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Abstract

It has become increasingly clear that natural phenomena cannot be formally deduced from laws

but that almost every phenomenon has its own particular way of being linked to higher-level

generalizations, usually via approximations, normalizations and corrections. This article deals

with the following problem: if there are no general principles to link laws to phenomena, and if

each phenomenon has its own way of being explained, how can we -- or how can a theory --

explain any new phenomenon? I will argue that while particular explanations only apply to the

specific phenomena they describe, parts of such explanations can be productively reused in

explaining new phenomena. This leads to a view on theory, which I call maximalism, according

to which new phenomena are understood in terms of previous phenomena. On the maximalist

view, a theory is not a system of axioms or a class of models, but a dynamically updated corpus

of explanations. New phenomena are explained by combining fragments of explanations of

previous phenomena. I will give an instantiation of this view, based on a corpus of phenomena

from classical and fluid mechanics, and argue that the maximalist approach is not only used but

also needed in scientific practice.

1. Introduction

1.1  Particularism. Recent philosophy of science has shown a wave of support for the

view that natural phenomena cannot be formally deduced from laws but that almost every

phenomenon has its own particular way of being linked to higher-level generalizations,

usually via intermediate models, approximations, normalizations and corrections. This

view, which I call particularism, is supported by authors like Nancy Cartwright, Ronald

Giere, John Dupré and others. These authors argue that there are no rigorous solutions of
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real-life problems (e.g. Cartwright 1983: 13), that phenomena cannot be explained by an

axiomatic system of laws (e.g. Giere 1988: 76-78), that intermediate models are needed to

link laws to phenomena (Boumans 1999; Morrison 1999; Teller 2001), and that such

models form an open-ended family (Dupré 2002; Hacking 1983: 218).1

The evidence in favor of the particularist view is overwhelming. In quantum

mechanics, arguably the most successful physical theory, there are no real-world

phenomena that can be rigorously derived from Schrödinger's equation (except for the case

of an isolated hydrogen atom, which does not exist in practice). Derivations of phenomena

like radioactive decay, the Lamb shift and Zeeman splitting are the result of various

corrections and approximations, "some fairly sloppy" as Richard Feynman remarks in his

Lectures (Feynman et al. 1965: section 16-13).

The situation in fluid mechanics is not much different: derivations are replete with

approximations and empirical coefficients, and ad hoc corrections turn up almost

everywhere. Without approximations, dimensionless quantities and corrections, it is

impossible to link phenomena such as the vena contracta, the Coanda effect and the Hele

Shaw flow to the higher-level principles of conservation of energy and conservation of

momentum (cf. Faber 1997; Tritton 2002).

Even in classical mechanics there are virtually no rigorous derivations of natural

phenomena. Phenomenological descriptions of friction are used in almost all derivations of

real-world systems, while they are not derived from the laws of motion (Alonso and Finn

1996: 127-129). Rigorous solutions are not even available for a relatively simple system

such as the pendulum (see Giere 1988 for an extensive discussion).

These examples indicate that laws by themselves do not cover phenomena. Lots of

additional knowledge goes into the linkings between laws and phenomena. Laws are

abstract, and the more abstract they are the more knowledge needs to be added to link them

to real phenomena. A very substantial part of scientific modeling is concerned with figuring

out what kind of knowledge should be added where, so as to enforce a derivation and

"save" the phenomenon. Rather than being an organized system, this knowledge appears to

be a motley collection of idealizations, boundary conditions, approximations, ad hoc

corrections and normalizations. And this not only counts for "messy" phenomena where

many external influences play a role. Even very stable phenomena, from the vena contracta

to exponential decay, can only be derived via ad hoc adjustments and approximations rather

than by deduction. What students learn and experts possess is not just a set of laws but a set

of derivations that describe how to get from laws to phenomena via idealizations,

approximations, corrections and the like.

1 The particularist view is usually hedged for artificially manufactured phenomena, for instance by

adding that "in any field of physics there are at most a handful of rigorous solutions, and those usually

for highly artificial situations" (Cartwright 1983: 104).
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But if there are no general principles to get from laws to phenomena, and if each

phenomenon has its own specific way of being explained, how can we -- or how can a

theory -- explain any new phenomenon? The way round this problem is, I believe, to take

the particularist derivations themselves as the theory. Once I realized this, I also saw the

merits of particularist derivations: they contain both higher-level laws and all additional

knowledge needed to link these laws to particular cases. Of course, particularist derivations

themselves only apply to the phenomena they describe. But parts of these derivations may

be reapplied to derive new phenomena. One of my goals is to show how derivations of new

phenomena can be constructed by combining partial derivations of known phenomena. The

underlying idea is that once you have learned how to fit equations to a number of

phenomena you can productively apply previous derivation steps to a range of other

phenomena. Before I go into the details of this idea, I want to discuss two related concepts:

exemplarism and maximalism.

1.2 Exemplarism. The claim that novel phenomena can be modeled on previously

explained phenomena is not new. It is usually attributed to Thomas Kuhn with regard to his

notion of exemplar in the Postscript of the second edition of Structure (Kuhn 1970).2

Following Kuhn, exemplars are "problem solutions that students encounter from the start of

their scientific education", and "All physicists [...] begin by learning the same exemplars"

(Kuhn 1970: 187). Kuhn urges that "Scientists solve puzzles by modeling them on previous

puzzle-solutions, often with minimal recourse to symbolic generalizations" (Kuhn 1970:

189-190). According to Frederick Suppe, implicit in Kuhn's work is an account of theory as

"symbolic generalizations empirically interpreted by exemplars and modeling of other

applications on the exemplars" (Suppe 1977: 149). I will refer to Kuhn's view by the term

exemplarism which I define as the view that phenomena are explained not by laws but by

exemplars, i.e. by explanations of previous phenomena.

 Thomas Nickles relates the exemplarist view to case-based and model-based

reasoning: "Since exemplars play such a prominent role in Kuhn's account of problem

solving, it is natural to reinterpret his work as a theory of case-based and/or model-based

reasoning in normal science" (Nickles 2003: 161). Case-based reasoning (CBR) is an

artificial intelligence technique that provides an alternative to rule-based problem solving.

Instead of solving each new problem from scratch, CBR tries to match the new problem to

one or more problems-plus-solutions already available in a database of previous cases (see

Kolodner 1998). Model-based reasoning (MBR) is related to CBR, and has been

extensively motivated by Ronald Giere. According to Giere (1999), "Scientists have at their

2 An earlier use of exemplar may be attributed to L. Seneca (Letters to Lucilius, Epistula VI): Longum

iter est per praecepta, breve et efficax per exempla ("Long is the way through rules, short and

efficacious through exemplars").
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disposal an inventory of various known phenomena and the sorts of models that fit these

phenomena. When faced with a new phenomenon, scientists may look for known

phenomena that are in various ways similar to, which is to say, analogous with, the new

phenomenon. Once found, the sort of models that successfully accounted for the known

phenomena can be adapted to the new phenomenon." Giere supports his claim by referring

to work in cognitive science that indicates that scientific reasoning is pattern-based or

model-based rather than rule-based or law-based (e.g. Larkin et al. 1980).

Both CBR and MBR can be put under the general umbrella of exemplarism. However,

neither Nickles nor Giere, let alone Kuhn, provide a formal mechanism that generalizes

from previous explanations to explain new phenomena. In this paper I propose such a

mechanism that constructs new explanations out of parts of previous explanations. The idea

that parts of derivations may be reapplied to new situations has also been proposed by

Kitcher (1989: 432): "Science advances our understanding of nature by showing us how to

derive descriptions of many phenomena, using the same patterns of derivation again and

again". However, different from Kitcher I will give a formal mechanism that instantiates

this idea. I will argue that my mechanism captures the notions of analogy and similarity that

are so prominent in CBR and MBR, and that it also provides a formalization of Kuhn's

notion of exemplar-based reasoning.

What then is the difference between the use of exemplars and the use of laws?

Although this will become fully clear only in the following sections, I may already hint on it

here. If we only consider highly idealized phenomena for which we have exact, deductive

solutions, there is no formal difference, except that exemplars allow for reusing previous

solutions rather than having to explain each new phenomenon from scratch (see section 2).

But in the case of real-world phenomena, exemplars often contain additional knowledge

such as corrections, normalizations and approximations that do not follow from

fundamental laws -- remember that exemplars describe each step in linking laws to

phenomena. Exemplars thus "ground" the laws in concrete situations. By reusing derivation

steps from exemplars, we not only (re)use laws but also the additional knowledge about

corrections and approximations etc. Exemplarism integrates the productivity of laws and the

specificity of concrete explanations. While particularism urges that there are only concrete

explanations of specific phenomena, exemplarism takes advantage of these explanations by

reusing (parts of) them to explain new phenomena.

1.3 Maximalism. A problem regarding exemplarism is which prior explanations count as

exemplars. Thus Giere refers to "an inventory of various known phenomena" that scientists

use to explain new phenomena. But how large is this inventory? Which phenomena should

be in it and which shouldn't? Is there any principled limit on the number of phenomena and

their models in this inventory? From a cognitive, memory-based perspective there may

indeed be such a limit: the amount of all models in physics have become unmanageable for
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one person's memory. But given that we can also consult the literature rather than relying on

memory only, is there in principle an upper bound on the number of previous explanations

that may be consulted? The answer is no: there is no reason to neglect any previous

successful explanation in constructing an explanation for a newly presented phenomenon.

That is, we have in principle access to the entire body of knowledge. This view is covered

by the concept of maximalism.

According to the maximalist view, we are entitled to employ all of our antecedent

knowledge in understanding new phenomena.3 Rather than trying to synthesize our

knowledge by a succinct set of laws, models or exemplars, the maximalist view urges that

all knowledge of previous phenomena be used. Thus any previous (fragment of)

explanation may be employed as an exemplar to explain new phenomena. A theory, on the

maximalist view, then, is not a system of axioms or a set of models, but a dynamically

updated corpus of explanations of phenomena. New phenomena are explained out of

fragments of previously explained phenomena. Ideally, such a corpus should be structured

into partially overlapping subcorpora, reflecting the various subfields.

At first glance, maximalism may seem like overkill: do we really need all previously

explained phenomena for explaining new phenomena? Couldn't a smaller subset do as well?

In textbooks, it is common to select the most useful phenomena as exemplars that can next

be straightforwardly adapted and extended to new phenomena. However, science does not

work like a textbook where new phenomena are seamlessly built upon previously described

phenomena. In practice, a scientist may have to consider very different previously explained

phenomena to see if some fragment is of use when confronted with a new phenomenon.

Sure enough, a scientist may first try to model a new phenomenon on the basis of most

similar previous phenomena, as Giere (1999) argues. But one cannot know beforehand

where to find some useful technique or approximation. For example, the "independent

particle approximation" in quantum mechanics has its precursor in classical celestial

mechanics (cf. Feynman et al. 1965). And in the field of quantum chemistry, fragments

from divergent, contrasting models in statistical mechanics, quantum mechanics and even

classical molecular structure are combined to explain complex molecules (Hendry 1998).

The situation in other areas is basically the same: since we do not know beforehand which

previous explanations may be useful for explaining new phenomena, we are entitled to take

all previous explanations as possible exemplars.

To make my notion of explanation explicit, two parameters need to be instantiated:

3 I borrow the term maximalism from epistemology (see e.g. Lehrer 1974; Goldman 1979; Foley 1983).

According to Goldman (1979), "maximalism invites us to use all  our beliefs whenever we wish to

appraise our cognitive methods". Although the term has become somewhat out of use, I believe it aptly

covers the view presented in this paper, with the restriction that I apply maximalism to scientific

knowledge only rather than to beliefs in general.
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(1) A prior corpus of explanations of known phenomena.

(2) A formal mechanism that specifies how parts of explanations from known

phenomena can be combined into explanations of new phenomena.

I will refer to these two parameters as "the maximalist framework", and I will refer to any

instantiation of these two parameters as "a maximalist model of explanation". The

maximalist framework thus allows for a wide range of different models of explanations. It

hypothesizes that scientific explanation can be modeled as a matching process between a

new phenomenon and a corpus of previously explained phenomena, but it leaves open how

the explanations in the corpus are represented and how fragments from these explanations

may be combined.

The parameters above do not demand that a prior corpus contain all  known

phenomena; it only implicitly demands that all parts of explanations in the corpus can be

reused. The reason that I left out the quantifier all in the definition, is that otherwise we

could not instantiate any maximalist model, since we do not (yet) have an actual corpus

containing all known phenomena. But even if in the next sections I will use only very small

corpora to illustrate my models of explanation, the goal is to have a corpus that is as large as

possible. Why then not call it an "exemplarist" model of explanation rather than

"maximalist"?  I prefer "maximalist" since even with a very small corpus, any part of any

explanation may be reused in explaining new phenomena.

Note that a maximalist model is inherently exemplarist but not necessarily particularist:

the maximalist framework also allows for models that use a corpus of highly idealized,

exactly solvable phenomena. In section 2, I will start out with such a corpus and argue that

the advantage of using a maximalist model is that we do not have to explain new

phenomena from scratch if we have already explained similar phenomena before. Since

idealized phenomena do not exist in the real world, I will not stay with my decision very

long. But idealized phenomena do form the typical examples of introductory textbooks,

thereby constituting the exemplars all physicists learn. In section 3, I will show how our

initial maximalist model can be extended to real-world phenomena and systems that are not

rigorously derivable from laws. It is here that maximalism shows its greatest benefit: real-

world phenomena can only be explained in terms of explanations of previous phenomena.

2. A maximalist model for idealized, exactly solvable phenomena

To pave the way for real-world phenomena, it is convenient to first illustrate the maximalist

framework for idealized examples. Looking afresh into a number of introductory physics

textbooks (e.g. Eisberg and Lerner 1982; Giancoli 1984; Alonso and Finn 1996; Halliday et

al. 2002), it struck me how often solutions of example problems are used as exemplars for
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solving new problems. For example, in the textbook Physics, Alonso and Finn derive the

Earth's mass from the Earth-Moon system and use the resulting derivation as an exemplar

for deriving various other phenomena (Alonso and Finn 1996: 247). We first give their

derivation of the Earth's mass:

Suppose that a satellite of mass m describes, with a period P, a circular orbit of radius r

around a planet of mass M. The force of attraction between the planet and the satellite is F =

GMm/r2. This force must be equal to m times the centripetal acceleration v2/r  = 4π2r /P2 of

the satellite. Thus,

4π2mr/P2 = GMm/r2

Canceling the common factor m and solving for M gives

M = 4π2r3/GP2.

Figure 1. Derivation of the Earth's mass according to Alonso and Finn (1996)

By substituting the data for the Moon, r = 3.84 ⋅ 108 m and P = 2.36 ⋅ 106 s, Alonso and

Finn compute the mass of the Earth: M = 5.98 ⋅ 1024 kg. Note that Alonso and Finn

abstract from many features of the actual Earth-Moon system, such as the gravitational

forces of the Sun and other planets, the magnetic fields, the solar wind, etc. Moreover,

Alonso and Finn do not correct for these abstractions afterwards (which would be very well

possible and which is often accomplished in the more advanced textbooks). That's why the

represented system is called an idealized system, or better, an idealized model of the system.

Albeit idealized, the derivation in figure 1 can be used as an exemplar to derive various other

(idealized) phenomena, such as the altitude of a geostationary satellite, the velocity of a

satellite at a certain distance from a planet, Kepler's third law, etc. To show this, it is

convenient to first represent the derivation in figure 1 in a step-by-step way by a derivation

tree, given in figure 2.
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F = ma

F = GMm/r2

a = v2/r

F = mv2/r  v = 2πr/P

F = 4π2mr/P2

4π2mr/P2 = GMm/r2

M = 4π2r3/GP2

Figure 2. Derivation tree for the derivation in figure 1

The derivation tree in figure 2 represents the various derivation steps in figure 1 from

higher-level laws to an equation of the mass of a planet. A derivation tree is a labeled tree in

which each node is annotated or labeled with a formula (the boxes are only convenient

representations of these labels). The formulas at the top of each "vee" (i.e. a connected pair

of branches) in the tree can be viewed as premises, and the formula at the bottom as a

conclusion. The last derivation step in figure 2, is not formed by a vee but consists in a

unary branch that solves the directly preceding formula for M. If we were to be fully explicit

we should annotate the branches in a derivation tree with the actions taken at each derivation

step. But since substitution of terms is the only thing happening in figure 2, except for the

last, unary step that solves the previous equation for M, I will leave the derivational actions

implicit for the moment. The reader is referred to Baader and Nipkow (1999) for an

overview on term rewriting and equational reasoning.

Note that a derivation tree captures the notion of covering-law explanation or

deductive-nomological (D-N) explanation of Hempel and Oppenheim (1948). In the D-N

account, a phenomenon is explained by deducing it from general laws and antecedent

conditions. Thus derivation trees of the kind above may be viewed as representing a D-N

explanation.

But a derivation tree represents more than just a D-N explanation: there is also an

implicit theoretical model in the tree in figure 2. A theoretical model is a representation of a

phenomenon for which the laws of the theory are true (Suppes 1961, 1967). By equating

the centripetal force of circular motion 4π2mr/P2 with the gravitational force GMm/r2 the

model that is implied in figure 2 is a two particle model where one particle describes a

circular orbit around the other one due to gravitational interaction and for which the mass of

the first particle is negligible compared to the other. Theoretical models have been claimed
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to be the primary representational entities in science (cf. van Fraassen 1980; Giere 1988).

Suppes (1961) shows how the field of classical particle mechanics can be described in

terms of a set-theoretical notion of model. However, while theoretical models can represent

idealized systems, it has been widely argued that they fail to represent reality. Applying a

theoretical model to a real system is a matter of intricate approximation and de-idealization

for which no formal principles exist (cf. Cartwright 1999; Morrison 1999). In section 3 we

will show how derivation trees can be extended to include not only theoretical models but

also phenomenological models and how these two models can be integrated within the

same representation. For the moment it suffices to keep in mind that derivation trees are not

just representations of the D-N account but that they also refer to an underlying model.4

Turning back to the derivation tree in figure 2, we can extract the following fragment

or subtree by leaving out the last derivation step in the derivation tree in figure 2 (i.e. the

solution for the mass M). This subtree is given in figure 3, and reflects a theoretical model

of a general planet-satellite or sun-planet system (or any other orbiting system where the

mass of one particle is negligible compared to the other).

F = ma

F = GMm/r2

a = v2/r

F = mv2/r  v = 2πr/P

F = 4π2mr/P2

4π2mr/P2 = GMm/r2

Figure 3. A subtree from figure 2 reflecting a theoretical model of a planet-satellite system

This subtree can be applied to various other, analogous situations. For example, in deriving

Kepler's third law (which states that r3/P2 is constant for all planets orbiting around the sun)

the subtree in figure 3 needs only to be extended with a derivation step that solves the last

equation for r3/P2, as represented in figure 4.

4 Note that a derivation tree may refer to more than one model. For instance, if we equate ma with

GMm/r2, a range of different theoretical models are implied. This is because F=ma does not refer to

one specific model, as is the case with F= 4π2mr/P2. By equating ma with GMm/r2, we may capture

models such as a point mass on a planet's surface, a mass falling towards a planet, a planet in a

circular orbit around a star, etc. Only if we further specify the accelaration a, a specific theoretical

model may be implied.
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F = ma

F = GMm/r2

a = v2/r

F = mv2/r  v = 2πr/P

F = 4π2mr/P2

4π2mr/P2 = GMm/r2

r3/P2 = GM/4π2

Figure 4. Derivation tree for Kepler's third law from the subtree in figure 3

Thus we can productively reuse parts from previous derivations to derive new phenomena.

Instead of starting each time from scratch, we learn from previous derivations and partially

reuse them for new problems. This is exactly what the maximalist framework entails: a

theory is viewed as a prior corpus of derivations (our body of physical knowledge, if you

wish) by which new phenomena are predicted and explained. In a similar way we can

derive the distance of a geostationary satellite, i.e. by solving the subtree in figure 3 for r.

However, it is not typically the case that derivations involve only one subtree. For

example, in deriving the velocity of a satellite at a certain distance from a planet, we cannot

directly use the large subtree in figure 3, but need to extract two smaller subtrees from
figure 2 that are first combined by term substitution (represented by the operation "°"5) and

then solved for v in figure 5:

5 The substitution operation or combination operation "° " is a partial function on pairs of labeled trees;

its range is the set of labeled trees. The combination of tree t and tree u, written as t °  u, is defined iff

the equation at the root node of u can be substituted in the equation at the root node of t (i.e. iff the

lefthandside of the equation at the root node of u literally appears in the equation at the root node of t).

If t °  u is defined, it yields a tree that expands the root nodes of copies of t and u to a new root node

where the righthandside of the equation at the root node of u is substituted in the equation at the root

node of t. Note that the substitution operation can be iteratively applied to a sequence of trees.
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F = ma a = v2/r

F = mv2/r  

F = GMm/r2 F = ma a = v2/r

F = mv2/r  F = GMm/r2

o =

mv2/r = GMm/r2

=

F = ma a = v2/r

F = mv2/r  F = GMm/r2

mv2/r = GMm/r2

v = √(GM/r)

=

Figure 5. Constructing a derivation tree for a satellite's velocity by combining two subtrees

from figure 2

Figure 5 shows that we can create new derivations by combining different parts from a

previous derivation, i.e. from an exemplar. The result can be used as an exemplar itself.

We have thus instantiated a first, extremely simple "maximalist model of explanation".

This maximalist model uses a corpus of only one explanation i.e. the derivation tree in

figure 2 (which instantiates the first parameter of our maximalist framework), and it uses a

mechanism that combines subtrees into new derivation trees by means of term substitution

(which is the second parameter of our maximalist framework). Note that substrees can be

of any size: from single equations to any combination of laws up to entire derivation trees.

This reflects the continuum between laws and derivations in the maximalist framework.

Despite the extreme simplicity of our maximalist model, we have seen that it can provide

explanations for a range of other (idealized)  phenomena.

In the next section I will extend this maximalist model to real systems and

phenomena, showing that maximalism is not only possible but also necessary. As an

intermediate step, I could have dealt with idealized phenomena that are not exactly solvable.

A typical example is the three-body problem in Newtonian dynamics. Even if we make the

problem unrealistically simple (e.g. by assuming that the bodies are perfect spheres that lie

in the same plane), the motion of three bodies due to their gravitational interaction can only

be approximated by techniques such as perturbation calculus. However, in perturbation

calculus every derivation step still follows numerically from higher-level laws. The actual
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challenge lies in real-world phenomena and systems for which there are derivation steps that

are not dictated by any higher-level law.

3. A maximalist model for real systems and phenomena

Derivations of real systems are strikingly absent in most physics textbooks. But they are

abundant in engineering practice and engineering textbooks. As an example I will discuss

how a general engineering textbook treats a real system from fluid mechanics: the velocity

of a jet through a small orifice, known as Torricelli's theorem, and to which I will also refer

as an orifice system. I have chosen this system because it is very simple and yet it has no

rigorous solution from higher-level laws but involves ad hoc coefficients. I will show how a

"derivation" of the orifice system allows us to develop a new maximalist model that can

derive a range of other real-world systems, such as weirs and water breaks. I urge that

exemplars are not only used but also needed in engineering practice.

The orifice system is usually derived from Bernoulli's equation, which is in turn

derived from the Principle of Conservation of Energy.6 According to the Principle of

Conservation of Energy the total energy of a system of particles remains constant. The total

energy is the sum of kinetic energy (Ek), internal potential energy (Ep,int) and external

potential energy (Ep,ext):

ΣE  =  Ek + Ep,int + Ep,ext  =  constant

Applied to an incompressible fluid, the principle comes down to saying that the total energy

per unit volume of a fluid in motion remains constant, which is expressed by Bernoulli's

equation:

ρgz + ρv2/2 + p  =  constant

The term ρgz is the external potential energy per unit volume due to gravity, where ρ is the

fluid's density and z the height of the unit (note the "resemblance" with mgh in classical

mechanics). The term ρv2/2 is the kinetic energy per unit volume (which "resembles" mv2/2

in classical mechanics). And p is the potential energy per unit volume associated with

pressure. Bernoulli's equation is also written as

ρgz1 + ρv12/2 + p1  =  ρgz2 + ρv22/2 + p2

which says that the total energy of a fluid in motion is the same at any two unit volumes

along its path.

6 Bernoulli's equation is often treated as a special case of the Navier-Stokes equations in the more

specialized textbooks.
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Here is how the engineering textbook Advanced Design and Technology derives

Torricelli's theorem from Bernoulli's equation (Norman et al. 1990: 497):

We can use Bernoulli's equation to estimate the velocity of a jet emerging from a small

circular hole or orifice in a tank, Fig. 12.12a. Suppose the subscripts 1 and 2 refer to a point in

the surface of the liquid in the tank, and a section of the jet just outside the orifice. If the

orifice is small we can assume that the velocity of the jet is v at all points in this section.

h

v

1

2

vena contracta

(a)

(b)

Figure 12.12

The pressure is atmospheric at points 1 and 2 and therefore p1 = p2. In addition the velocity v1

is negligible, provided the liquid in the tank has a large surface area. Let the difference in level

between 1 and 2 be h as shown, so that z1 − z2 = h. With these values, Bernoulli's equation

becomes:

h = v2/2g   from which   v = √(2gh)

This result is known as Torricelli's theorem.7 If the area of the orifice is A the theoretical

discharge is:

Q(theoretical) = vA = A√(2gh)

The actual discharge will be less than this. In practice the liquid in the tank converges on the

orifice as shown in Fig. 12.12b. The flow does not become parallel until it is a short distance

away from the orifice. The section at which this occurs has the Latin name vena contracta

7 Note that Torricelli's result is equal to the speed that an object would attain in free fall from a height

h.
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(vena = vein) and the diameter of the jet there is less than that of the orifice. The actual

discharge can be written:

Q(actual) = CdA√(2gh)

where Cd is the coefficient of discharge. Its value depends on the profile of the orifice. For a

sharp-edged orifice, as shown in Fig. 12.12b, it is about 0.62.

Figure 6. Derivation of Torricelli's theorem in Norman et al. (1990)

Thus the theoretically derived discharge of the system differs substantially from the actual

discharge and is corrected by a coefficient of discharge, Cd. This is mainly due to an

additional phenomenon that occurs in any orifice system: the vena contracta. Although this

phenomenon is known for centuries, no rigorous derivation exists for it and it is taken care

of by a correction factor. Note that the correction factor is not an adjustment of a few

percent, but of almost 40%. The value of the factor varies however with the profile of the

orifice and can range from 0.5 (the so-called Borda mouthpiece) to 0.97 (a rounded orifice).

Introductory engineering textbooks tell us that coefficients of discharge are

experimentally derived corrections that need to be established for each orifice separately (see

Norman et al. 1990; Douglas and Matthews 1996). While this is true for real-world three-

dimensional orifices, it must be stressed that there are analytical solutions for idealized two-

dimensional orifice models by using free-streamline theory (see Batchelor 1967: 497). Sadri

and Floryan (2002) have recently shown that the vena contracta can also be simulated by a

numerical solution of the general Navier-Stokes equations which is, however, again based

on a two-dimensional model. For three-dimensional orifice models there are no analytical or

numerical solutions (Munson 2002; Graebel 2002). The coefficients of discharge are then

derived by physical modeling, i.e. by experiment. This explains perhaps why physics

textbooks usually neglect the vena contracta. And some physics textbooks don't deal with

Torricelli's theorem at all. To the best of my knowledge, all engineering textbooks that cover

Torricelli's theorem also deal with the coefficient of discharge. (One may claim that the vena

contracta can still be qualitatively explained: since the liquid converges on the orifice, the

area of the issuing jet is less than the area of the orifice. But there exists no quantitative

explanation of Cd for a three-dimensional jet.)

Although no analytical or numerical derivations exist for real-world orifice systems,

engineering textbooks still link such systems via experimentally derived corrections to the

theoretical law of Bernoulli, as if there were some deductive scheme. Why do they do that?

One reason for enforcing such a link is that theory does explain some important features of

orifice systems: the derivation in figure 6, albeit not fully rigorous, explains why the

discharge of the system is proportional to the square-root of the height h of the tank, and it
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also generalizes over different heights h and orifice areas A. Another reason for enforcing a

link to higher-level laws is that the resulting derivation can be used as an exemplar for

solving new problems and systems. To formally show this, I will first turn the derivation in

figure 6 into its corresponding derivation tree. But how can we create such a derivation tree

if the coefficient of discharge is not derived from any higher-level equation? The orifice

system indicates that there can be phenomenological models that are not derived from the

theoretical model of the system. Yet, when we write the coefficient of discharge as the

empirical generalization Q(actual) = CdQ(theoretical), which is in fact implicit in the

derivation in figure 6, we can again create a derivation tree and "save" the phenomenon.

This is shown in figure 7 (where we added at the top the principle of conservation of

energy, from which Bernoulli's equation is derived in Norman et al. 1990).

ΣE = constant

ρgz1 + ρv12/2 + p1  =  ρgz2 + ρv22/2 + p2

p1 = p2
v1 = 0
z1 − z2 = h

v = √(2gh) Q(theoretical) = vA  

Q(theoretical) = A√(2gh) Q(actual) = CdQ(theoretical)

Q(actual) = CdA√(2gh)

Figure 7. Derivation tree for the derivation in figure 6

The tree in figure 7 closely follows the derivation given in figure 6, where the initial

conditions for p1, p2, v1, z1 and z2 are represented by a separate label in the tree. The

coefficient of discharge in figure 7 is introduced in the tree by the equation Q(actual) =

CdQ(theoretical). Although this equation does not follow from any higher-level law or

principle, we can use it as if it were a law. Of course it is not a law in the general or

universal sense; it is a correction, a rule of thumb, but it can be reused for a range of other

hydraulic systems.

Different from physics textbooks, engineering textbooks freely combine theoretical

with empirical knowledge: some steps in the derivation are part of the theoretical model of

the system, and other steps are part of the phenomenological model. The derivation tree in

figure 7 effectively combines two such models where the coefficient of discharge glues

them together within the same tree representation.
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Does the derivation tree in figure 7 represent a deductive-nomological (D-N)

explanation? Different from the derivation trees in section 2, the final result Q(actual) =

CdA√(2gh) in figure 7 is not logically deduced from general laws and antecedent conditions

only. Additional knowledge in the form of an ad hoc correction is needed to enforce a link.

While this correction can be expressed in terms of a mathematical equation, and can

therefore be fit into a derivation tree, it clearly goes beyond the notions of fundamental law

or antecedent condition that are said to be essential to a D-N explanation (see Hempel 1965:

337). It is also difficult to frame the derivation tree in figure 7 into the semantic notion of

theoretical model, since the formula Q(actual) = CdA√(2gh) is not true in the theoretical

model of the system, except if Cd were equal to 1, which never occurs. As mentioned

above, the derivation tree in figure 7 reflects two models: a model of the theory and a model

of the phenomenon that are connected by the factor Cd.

What does this all mean for maximalism? By using the derivation tree in figure 7 as

our corpus and by using the same substitution mechanism for combining subtrees as in

section 2 (together with a mathematical procedure that can solve a formula for a certain

variable), we obtain a maximalist model that can explain a range of new real-world systems.

For example, the following three subtrees in figure 8 can be extracted from the derivation

tree in figure 7 and can be reused in deriving the rate of flow of a rectangular weir (or dam)

of width B and height h (see e.g. Norman et al. 1990: 498):

ΣE = constant

ρgz1 + ρv12/2 + p1  =  ρgz2 + ρv22/2 + p2

p1 = p2
v1 = 0
z1 − z2 = h

v = √(2gh)

Q(theoretical) = vA  Q(actual) = CdQ(theoretical)

Figure 8. Three subtrees from figure 7 that can be reused to derive a weir

By adding the equation dA = Bdh, which follows from the definition of a rectangular weir,

and the mathematical equivalence vA = ∫vdA, we can create the derivation tree in figure 9 for

the discharge of a weir.



17

ΣE = constant

ρgz1 + ρv12/2 + p1  =  ρgz2 + ρv22/2 + p2

p1 = p2
v1 = 0
z1 − z2 = h

v = √(2gh)

Q(theoretical) = vA  

Q(actual) = CdQ(theoretical)

Q(theoretical) = ∫vdA dA = Bdh

Q(theoretical) =  ∫vBdh

Q(theoretical) =  B√(2g) ∫√hdh

Q(theoretical) =  (2/3)B√(2g) h3/2

Q(actual) =  (2/3) Cd B√(2g) h3/2

Figure 9. Derivation tree for a weir constructed by combining the subtrees from figure 8

The derivation tree in figure 9 closely follows the derivations given in Norman et al. (1990:

498) and Douglas and Matthews (1996: 117), where a weir system is constructed out of an

orifice system. This corresponds to engineering practice where new systems are almost

literally built upon or constructed out of previous systems. Note the analogy with figure 5 in

section 2, where we also constructed a new derivation tree by combining subtrees from a

previous derivation tree (i.e. a satellite's velocity from a derivation of the Earth's mass). But

there is one very important difference: while the phenomenon represented in figure 5 can

just as well be derived from laws rather than from previous subtrees, this is not the case for

the phenomenon represented in figure 9. For deriving the weir system, we need to make

recourse to knowledge from a previously explained phenomenon, otherwise we do not have

access to the rule Q(actual) = CdQ(theoretical) -- except if we invent this empirical rule

every time from scratch. But since scientists do not rediscover the same empirical rule(s)

for each system anew, this knowledge is taken from exemplars, i.e. from successful

explanations of previous systems.

This brings me to the following claim: real-world phenomena are not explained by

laws but by parts of explanations of previous real-world phenomena. This claim is

consonant with the case-based or analogy-based view on explanation: you explain one or

more cases from scratch and use them for explaining other, similar cases (cf. Sterrett 2002;

Ankeny 2003). The rationale of reusing the derivation step Q(actual) = CdQ(theoretical) is:

since it works well in one system it is likely to work well in another, similar system.

My general claim implies of course a regress problem: there must be some real-world

phenomena that are not explained by other real-world phenomena. Our initial corpus of

explanations cannot be empty: we need some explanations to start with and these must have



18

been created from scratch. But once you have found some explanations, you can reuse

(parts of) them to explain new phenomena rather than doing the same job from scratch

again.

The final formula in figure 9 is widely used in hydraulic engineering, where the

coefficient Cd is usually established experimentally. It may be noteworthy that the

coefficient Cd is not just a "fudge" factor. For example, for the class of rectangular weirs

there exists an empirical generalization that can compute Cd from two other quantities. This

generalization was first formulated by Henry Bazin, the assistant of the celebrated

hydaulician Henry Darcy (Darcy and Bazin 1865), and is commonly referred to as Bazin

formula (also called "Bazin weir formula", to distinguish it from "Bazin open channel

formula" -- see Douglas and Matthews 1996: 119):

Cd  =  (0.607 + 0.00451/H) ⋅ (1 + 0.55(H/(P + H)2))

In this formula H = head over sill in metres, and P = height of sill above floor in metres of

the weir. Bazin formula is an empirical regularity derived from a number of concrete weir

systems, and as such it can be used in derivation trees for new weir systems. Although the

regularity is known for more than 150 years, there exists no derivation from higher-level

laws. Yet this does not prevent us from using and reusing the regularity in designing real

world systems that have to work accurately and reliably. Hydraulics is replete with formulas

like Bazin's, each describing particular regularities within a certain flow system. There are,

for example, Francis formula, Rehbock formula, Kutter formula, Manning formula, Chezy

formula, Darcy formula, Colebrook-White formula, Keulegan formula, to name a few (see

Chanson 2002 for an overview). Many of these formulas are known for more than a

century but none of them has been deduced from higher-level laws. They are entirely based

on previous systems (exemplars), and form the lubricant that makes our new systems

work.

While the examples in this section are limited to fluid mechanics and hydraulics, the

situation in other areas is basically the same: explanations of real systems and phenomena

are not deductive but depend heavily on other knowledge such as corrections,

approximations, normalizations and the like. We have seen that as long as this knowledge

can be expressed in terms of mathematical equations, it can be fit into a derivation tree that

links such systems to higher-level generalizations. Next, it can be productively reused for

linking new systems. Finding initial links between laws and phenomena can be very hard,

but once you have found some links, you can reuse them to predict and explain new

phenomena by our maximalist model.
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4. Conclusion

I have given a maximalist framework of explanation that uses a corpus of explanations of

prior phenomena together with a mechanism that combines sub-explanations of prior

phenomena into explanations of newly presented phenomena. Rather than a set of laws or a

class of models, maximalism views a theory as a corpus of explanations (ideally subdivided

into partially overlapping subcorpora, reflecting the various subfields). I have given a first

instantiation of the maximalist framework that employs derivation trees as explanations and

a term substitution mechanism for combining subtrees from these derivation trees into new

trees. I have argued that this maximalist model can capture both the syntactic, covering-law

view and the semantic, model-based view, and that it even goes beyond these two by

combining theoretical and phenomenological knowledge. I urged that maximalism is

indispensable for explaining real-world phenomena and systems.

I do not want to claim that my first instantiation of the maximalist framework is

definitive or representative for scientific explanation in general (though I do conjecture that

scientists reason with fragments of previous explanations). It is important therefore to

explore other instantiations of the maximalist framework, e.g. by using different notions of

explanation such as the statistical-relevance (S-R) account of Salmon (1971) and by using

more powerful combination operations. Among the various future projects, I want to extend

the current maximalist model to include diagrammatic reasoning (cf. Glasgow et al. 1995).

And I want to extend the second parameter with a probability function that computes the

most probable explanation of a phenomenon. Since explanation is inherently redundant (in

that the same phenomenon may have more than one derivation -- see Cartwright 1983: 78-

82), our mechanism should compute an "optimal" match between a newly presented

phenomenon and as many previously derived phenomena. Such an optimal match can be

captured by a Bayesian approach that maximizes the conditional probability of an

explanation given a phenomenon.

What happens if a phenomenon cannot be explained by any combination of sub-

explanations -- even if we had a corpus of all previously explained phenomena? This

situation clearly goes beyond the scope of maximalism. It is an enormous challenge for a

scientist to find an explanation for a novel phenomenon that does not seem to correspond to

any known theory or previous explanation. Such an anomaly may touch upon a Kuhnian

crisis and, possibly, a revolution. I have not yet attempted to develop a formal model of

revolutionary science, but I hope that an implementation of my maximalist model may aid

scientists in dealing with a range of new problems. That is, by considering any combination

of subtrees from any previous phenomenon (rather than only "familiar" combinations from

"familiar" phenomena), a maximalist model may come up with unconventional

explanations and predictions, possibly suggesting new directions.

To deal with the question as to what really new problems can be solved by a

maximalist model, we will first need to construct a representative corpus of physical
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phenomena. In the field of machine learning and natural language processing, large,

representative corpora of linguistic phenomena have already been developed for some time

(see Manning and Schütze 1999). Maximalist models that use these corpora, such as the

Data-Oriented Parsing (DOP) model, have become exceedingly successful in natural

language processing, and they significantly outperform formal grammars in predicting

phrase-structure trees for new utterances (see Bod 1998, 2002; Collins and Duffy 2002;

Bod et al. 2003a/b). Although it would be beyond the scope of this paper to go into the

details of the DOP model, it is noteworthy that the maximalist model of explanation

presented in this paper has much in common with the DOP model for language: both

construct new trees by combining subtrees from previous trees. It will be part of future

research to explore if a general model of cognition can be distilled from them.
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