  
 
5.5. Fifth way of merging the two uses: A fifth way of linking classificatory and epistemic use is 
by applying the (epistemically interpreted) modalities of higher-orders on the results of the 
generation of nestings with the BL(/)D predicates, counting all sorted cases as clear cases, all 
unsorted ones as borderline. 64  If the epistemic use of BL is supplemented with a logic of 
columnar radical higher-order vagueness (as set out in 3.3), one obtains, with regard to D, a 
multi-column result that avoids sharp boundaries between all adjacent segments with non-sharp 
borders.   
 
These five possibilities of merging the epistemic and classificatory uses of “borderline” illustrate 
how easily elements of both can be part of one and the /33/ same view or theory of vagueness.  
Not surprisingly, often some amalgamation of the two is combined with the conflation of higher-
order vagueness and borderline nestings.  
 
 
6. Evidence for the conflation of higher-order vagueness with the classificatory use and 
borderline nestings 
This section provides evidence for our thesis that the conflation of higher-order vagueness with 
borderline nestings is common and is what led philosophers to the erroneous conclusions that 
higher-order vagueness is incoherent, paradoxical, illusory or non-existent and deserves to be 
demoted. We consider arguments by Sainsbury, Shapiro, Williamson, Raffman and Wright.   
 
We use the presence of features characteristic for the nesting paradigm as evidence for a likely 
confusion of nestings with orders and as indicator that the authors may have been, perhaps 

                                                            
62 This combination of classificatory and epistemic use calls for an S4 axiom for the clarity or definiteness operator. 
Otherwise a non-circular, intelligible account of clear borderline cases and higher-order borderline cases is hard to 
provide. See Shapiro 2006, ch.5, for some of the problems one encounters; Bobzien 2011, Sections 6-8, for how 
they can be bypassed.  
63 Moreover, genuine clear borderline cases are not compatible with a sharp border between the a that are F and 
those that are ¬F. Epistemicists of the Williamson variety thus have to do without them.And they usually do (though 
they may not shout it out): see Williamson 1994, Appendix; Williamson 1999. The same holds for contextualist 
epistemicists, see e.g. Fara 2003.  
64 Soames introduction of superindefinedness in addition to indeterminacy (Soames 2003, 147-9) displays some 
elements of this kind of combination, if in our view, unsuccessfully executed. 
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unwittingly, in the grip of the nesting paradigm when presenting their considerations against 
higher-order vagueness. Here is a list of these features:  
 

• With nestings, if something is borderline F/G, it is neither F nor G (THIRD KIND). With 
orders, something can be both borderline F and F. 

• With nestings, it is assumed that each predicate that expresses borderlineness relative to 
some domain Uordered, dimension D and level n, is satisfied by some objects of Uordered 
(NO-EMPTY-SEGMENT). With orders, this is not so.  

• With nestings, it is impossible for there to be an nth-nesting borderline case without there 
being an n−1th-nesting borderline case (STEPWISE GENERATION). With orders, this is not 
so. 

• With nestings, there can be no overlap of borderline and non-borderline segments across 
levels (NO-NON-BORDERLINE-OVERLAP). With orders, there can be overlap of borderline 
and non-borderline regions across levels. For example, something can be clearly F and 
borderline clearly F.  

• With nestings, there can be no overlap of borderline segments of different ranks across 
levels (NO-BORDERLINE-OVERLAP). With orders, there can be overlap of borderline 
regions of different ranks across levels. Something can be borderline F and borderline 
borderline F. 

• With nestings, all segments (at and across levels) for non-borderline cases are of the same 
rank, i.e. rank zero (SEGMENT  ASCENT). With orders, there can be non-borderline cases 
with different rank numbers, with no upper limit to that number: something can be clear, 
or clearly clear, etc.  

• With nestings, at any level ≥ 1, the predicate rank numbers are unequal. In particular, at 
level 1, the rank numbers are 0 – 1 – 0 (UNEQUAL-RANKS-AT-A-LEVEL). With orders, at 
any level, the predicate rank numbers are equal. In particular, at level 1, the rank numbers 
are 1 – 1 – 1.  

 
Of course, the presence of these features is no uncontestable proof that an author confounds 
higher orders and nestings. Nor does this matter. What matters is that by removing the elements 
of the authors” description of /34/ higher-order vagueness that are characteristic of borderline 
nestings, their arguments against higher-order vagueness collapse.65  
 
6.1.  Sainsbury 1990 and 1991 
We start with the locus classicus for hierarchical vagueness, Sainsbury 1991, 167-170, with a 
parallel in Sainsbury 1990, 252-55. Sainsbury sets out to show that “vague predicates are 
incoherent, if the classical conception <that the extensions of vague predicates are sets> is 
correct” (1991, 167). In order to do so, he (i) adds hierarchical vagueness (which he refers to as 
higher-order vagueness) to the classical conception and (ii) attempts to prove that a paradox 
results.  
 
(i) Sainsbury’s description of hierarchical vagueness: (Remember, the position Sainsbury 
sketches is not one he condones.) The main telltale sign of conflation is that Sainsbury oscillates 
between equal and unequal rank numbers. He repeatedly describes the first level as that with 
                                                            
65 For reasons of simplicity, we mostly keep to the vagueness-related terminologies of the authors we discuss. 
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positive cases, negative cases and borderline cases (1991, 167, 168). Ordered on D, this gives the 
modal ranks 0 – 1 – 0, a pattern of unequal ranking. This pattern is characteristic of zeroth 
nestings (THIRD-KIND), not first orders. Sainsbury introduces the second level, saying “We find a 
new type of borderline case: for example, those things which seem intermediate between being 
definite cases of children, and being borderline cases of children” (1991, 168, bottom). This 
suggests DF – <BLBLF> – BLF, with a pattern of modal ranks  1 – <2> – 1 for the left-hand side 
of D. The move from F, BLF to DF, BLF suggests a move from nestings to orders.66 Such a 
move is not trivial, but philosophically significant. Sainsbury’s introduction of borderline cases 
as a third set, besides the F and the non-F cases, was incompatible with bivalence-plus-
transparent-truth. The prefixing of “definite” in the discussion of second-order vagueness makes 
bivalence-plus-transparent-truth possible again: The sequence DF − BLF − Dnon-F (a pattern of 
equal ranking) is compatible with just two base sets and with a sharp boundary between the F 
and the non-F cases. At the same time the prefixing of “definite” removes the necessity of three 
non-intersecting base sets. Sainsbury’s next sentence corroborates our assertion that he is 
wavering between nestings and orders, where he writes: “the last heartbeat of my childhood, or 
at any rate the last heartbeat of my definite childhood” (1991, 168). Sainsbury fleshes out 
second-order vagueness thus: it “consists in a five-fold division: into the definite positive cases 
for the predicate, the definite borderlines and the definite negative cases, together with the cases 
which are borderline between definite positive cases and definite borderlines, and those 
borderline between being definite borderlines and definite negative cases.” (1991, 168-169) This 
suggests DF, BL(DF/DBLF), DBLF, BL(DBL/Dnon-F), Dnon-F. The modal ranks are again 
uneven. We seem to have either 1 – 2 – 2 – 2 – 1 or 1 – 3 – 2 – 3 – 1; the latter is the  /35/ 
sequence pattern of nestings (UNEQUAL-RANKS-AT-A-LEVEL). For second-order vagueness, we 
expect 2 – 2 – 2 – 2 – 2. Contrasting with the uneven modal ranks, later on, Sainsbury assumes 
that the leftmost and the rightmost segments are DnF and Dnnon-F for all n (1991, 169). (We here 
read his “unimpunibly definite” as “definite of order n for all n”, as the context suggests.) This 
later assumption tallies with the rank numbers of higher-order vagueness but not of nestings.  
 
There are several further indicators that Sainsbury’s hierarchical vagueness is influenced by the 
nesting paradigm.67 He describes the number of segments resulting from the boundaries which 
an nth-order vague predicates draws by means of a generation process of borderline borderline, 
etc., cases which parallels the generation Rule 1 for nestings (SEGMENT INTRODUCTION). 
Sainsbury’s depictions of the second-order borderline cases read like an application of (SEGMENT 
INTRODUCTION). Moreover, Sainsbury’s formulations indicate that he assumes throughout that 
for each vague predicate the 2n+1 sets do not intersect (NO-BORDERLINE-OVERLAP). Additionally, 
Sainsbury’s formulations imply that the non-overlapping sets are all non-empty. First, it is a 
division of objects into sets that brings the sets about (NO-EMPTY-SET). Second, for a predicate to 
be presumed nth-order vague, it needs to effect the division of object into 2n+1 sets. Thus when 
no such division of objects into sets is possible, there are no further presumed higher orders for 
that predicate. This corresponds to (STEPWISE).68 The locus classicus for hierarchical vagueness 

                                                            
66 The “definite” is not a renaming of  “positive” from pp. 167-8 as “definite” –  see p.169 “definite positive”. 
67 We invite the reader to consult the quote from Sainsbury (1991) in Section 1 above for confirmation of our claims. 
68  Further indicators that the nesting paradigm impacts Sainsbury’s account of hierarchical vagueness is his 
description of what he calls “an adequate representation of” first-order vagueness in terms of contrary rather than 
contradictory expressions: “surfaces intermediate between blue and green, people intermediate between childhood 



Susanne Bobzien, “Higher-Order Vagueness and Borderline Nestings – A Persistent Confusion”,  in: Analytic Philosophy 54.1, 2013, 1-43.  

 

 
32 

 

is thus also the locus classicus for the conflation of higher-order vagueness with borderline 
nestings.  
 
(ii) Sainsbury’s argument for the incoherence of  higher-order vagueness: Sainsbury concludes 
that higher-order vagueness, including radical higher-order vagueness, is incompatible with the 
extension of predicates conceived as sets (1991, 170). He argues that higher-order vagueness of 
any order leads to a division of the categorially appropriate objects into exactly, and hence at 
least, three non-overlapping non-empty classes – the outer ones, of which the vague predicate is 
true, or false, “beyond the shadow of vagueness”; and the middle one containing “the things 
touched by vagueness” (1991, 170). This argument presupposes that there must be at least three 
non-overlapping non-empty classes. However, it is only the nesting paradigm that requires this. 
Genuine higher-order vagueness is compatible with there being only two non-overlapping non-
empty classes of objects at the base level, and with a sharp boundary between them;69 the only 
caveat is that it is epistemically inaccessible  /36/ whether there are two or three such classes. 
Thus Sainsbury’s argument is successful in showing that the addition of non-overlapping non-
empty sets for borderline borderline cases, etc., does nothing to remove sharp boundaries. 
However, the argument does not show that higher-order vagueness is incoherent or incompatible 
with the conception of the extensions of vague predicates as sets. 
 
6.2.  Shapiro 2005 and 2006 
Stewart Shapiro presents a different version of a higher-order vagueness paradox in his 2005 (at 
147-51) and 2006 (at 125-31). Evidence of the conflation of the epistemic use of “borderline” 
and higher-order vagueness with the nesting paradigm can be found here, too. Shapiro’s basic 
assumption of open texture provides an explanation of the epistemic inaccessibility of the 
borderline zone by introducing a theory that requires a non-overlapping, non-empty area on D 
that contains the borderline cases (THIRD-KIND).   
 
Like Sainsbury, Shapiro vacillates regarding the modal rank numbers, between those 
corresponding to nestings (UNEQUAL-RANKS-AT-A-LEVEL) and those corresponding to orders. He 
starts with the tripartite distinction “bald”, “borderline bald”, “not bald” (2005, 147);70 in the 
next paragraph he uses “(determinately) bald”, “borderline bald”, “(determinately) non-bald”; at 
the end of the paragraph, the “determinately” has shed its brackets (“a second-order borderline 
case … determinately non-bald”). Here Shapiro moves from an uneven rank pattern 0 – 1 – 0 via 
an intermediate one with brackets (1) – 1 – (1) to the even rank pattern 1 – 1 – 1. This mirrors a 
move from the classificatory use of “borderline” via some dithering to the modal pattern for 
orders of vagueness. Shortly after, the brackets are back: “A man is determinately-determinately 
bald if he is (determinately) bald and (determinately) not borderline-borderline bald … a man is 
determinately-determinately not bald if he is not bald and (determinately) not borderline-

                                                                                                                                                                                                
and adulthood” (1991, 168); and that he never mentions any requirement of compositionality for the expressions 
“borderline” or “definite”. 
69 Above we saw that by definitizing the predicates describing the left and right sets at level 1 (1991, 168) Sainsbury 
himself removed the requirement of three non-overlapping non-empty sets. 
70 See also 2005, 150, citing Raffman, “there is tolerance between “baldness” and any other category – even a 
“borderline” category”; later in the same paragraph Shapiro contrasts borderline cases with determinate cases 
(Shapiro 2006, 130). 
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borderline bald” (2005, 148). For genuine higher-order vagueness, rank-wise, we would expect 
the accounts  
 
6.2.1  DDFa  =    DFa∧¬BLBLFa and  DD¬Fa   =  D¬F∧¬BLBLFa.71 
 
Instead we get the equivalent of 
 
6.2.2  DDFa  =   (D)Fa∧(D)¬BLBLFa and DD¬Fa   =  ¬Fa∧(D)¬BLBLFa 
 
The lack of “determinately”  before ¬F (and the bracketed “determinately” before F) suggest 
influence of the nesting paradigm. What the bracketed  /37/  “determinately” before “¬BLBL” is 
for, we cannot tell.72 Bracketed “determinately” occur also at (2005, 149)  and (2006, 126).    
 
Shapiro introduces borderline cases thus: “Intuitively, there is no (sharp) border between the men 
that are bald at the beginning and those that are not bald at the end. The fellows in the middle are 
the borderline cases.” (2005, 147). “It also seems that there is no sharp boundary between the 
(determinately) bald men at the start and the borderline bald men in the middle, nor … between 
the borderline bald men in the middle and the (determinately) non-bald men at the end.” (2005, 
148).  These quotes are indicators that Shapiro assumes (THIRD-KIND) and (NO-EMPTY-SEGMENT). 
Both are features of the nesting paradigm. Shapiro later provides an account of “borderline” in 
epistemic terms (e.g. 2005, 157). In fact, Shapiro is one of the very few philosophers who 
explicitly discuss the requirement of compositionality of “borderline” in its epistemic use. No 
doubt then, that in Shapiro’s description of borderline cases  features of the classificatory and 
epistemic uses are amalgamated.  
 
The way Shapiro introduces his notions of higher-order determinacy and borderlineness, n-
determinately and n-borderline, echoes the generation Rule 1 of nestings (SEGMENT 
INTRODUCTION). Compare e.g. “say that a man is borderline-borderline-borderline bald if he is 
either a borderline case of “determinately-determinately bald” with “borderline-borderline bald” 
or if he is a borderline case of borderline-borderline bald with “determinately-determinately non-
bald”” (2006, 126) and “We will not inquire about the borderline between the men that are 
determinately borderline bald and those that are (merely) borderline-borderline bald” (2006, 126). 
 
In the context of presenting his version of a higher-order vagueness paradox, Shapiro writes: “… 
we will eventually run out of distinctions to make, provided that the categories do not overlap 
and there is at least one man in each …” (2005, 149). “… we will eventually run out of 
distinctions to make, provided we want at least on man in each category. A finite series can 
support only finitely many distinctions” (2006, 126). These quotes show first that Shapiro 
assumes (NO-BORDERLINE-OVERLAP), an assumption he never questions, despite the fact that his 
definitions of “borderline” and “determinately” allow for overlap. Second, Shapiro never 
questions his proviso that there are no empty segments (NO-EMPTY-SEGMENT). His formulations, 
e.g. the use of definite articles, in the description of categories such as “the fellows in the middle” 
                                                            
71 Of course, for genuine higher-order vagueness we would not expect any account of DDF in terms of BL at all. 
That we have one, is another indicator of a possible impact of the nesting paradigm. 
72 In Shapiro 2006, at 126, the first conjuncts have the desired form, with an unbracketed “determinately”, but 
bracketed “determinately” are still prefixed to the second conjuncts. 
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(2005, 147) “the borderline men in the middle”, “those that are borderline-borderline bald” (2005, 
148) further confirm this. Again, Shapiro’s definition of “borderline” does not require that the 
categories are non-empty. Third, the quotes, in particular the last sentence, suggest that Shapiro 
considers non-empty n-borderline sets or segments as a condition for the introduction of n+1-
borderline sets or segments, which is (STEPWISE). This is a further assumption required for 
nestings, but not for orders. Thus three principal elements of the nesting paradigm seem to have 
slipped into Shapiro’s presentation of his higher-order-vagueness paradox.  /38/ 
 
As Sainsbury’s, so Shapiro’s version of the higher-order vagueness paradox loses its 
paradoxicality once the elements of the nesting paradigm are eliminated from the argument.  
Shapiro’s conclusion is that either a1 is not determinatelynF (which makes the determinately 
operator irrelevant to the Sorites) or there is a sharp boundary between the determinatelyn and the 
borderlinen cases (2005, 149). This conclusion is based on his assumptions of (NO-EMPTY-
SEGMENT), (NO-BORDERLINE-OVERLAP) and (STEPWISE). For details how without these 
assumptions Shapiro’s argument loses its force we refer the reader to Bobzien 2010, 23-4.  
 
6.3.  Williamson 1994  
In his book Vagueness Timothy Williamson presents a related consideration for the non-
existence of higher-order vagueness (Williamson 1994, 160-1), possibly an attempt to formally 
capture the main idea behind Sainsbury’s incoherence argument. Patrick Greenough presents an 
easily accessible version of Williamson’s argument:  
 

Suppose we have an operator D in the object-language. Even if we suppose that D is vague, 
we can still define an operator using D which appears to be non-vague as follows: Let D* be 
defined to mean the infinite conjunction “A & DA & DDA &...”. (Think of D* as capturing a 
notion of absolute determinacy.) Suppose that D*A. Given the definition just given, and &-E 
(on the first conjunct), it follows that DA & DDA & .... Given an infinitary rule of collection 
for D, it follows that D(A & DA & DDA &...), which, given our definition, is equivalent to 
DD*A. Hence, if D*A then DD*A. Moreover, by a similar pattern of reasoning we can 
establish that DD(A & DA & DDA & ...) and that DDD(A & DA & DDA & ...) and so on. But 
then, given our definition, we can show that if D*A then D*D*A. In other words, D* obeys an 
S4-like principle and so, Williamson concludes, “higher-order vagueness disappears”. 
(Greenough 2005, 182) 
 

We have shown elsewhere why S4-like principles alone do not make higher-order vagueness 
disappear.73 Greenough correctly adds that for that to happen, we need further assumptions and 
offers the following reconstruction of Williamson”s argument: 
 

Suppose that D* is vague. Suppose also that this entails that there are determinate borderline 
cases between D*A and ¬D*A. In so far as one thinks that one can express the vagueness of 
D* using D itself, then it follows that there is an x such that D(¬DD*A &¬D¬D*A). The left 
conjunct of this existential generalization is equivalent to ¬D*A. Given the closure of D, we 
then conclude that D¬D*A which contradicts the right conjunct. Conclusion: D* is not vague. 
(Greenough 2005, 183)  /39/ 

                                                            
73 Bobzien 2011.2, 196-200. 
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This reconstruction makes use of the assumption that the vagueness of D* entails that there are 
determinate borderline cases for D*. 74 However, the assumption of definite (or identifiable) 
borderline cases is a feature of the classificatory use of “borderline”. It marks the beginning of a 
hierarchy of borderline cases. It is not required for the epistemic use of “borderline”, which as 
we have seen, can be columnar.  Greenough acknowledges (183, footnote 15) that D* may not 
entail definite borderline cases. He offers as alternative the assumption that D* obeys the B 
axiom (or Brouwerian axiom) in addition to the S4 axiom, from which it can be inferred that D* 
is not vague (ibid.). However, assuming that D* is governed by the B axiom is just another way 
of precluding columnar higher-order vagueness (see above Section 3.3). Williamson  himself 
states in a footnote that his “construction … does not validate the Brouwerian schema”,  and 
acknowledges that therefore “a kind of higher-order vagueness may remain”  (1994, 297, 
footnote 33). 
 
6.4. Raffman 2010   
In her paper “Demoting higher-order vagueness”, Diana Raffman argues that there exist no 
higher-order borderline cases (Raffman 2010, 509-15). She couches her arguments in the form of 
four ruminations. We point out how her ruminations make use of the classificatory use of 
“borderline” and of elements of higher-order nestings.  
Rumination #1: Following Sainsbury 1990, whose reasoning she considers decisive, in this 
argument Raffman presupposes a theory of borderline cases that includes three non-overlapping 
non-empty classes (510), so our response to Sainsbury  in Section 6.1 applies. 
Rumination #2: This argument is directed at a theory of hierarchical vagueness which 
presupposes (NO-BORDERLINE-OVERLAP): “If there can be borderline cases between Φ and not-
Φ, the thinking goes, then surely there can be (second-order) borderline cases between Φ  and 
borderline Φ; and then surely there can be (third-order) borderline cases between Φ  and the 
second-order borderlines; and so on.” (510, cf. 511, 512). Moreover, at some point in this 
argument, Raffman uses a bracketed “definitely”: “there is nothing more to being borderline than 
failing to (definitely) belong either in the category Φ or in the category not-Φ” (2010, 511). The 
unbracketed  presence of this “definitely” would provide the standard modal definition of 
“borderline” and would be compatible with higher-order vagueness, bivalence and a sharp border 
between the Φ and the not-Φ things. The absence of the “definitely” would provide (THIRD-
KIND) from the nesting paradigm and would not be compatible with bivalence and a sharp border 
between the Φ and the not-Φ things. 
Rumination #3: This argument is directed at a theory of higher-order borderline cases which 
maintains  (THIRD-KIND): “Borderline cases are supposed to /40/ be of indefinite or indeterminate 
or uncertain status with respect to being Φ. So borderline cases have a status other than being Φ” 
(512). 
Rumination #4: This is an argument for the impossibility of higher-order borderline cases in 
which Raffman argues from  “no item can be definitely borderline Ψ” to “no item can be 
borderline borderline Ψ” (513). In her defense of this step, Raffman relinquishes 
compositionality of higher-order vagueness (514).  
Thus none of Raffman’s arguments proves that genuine higher-order vagueness does not exist. 

                                                            
74 The reconstruction also makes use of the assumption  that the vagueness of D* is to be expressed using D itself, a 
point Williamson is aware of, and that Rosanna Keefe has questioned, cf. Keefe (2000) ch.8. 



Susanne Bobzien, “Higher-Order Vagueness and Borderline Nestings – A Persistent Confusion”,  in: Analytic Philosophy 54.1, 2013, 1-43.  

 

 
36 

 

  
6.5 Wright 1992, 2010 
In his 2010 paper “The Illusion of Higher-order Vagueness” Crispin Wright provides a 
distinction between two phenomena, or theses, of higher-order borderline vagueness, (a) and (c) 
(527-8), then shows that (a) is not higher-order vagueness but an illusion, then strives to argue 
that (a) and (c) are equivalent and that it follows that (c), too, is merely an illusion of higher-
order vagueness. Wright’s (a) displays most of the characteristic features of the classificatory use 
of “borderline” and borderline nestings. We agree that (a) does not manifest higher-order 
vagueness.  
 
For (c), Wright refers to Williamson (1999). However, (c) is neither Williamson’s intersective 
unclarity (for which see above Section 3.4) nor genuine higher-order vagueness. Wright 
describes how (c) countenances higher-order vagueness thus: “in general, each successive nth 
order of vagueness, n > 1, is conceived as consisting in the vagueness of the boundary between 
the Defn−1 Fs – the things that are definitely … definitely (n-1 times) F – and the definite 
borderline cases of order n-1, that is, as consisting in the (potential) existence of cases satisfying 
the condition: ~DefnF&~Def(Borderlinen−1F)” 75  (529) This quote shows that (c) invokes or 
implies the following elements of the nesting paradigm: 
• First-order borderline cases exist. – This is not part of the account of “borderline case” 

Wright starts out from, i.e. things that are neither definitely F nor definitely G (524, the 
“Basic Formula”). 

• Definite borderline cases exist. – This is neither implied by the account of “borderline” nor 
part of Williamson’s 1999 theory, and is the beginning of a hierarchy of borderline cases. 

• The existence of definite Borderlinen−1 cases is presupposed for the existence of Borderlinen 
cases. − Hence the existence of Borderlinen−1 cases is presupposed for the existence of 
Borderlinen cases, which is (STEPWISE).  /41/ 

• The Borderlinen cases are said to be between the Defn−1 cases and the Def(Borderlinen−1) 
cases. − Since the latter are also Borderlinen−1 cases (Wright accepts the factivity of Def, 529), 
there is, for any n, at most partial overlap of Borderlinen and  Borderlinen−1 cases.  

• Additionally, later in the discussion of (c), Wright assumes that the principle “There are no 
true instances of F & ~DefF” holds for (c) (529, with footnote 13). − This principle is 
incompatible with Williamson’s 1999 theory and goes counter to the epistemic use of 
“borderline”.  

• Related to this may be the fact that earlier, where Wright introduces his Basic Formula in his 
discussion of Dummett (524), he moves from the modal account of borderlineness directly to 
the classificatory use and (THIRD-KIND) (524). Wright never mentions the fact that, unlike 
(THIRD-KIND), his Basic Formula permits the epistemic use of “borderline” as well as 
bivalence and a sharp boundary (all features of Williamson 1999, Wright’s prototype for (c)).  

                                                            
75 Wright’s formalizations of the condition for second-order and nth-order cases are faulty (a simple oversight, as is 
clear from the context and as Wright has confirmed in correspondence). The easiest way of formally expressing 
what Wright intended appears to be ~Def2Fa&~Def~DefFa for the second-level second-order borderline cases 
leftmost on a dimension D (the only ones Wright is concerned with) and ~DefnFa&~Def~Defn-1Fa for the nth-level 
nth--order borderline cases leftmost on a dimension D. We wonder whether the formulations in terms of 
“Borderlinen” may be another indicator of the nesting paradigm’s subliminal impact.  
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Thus there are many indications that assumptions from the nesting paradigm have crept into 
Wright’s conception of higher-order borderline cases of type (c). But without these assumptions, 
Wright cannot show that (a) and (c) are equivalent, and hence also not that higher-order 
vagueness as set out in (c) is an illusion. We have shown in Bobzien (2010), 21-22, how the 
presence of some of these elements in Wright’s formal argument for the incoherence of higher-
order vagueness (as set out first in Wright 1992) are necessary for drawing the conclusion that 
higher-order vagueness is incoherent, and how their removal simultaneously removes the 
incoherence and illusionary character of higher-order vagueness. 
 
 
7.  Conclusion: columnar higher-order vagueness and the Sorites  
None of the authors discussed in Section 6 has successfully demonstrated that higher-order 
vagueness per se is incoherent, paradoxical, non-existent, illusory or incompatible with sharp 
boundaries of vague predicates. We have shown that the arguments of all five philosophers 
conflate elements of the higher-order vagueness paradigm with elements of the paradigm of 
borderline nestings and the classificatory use of “borderline”. In particular, all five philosophers 
appear to conceive of higher-order vagueness as necessarily hierarchical and as necessarily 
including clear borderline cases.  
 
In Section 3 we argued that it is not necessary for higher-order vagueness to be hierarchical or to 
include clear borderline cases. We introduced columnar higher-order vagueness as an example of 
a coherent notion of higher-order vagueness. We showed that with an epistemic interpretation of 
the modal operators, columnar radical higher-order vagueness fulfills all requirements a theory 
of higher-order vagueness needs to meet to further a solution of the Sorites. Given the arguments 
against hierarchical higher-order vagueness in Section 6, columnar radical higher-order /42/ 
vagueness appears to be the only theory of higher-order vagueness that has this virtue.  
 
At first encounter, theories of columnar higher-order vagueness are often met with skepticism. 
We believe that some of this skepticism has its roots in the very conflation of the paradigms of 
higher orders and nestings that we found in the arguments against higher-order vagueness tout 
court. However, there is nothing in the Sorites paradox that requires a hierarchical notion of 
higher-order vagueness. The phenomenon of a borderline region of vague predicates (with regard 
to some D and Uordered) that is characteristic for Sorites-prone predicates is one of epistemic 
inaccessibility and – apparent – seamless transition. In discussions of vagueness, higher-order 
vagueness is invoked in the first instance to provide an adequate description of this combination 
of phenomena. There is prima facie no element of a hierarchy present. 76 Neither epistemic 
inaccessibility nor seamless transitions are intrinsically hierarchical. Accordingly, nothing 
suggests that higher-order vagueness is to reflect and hence display a hierarchical pattern. Once 
one lets go of the enticement of the nesting paradigm, the apparent requirement of a hierarchical 
structure, including the apparent requirement of clear or definite borderline cases, disappears, or 
at least loses major appeal.77  

                                                            
76 Nothing in descriptions like “it’s possible to  tell that it’s possible to tell” or “it’s unknowable that it’s unknowable” 
or “it’s definite that it’s definite”, etc. leads automatically to a hierarchy of borderline cases of the kind for which the 
nestings are paradigmatic. 
77 If the modal operators are given a non-epistemic interpretation, there is still no requirement for a hierarchy as set 
out in Section 1. A non-epistemic interpretation is to provide an explanation of what happens in the borderline zone, 



Susanne Bobzien, “Higher-Order Vagueness and Borderline Nestings – A Persistent Confusion”,  in: Analytic Philosophy 54.1, 2013, 1-43.  

 

 
38 

 

 
 

Acknowledgements 
 

Prior versions of this paper were presented at the 2011 Symposium in Analytical Philosophy  at 
Austin, Texas, and at the 6th Pamplona Workshop on Vagueness in May 2012. I am grateful to 
the participants at both occasions for their stimulating discussion. Furthermore, I wish to thank 
Josh Dever, Matti Eklund, Jeff Pelletier, and in particular Pablo Cobreros and Bruno Whittle, for 
valuable written comments on parts of the paper.  
 
 

References 
 

N. Asher, J. Dever, and C. Pappas, “Supervaluations Debugged,”  Mind 118 (2009), pp. 901-33. 
C. Barker, “The Dynamics of Vagueness,” Linguistics and Philosophy 25 (2002), pp. 1-36. 
S. Bobzien, (2002) “Chrysippus and the Epistemic Theory of Vagueness,” Proceedings of the 

Aristotelian Society 102, pp. 217-38. 
S. Bobzien, “Higher-Order Vagueness, Radical Unclarity and Absolute Agnosticism,” 

Philosophers’ Imprint, 10, no.10 (2010), pp. 1-30.   /43/ 
S. Bobzien, “In Defense of Higher-Order Vagueness,” Synthese 180 (2011), pp. 317-35.  
S. Bobzien, “If it’s Clear, then it’s Clear that it’s Clear, or is it? – Higher-order Vagueness and 

the S4 Axiom,” in: K. Ierodiakonou / B. Morison (eds), Episteme, etc., (OUP 2012), 
Oxford. pp. 189-212.  

W. A. Carnielli and C. Pizzi, Modalities and Multimodalities (Springer 2009) New York. 
P. Cobreros, “Supervaluationism and Fara’s argument concerning higher-order vagueness,” in: 

Egré, P. / Klinedinst, N. (eds) Vagueness and Language Use, (Palgrave Macmillan 2011) 
London. pp. 207-2. 

M. Dummett, “Wang's Paradox,” in M. Dummett (ed.) Truth and Other Enigmas, (Duckworth 
1978) London. pp. 248-68. 

D. Edgington, “Wright and Sainsbury on Higher-Order Vagueness,” Analysis 53 (1993), pp. 193-
200. 

Delia Graff Fara, “Gap Principles, Penumbral Consequence, and Infinitely Higher-Order 
Vagueness,” in Beall, JC (ed.), Liars and Heaps, (OUP 2003) Oxford. pp. 195-221. 

P. Greenough, “Vagueness: A Minimal Theory,” Mind 112 (2003), pp. 235-81. 
P. Greenough,  “Higher-Order Vagueness,” Proceedings of the Aristotelian Society 105 (suppl) 

(2005), pp. 167-90.  
D. Hyde, “Higher Orders of Vagueness Reinstated,” Mind 112 (2003), pp. 301-5. 
R. Keefe and P. Smith, “Introduction,” in Keefe, R. & Smith, P. (eds.) Vagueness: A Reader, 

(MIT Press 1997) Massachusetts. pp. 1-57. 
R. Keefe, Theories of Vagueness, (Cambridge University Press 2000) Cambridge. 
C. Kennedy, “Vagueness and Grammar: The semantics of relative and absolute  

gradable predicates.” Linguistics and Philosophy 30(1) (2007), pp. 1–45. 

                                                                                                                                                                                                
and if the phenomenon or explanandum is not hierarchical, there is no reason for the explanans to be. Likewise, if 
the purpose of the investigation of ‘definitely’ or ‘clearly’ is to cover ordinary language uses of these expressions, 
there is no reason to expect a hierarchical pattern, see e.g. Barker 2002, Raffman 2010. 

http://www.jstor.org/view/00032638/sp050275/06x2252p/0?frame=noframe&userID=82848f31@yale.edu/01cc99331a00501b436ef&dpi=3&config=jstor
http://www.st-andrews.ac.uk/~pmg2/PG's%20personal%20web%20page.htm
http://www.st-andrews.ac.uk/~pmg2/PG's%20personal%20web%20page.htm


Susanne Bobzien, “Higher-Order Vagueness and Borderline Nestings – A Persistent Confusion”,  in: Analytic Philosophy 54.1, 2013, 1-43.  

 

 
39 

 

Stephen T. Kuhn, “Minimal non-contingency logic,” Notre Dame Journal of Formal Logic 36, 
(1995) pp. 230-34.  

H. Montgomery and  R. Routley “Contingency and non-contingency bases for normal modal 
logics,” Logique et Analyse 9 (1966), pp. 318-28. 

F. J. Pelletier, and A. Hartline, “Ternary Exclusive Or” Logic Journal of the International Group 
on Pure and Applied Logic 16 (2008), pp. 75-83. 

D. Raffman “Borderline Cases and Bivalence,” Philosophical Review 114 (2005), pp.1-31. 
D. Raffman, “Demoting Higher-Order Vagueness,” in Dietz, R. & Moruzzi, S. (eds.), Cuts and 

Clouds: Vagueness, Its Nature, and Its Logic, (OUP 2010) Oxford. pp. 509-22. 
M. Sainsbury, “Concepts without boundaries,” London: King’s College London, 1990, 

(Inaugural lecture). Reprinted in Keefe, R. & Smith, P. (eds.) Vagueness: A Reader, (MIT 
Press 1997) Massachusetts. pp. 251–64. 

M. Sainsbury, “Is There Higher-Order Vagueness?,” Philosophical Quarterly 41 (1991), pp. 
167-82. 

S. Shapiro, “Context, Conversation, and so-called “Higher-Order” Vagueness,” Proceedings of 
the Aristotelian Society 105 (suppl) (2005), pp. 147-65. 

S. Shapiro, Vagueness in Context (OUP 2006) Oxford. 
S. Soames, “Higher-Order Vagueness,” in Beall, JC (ed.), Liars and Heaps, (OUP 2003) Oxford. 

pp. 128-50. 
N. J. J. Smith, Vagueness and Degrees of Truth (OUP 2008) Oxford. 
R. Sorensen, Vagueness and Contradiction (Clarendon 2001) Oxford.   
R. Sorensen, “Borderline Hermaphrodites: Higher-Order Vagueness by Example,” Mind 119 

(2010), pp. 393-408. 
A. C. Varzi, “Higher-Order Vagueness and the Vagueness of “Vague” ,” Mind 112 (2003), pp. 

295–98.  
T. Williamson,  Vagueness (Routledge 1994) London.  
T. Williamson,  “On the structure of higher-order vagueness,” Mind 108 (1999), pp. 127-42.  
C. Wright,  “Is Higher-Order Vagueness Coherent?,” Analysis 52 (1992), pp. 129-39.  
C. Wright, “Vagueness: A Fifth Column Approach,” in Beall, JC (ed.), Liars and Heaps, (OUP 

2003) Oxford. pp. 84-105. 
C. Wright, “The Illusion of Higher-Order Vagueness,” in Dietz, R. & Moruzzi, S. (eds.), Cuts 

and Clouds: Vagueness, Its Nature, and Its Logic, (OUP 2010) Oxford. pp. 523-549.  
 

http://www.ualberta.ca/~francisp/papers/IGPLPublishedVersion08.pdf
http://www.cse.buffalo.edu/~shapiro/
http://philpapers.org/s/R.%20Sorensen
http://mind.oxfordjournals.org/cgi/content/short/fzq030v1?rss=1
http://users.ox.ac.uk/~sfop0009/
http://users.ox.ac.uk/~sfop0009/
http://www.st-andrews.ac.uk/academic/philosophy/STAFF/wright.html
http://www.st-andrews.ac.uk/academic/philosophy/STAFF/wright.html

