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Abstract F-systems are useful digraphs to model sentences that predicate
the falsity of other sentences. Paradoxes like the Liar and the one of Yablo
can be analyzed with that tool to find graph-theoretic patterns. In this pa-
per we studied this general model consisting of a set of sentences and the
binary relation ‘. . . affirms the falsity of. . .’ among them. The possible exis-
tence of non-referential sentences was also considered. To model the sets of
all the sentences that can jointly be valued as true we introduced the notion
of conglomerate, the existence of which guarantees the absence of paradox.
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F-systems. We showed the relation between local conglomerates and admissi-
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argumentation theory.
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1 Introduction

Some semantic paradoxes, like the Liar and the one of Yablo, involve sentences
that assert the falsity of other sentences. Liar-like sentences, such as ‘This
sentence is false,’ are clearly self-referential and, hence, circular. On the other
hand, S. Yablo [19] introduced a problem, consisting of an infinite series of
sentences, each asserting the falsity of all the following ones, to show that
a paradox can be obtained without self-reference or circularity.1 However, is
there any common source of paradox behind the Liar and Yablo’s paradoxes?
What conditions suffice to produce them? A good first step to try to answer
these questions is to find a common framework to represent them. At first
glance, all we have are sentences that assert the falsity of other sentences
(perhaps themselves); hence the approach can begin by considering just a
set of sentences and a relation according to which some assert the falsity of
others. Following this motivation, Cook [5] introduced the novelty of using
graph-theoretic tools for dealing with semantic paradoxes involving a falsity
predicate. Rabern, Rabern, and Macauley [15] coined the term ‘F-systems’
to refer to “sentence systems which are restricted in such a way that all the
sentences can only say that other sentences in the system are false”. The aim of
the present article is to show some interesting results about F-systems, mainly
in relation to structural characteristics that give rise to the aforementioned
semantic paradoxes and to sentences that present an intrinsic truth value
in such frameworks. Moreover, we will show connections between Dung’s [8]
notion of controversial argumentation frameworks (a special case of F-system)
and some sufficient conditions for paradox.

The works by Cook and Rabern et al. concentrate on systems where every
sentence affirms the falsity of some other sentence(s). That is represented
by serial or sink-free digraphs (roughly, every node “shoots,” at least, one
arrow). On the other hand, Beringer and Schindler [2] and Walicki [18] also
considered sentences that do not refer to other sentences in their reference
graphs. This last approach is more general and, particularly, enables us to
take into account the interaction among object language sentences (like ‘Snow
is white’) and metalanguage sentences (like ‘The sentence ‘Snow is white’ is
false’).2 The analysis can be done on a general level where the specificities of
the underlying languages are (or the hierarchy of languages is) irrelevant to
find the graph-theoretic patterns that characterize paradox. The aim is to get
the simplest model that allows that. All we need is a set S of nodes, which
represent primitive entities we call sentences (indeed, they can be understood
as names of sentences of a given language) and a binary relation F ⊆ S × S,
i.e. a set of directed edges or arrows such that, for any pair of sentences x

1 A well-known dissenting opinion on the non-circularity of Yablo’s paradox is that of
Graham Priest [14].

2 Though we include sinks in F-systems, the systems of Beringer and Schindler [2] and
Walicki [18] are still more general to the extent that referential sentences may attribute
truth to other sentences as well. This is also the case with Rabern and colleagues’s [15] main
proposal beyond F-systems.
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and y of S, (x, y) ∈ F is understood as ‘x says that y is false.’ In this way, for
example, we can model the relationship between the (English) sentences ‘Snow
is white’ and ‘The sentence ‘Snow is white’ is false,’ through an F-system F =
⟨S, F ⟩, where S = {a, b} and F = {(b, a)}, and where a and b represent ‘Snow
is white’ and ‘The sentence ‘Snow is white’ is false,’ respectively.

Semantic paradoxes are sets of sentences that cannot all be assigned a
classical truth value (true/false) at the same time. We will represent the as-
signment of truth values through labellings3 on the nodes of the F-systems,
in such a way that every node can be labeled with T (for True), F (for False)
or U (for Undetermined). Paradoxical F-systems will be such that every la-
belling can only put the label U on some nodes. “Classical” labellings, i.e.
those that can put T or F on every sentence, will be put in correspondence
with graph-theoretic patterns that we will call conglomerates. The notion of
conglomerate extends that of kernel used by Cook, which represents a sub-
set of sentences that can be true together. Kernels are suitable for capturing
classic assignments of truth values in systems where each sentence refers to
other sentences. But if we use this notion in systems that include sinks, ker-
nels will only allow them to be represented as true. Conglomerates, although
they will lead to similar formal results regarding paradoxes, will allow a more
intuitive representation since object language sentences can be assigned any
truth-value.

Another aim of this work is to define a Kripke’s style fixed point operator to
characterize groundedness in F-systems [12]. Grounded sentences are, roughly,
those which truth-value can be tracked through the reference path until a
sentence with a definite truth-value (the “ground”). We will define complete
and consistent fixed points (meaning that every sentence is deemed either
true or false and no sentence is deemed true and false) and show that they
correspond exactly to conglomerates.

In F-systems that are free of paradoxes, conglomerates are also useful to
characterize referential contradictions and referential tautologies, i.e. sentences
that can only have one of the two classical truth values, due to the interac-
tions with other sentences in the model. These can be related to the intensional
concepts of semi-falsity and semi-truth, respectively [17,7]. This is another ad-
vantage of conglomerates with respect to kernels, which are unable to do that.
Furthermore, we will see that referential contradictions and tautologies can be
captured in every F-system (not only in non-paradoxical ones) through local
conglomerates: subsets of sentences that affirm the falsity of all the sentences
that affirm the falsity of them.

We find that local conglomerates cover and extend that of admissibility
in Dung’s argumentation frameworks. As shown by Dyrkolbotn [9], argumen-
tation frameworks are special cases of F-systems where arguments play the
role of sentences and F is interpreted as an attack relation. Admissibility for-
malizes the idea of sets of arguments that can be defended each other. Local
conglomerates cover that idea and give it a twist: they deem “admissible” also

3 We borrowed the term ‘labelling’ from [4]. In [2], the term ‘decoration’ is used instead.
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the sets of arguments that can be defended together against any argument,
except those that promote some non-preferred value, which suggests a new
semantics for value-based argumentation frameworks [1].

Finally, we show that Dung’s contribution on controversiality issues in ar-
gumentation frameworks covers, at least, two sufficient conditions for paradox
in F-systems. One, reported in [5], is transitivity in serial (i.e., sink-free) di-
graphs, whereas here we identified the other one regarding odd-length cycles
in particular conditions.

The paper is organized as follows. In Section 2, we define F-systems, la-
bellings, and the notion of conglomerate. In Section 3, we give a fixed-point
characterization of groundedness. Section 4, shows the correspondence among
conglomerates and complete and consistent fixed points. In Section 5 we de-
fine referential contradictions and tautologies, and show that the transitivity
of F in non-paradoxical systems is a sufficient condition for their existence.
In Section 6, we define local conglomerates and show their correspondence
with maximally consistent fixed points and with labellings that maximize the
assignation of classical truth values. In Section 7 we show relationships among
local conglomerates and Dung’s admissible sets. Moreover, Dung’s theory of
controversial arguments is shown to cover two sources of paradox in F-systems
regarding transitivity and odd-length cycles. We comment on those points in
Section 8. Final comments and conclusions are summarized in Section 9.

2 F-systems

The following definition is (beyond notation differences) due to Rabern et al.
[15]:

Definition 1 An F-system is a pair F = ⟨S, F ⟩, where S is a set whose
elements are primitive entities called sentences, and F ⊆ S × S is a binary
relation among sentences.

For every x ∈ S, we define
−→
F (x) = {y ∈ S : (x, y) ∈ F} and

←−
F (x) = {y ∈

S : (y, x) ∈ F}, and for every subset A ⊆ S,
−→
F (A) =

⋃
x∈A

−→
F (x) and

←−
F (A)

=
⋃

x∈A

←−
F (x). If

−→
F (x) = ∅, x is said to be a sink, and we define sinks(A) =

{x ∈ A : x is a sink}4. In order to avoid misrepresentations, we assume that
non-sink sentences do not assert anything more than what is represented in F
(and, naturally, sink sentences do not assert anything about other sentences).
To illustrate the kind of issues to be avoided, consider the following example.
Let F = ({x, y}, {(y, x)}). Then, we want to interpret that x is true if y is
false and x is false if y is true. Moreover, we want to interpret that if x has an
undetermined truth value, then the value of y is undetermined, too. However,
if we accept the interpretation that x = ‘Snow is red’ and y = ‘x is false and
the snow is blue,’ then the above considerations about the truth and falsity
of x and y would not be valid, since x and y could both be false. Though it

4 This notation is taken from [18].
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is true that y affirms the falsity of x, the component ‘the snow is blue’ of y,
which is “hidden” in the representation, can yield anomalous interpretations.
The general level of the model does not allow to represent such molecular sen-
tences, since there are no elements to express logical connectives. Hence, we
leave that kind of interpretations out of the scope of the model. On the other
hand, the only molecular sentences that can be represented in the model, pre-
serving the intuitions about the assignment of truth values, are conjunctions
of falsity assertions about other sentences like, for instance, ‘x says that both
y and z are false,’ which can be modeled as {(x, y), (x, z)} ⊆ F .5

Since F-systems define digraphs, we can see the assignment of truth values
to the sentences as labels on the nodes of a digraph. We consider three labels,
T, F and U, for true, false and undetermined, respectively. The non-classical
value undetermined is intended to express either that the actual value is
unknown (as in the case of conjectures) or just the impossibility of assigning
a classical truth value (as in the case of paradoxes).

Definition 2 Given F = ⟨S, F ⟩, a labelling on F is a total function L such
that:

1. L : S → {T, F, U}, and
2. for all x ∈ S \ sinks(S)

(a) L(x) = F iff L(z) = T for some z ∈ −→F (x), and

(b) L(x) = T iff L(z) = F for every z ∈ −→F (x).6

Note that the assignment of values to sink nodes is unrestricted. Moreover, for
every F-system there always exists a labelling that assigns U to all nodes. If
a labelling is such that all the nodes are labeled as either T or F, we say that
the labelling is classical.

Definition 3 A labelling L on F is classical iff for every x ∈ S, L(x) ̸= U.7

Paradoxes in F-systems can be characterized as follows:

Definition 4 An F-system is paradoxical iff it has no classical labellings.
Moreover, a sentence x is paradoxical iff L(x) = U for every labelling L.

5 We can certainly think of other kinds of sentences that could be expressed. For example,
if we have F = {(x, y), (y, z)}, then we can realize that the model is expressing that x affirms
that z is true. However, note that this interpretation does not depend strictly on the model,
but on the intended semantics (like the one we will see next). Indeed, we can think of some
infectious semantics [13,16] under which z is undetermined, y is false, and x is true, meaning
that x is true because it affirms that z is either true or undetermined.

6 The conditions for the assignment of T and F to non-sink nodes are comparable to
those of Cook’s [5] acceptable assignments. We add the label U following the general lines of
Caminada’s [4] labelling semantics, which has the spirit of the strong Kleene three-valued
logic. On request of a reviewer, we should say that the weak Kleene logic –i.e., that in which
all the connectives receive the undetermined value if any component is undetermined– is
not useful here to the aim of characterizing paradoxes according to the intuitions expressed
in the following definitions.

7 Classical labellings play the role here of acceptable colorings on serial digraphs, as defined
by Cook [6]. T and F correspond to colors turquoise and fuchsia, respectively.
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Example 1 Let F = ⟨{ak}k∈N , {(ak, am)}
k<m
⟩ (representing Yablo’s paradox).

Then, F does not have any classical labelling.

Classical labellings determine partitions of the set of sentences in which
there are two subsets, representing the true and the false sentences, respec-
tively. If the system is paradoxical, then we cannot have any such partition.
Another way of characterizing the subsets of true and false sentences is by
defining suitable properties. We introduce here the notion of conglomerate.

Definition 5 Given F = ⟨S, F ⟩, a conglomerate is a subset A ⊆ S that sat-
isfies:

1.
←−
F (A) ⊆ S \A, and

2. (S \A) \ sinks(S) ⊆ ←−F (A)

The idea is that a conglomerate coalesces all the sentences that can share
the true value, leaving outside all and only the sentences that can share the
false value. Therefore, conglomerates can only exist in systems whose sentences
can be “polarized” into true and false. Conglomerates can also be understood
in a Kripkean way as defining the extension of the truth predicate of the
underlying language, while the set of all the remaining sentences define the
anti-extension (we will return to this point in Section 3). If a conglomerate
exists, then we can say that the truth predicate is completely defined in the
system. Since a conglomerate A is supposed to comprise all true sentences,
condition 1 says that it cannot contain two sentences such that one asserts the
falsity of the other (i.e., A is independent). And S \A is supposed to comprise
all false sentences, so condition 2 says that every non-sink sentence must assert
the falsity of, at least, one true sentence (i.e., A absorbs every external non-
sink node). This is different from kernels, which absorb every outer node.8 This
implies that kernels comprise all the sinks, so these can only be interpreted
as true sentences in such a model. In this sense, conglomerates seem to be
more suitable than kernels to represent the Kripkean view: sinks may or may
not belong to the conglomerates, representing object language sentences that
may or may not be true. Furthermore, the notion of conglomerate clearly also
encompasses that of kernel.

Example 2 Let F = ⟨{a, b}, {(b, a)}⟩. Assume that F represents the relation
between a: ‘I am wearing a hat’ and b: ‘The sentence ‘I am wearing a hat’ is
false’. F has only one kernel, {a}, but it has two conglomerates, {a}, deeming
‘I am wearing a hat’ as true and ‘The sentence ‘I am wearing a hat’ is false’ as
false, and {b}, deeming ‘I am wearing a hat’ as false and ‘The sentence ‘I am
wearing a hat’ is false’ as true. Every kernel is a conglomerate, but not vice
versa.

8 Kernels differ from conglomerates only in the absorption property, which says that
(S \A) ⊆ ←−F (A). Therefore, we have essentially the notion of kernel used in Cook’s sink-free
system, modulo the fact that sinks can be placed on the outside. We are informally saying
here that A absorbs x with the meaning that (x, y) ∈ F for some y ∈ A.
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The notion of conglomerate is not well-defined, in the sense that some F-
systems have no conglomerates. As expected, those systems are the paradoxical
ones.

Example 3 Let F = ⟨{a}, {(a, a)}⟩ (the Liar paradox). Then, F does not have
any conglomerate.

The correspondence between conglomerates and classical labellings is easy to
prove:

Theorem 1 L is a classical labelling iff A = {x : L(x) = T} is a conglomerate.

Proof Let F = ⟨S, F ⟩.
(If) Let A be a conglomerate of F . Let L be such that ∀x(x ∈ A→ L(x) = T)
and ∀x(x ∈ S \ A→ L(x) = F). Then, L trivially satisfies the conditions of a
classical labelling.
(Only if) Let L be a classical labelling of F , and let A = {x : L(x) = T} and
B = {x : L(x) = F}. (i) By definition, if L(x) = T, then for all z such that

z ∈ −→F (x), L(z) = F. Hence, by construction, x ∈ A and z ∈ B. Then, for

all x, z ∈ A, z /∈ −→F (x). (ii) By definition, for all x ∈ S, if L(x) = F and x is

not a sink, then there exists some z ∈ −→F (x) such that L(z) = T. Hence, by
hypothesis, x ∈ B and z ∈ A. Therefore, given (i) and (ii), we have that A is
a conglomerate.

Corollary 1 F is paradoxical iff it does not have any conglomerate.

3 Groundedness

The truth value of sentences asserting the falsity of other sentences depends
on the truth value of the referred sentences. If the truth value of a sentence
does not depend on that of other sentences, “so that the truth value of the
original statement can be ascertained, we call the original sentence grounded,
otherwise ungrounded” (Kripke, 1975: 694). In our framework, sentences at
sink nodes (for instance, object language sentences) do not depend on other
sentences in that sense, so their truth values are determined by material (con-
tingencies) or formal (tautologies or contradictions) facts that are exogenous
to the model. Taking as grounded all the sinks that are either true or false,
the groundedness of all the remaining sentences of an F-system will be deter-
mined in an iterated process very similar to Kripke. In the base case, all the
sinks established as true belong to a set S+

0 , and all those established as false
belong to a set S−

0 . That is, the partial set (S+
0 , S−

0 ) models the interpretation
of the sink sentences. The systems considered by Cook and Rabern et al. are
sink-free, hence, no sentence is grounded in the above sense in those systems.
Beringer and Schindler, on the other hand, considered the existence of sinks
(representing true arithmetical sentences), and, as in F-systems, grounding
can be traced by following dependency to sinks.
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Definition 6 Given F = ⟨S, F ⟩, a pair (S+
0 , S−

0 ) is a ground base iff S+
0 ∪S

−
0 =

sinks(S) and S+
0 ∩ S−

0 = ∅.

Then, we can find the other grounded sentences by iterated applications of
the following operator:

Definition 7 Given two subsets S+, S− ⊆ S, we define ϕ((S+, S−)) = (S′+, S′−),
where

S′+ = sinks(S+) ∪ {x : ∅ ≠ −→F (x) ⊆ S−}, and
S′− = sinks(S−) ∪ {x : ∅ ≠ −→F (x) ∩ S+}.

That is, S′+ includes the sinks that are already known as true plus all the
sentences that only affirm the falsity of sentences already known as false; and
S′− includes the sinks that are already known as false plus all the sentences
that affirm the falsity of some sentence already known as true. Hence, starting
from any ground base (S+

0 , S−
0 ), iterated applications of ϕ will lead to a fixed

point. A fixed point is any pair (S+, S−) = ϕ((S+, S−)). The fixed point
(S+, S−) = ϕ∞((S+

0 , S−
0 )) reached by the above mentioned iteration procedure

is the least one relative to the ground base (S+
0 , S−

0 ), in the sense that any other
fixed point (S′+, S′−), where S+

0 ⊆ S′+ and S−
0 ⊆ S′−, is such that S+ ⊆ S′+

and S− ⊆ S′−. The operator ϕ is monotone. Let (S+, S−) ≤ (S′+, S′−) iff
S+ ⊆ S′+ and S− ⊆ S′−. Then:

Remark 1 (Monotonicity) If (S+, S−)≤ (S′+, S′−), then ϕ((S+, S−))≤ ϕ((S′+,
S′−)).

Proof Assume (S+, S−) ≤ (S′+, S′−). Let ϕ((S+, S−)) = (T+, T−) and
ϕ((S′+, S′−)) = (T ′+, T ′−). Assume now w ∈ T+ and z ∈ T−. We have to
prove that 1) w ∈ T ′+ and 2) z ∈ T ′−.
1) If w ∈ S+, the result is obvious. Assume now w ̸∈ S+. Then, w ∈ {x : x ̸∈ S0

and ∀y(y ∈ −→F (x) → y ∈ S−)}. Then, w ̸∈ S0 and ∀y(y ∈ −→F (w) → y ∈ T−).
Therefore, w ∈ T ′+.
2) If z ∈ S−, the result is obvious. Assume now z ̸∈ S−. Then, z ∈ {x : x ̸∈ S0

and ∃y(y ∈ −→F (x) ∧ y ∈ S+)}. Then, z ̸∈ S0 and ∃y(y ∈ −→F (z) ∧ y ∈ T+).
Therefore, z ∈ T ′−.

The existence of the least fixed point is guaranteed by the monotonicity of ϕ
and the fact that all the fixed points (relative to the same ground base) form
a complete lattice (by Tarski’s fixed points theorem. Cf. [10]).

Now, some ground bases may deem all the sentences grounded and others
may not. Consider the following example:

Example 4 Let F = ⟨{a, b, c}, {(b, a), (b, c), (c, b)}⟩. The only sink a determines
two possible ground bases: (1) ({a}, ∅), and (2) (∅, {a}). For (1), all a, b, and
c are grounded (true, false, and true, respectively), and for (2), only a is
grounded (false). By way of illustration, the least fixed point in each case is
reached as follows:
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(1) ϕ(({a}, ∅))=({a}, {b})
ϕ2(({a}, ∅))=({a, c}, {b})
...
ϕ∞(({a}, ∅))=({a, c}, {b})

(2) ϕ((∅, {a}))=(∅, {a})
...
ϕ∞((∅, {a}))=(∅, {a})

The following notion of groundedness takes into account those possibilities:

Definition 8 F = ⟨S, F ⟩ is (relatively) grounded iff for every x ∈ S and for
(some) every ground base (S+

0 , S−
0 ), x ∈ S+ ∪ S−, where (S+, S−) = ϕ∞((S+

0 ,
S−
0 )).

The system in Example 4 is relatively grounded, but not grounded. On
the other hand, F-systems representing paradoxes as the Liar or Yablo’s ones
are neither grounded nor relatively grounded, as expected. Other systems are
neither grounded nor relatively grounded, though they are not paradoxical.
For instance, F = ⟨{a, b}, {(a, b), (b, a)}⟩. Since there are no sinks, the only
ground base is (∅, ∅), and ϕ∞((∅, ∅)) = (∅, ∅) is the least fixed point. However,
other fixed points like ({a}, {b}) and ({b}, {a}) imply that a and b can be
consistently assigned a classical truth value. This makes the difference with
paradoxical systems, where no fixed point represents a consistent assignment
of truth values to all the sentences.

4 Conglomerates and Fixed Points

Conglomerates of an F-system can be characterized by means of the fixed
points of ϕ as follows:

Definition 9 We say that (S+, S−) is complete iff for every x ∈ S, x ∈ S+ ∪
S−, and consistent iff S+ ∩ S− = ∅.

Theorem 2 A is a conglomerate iff (A,S \ A) is a complete and consistent
fixed point of ϕ.

Proof (Only if) Let A be a conglomerate of F = ⟨S, F ⟩. Let (S+, S−) =
ϕ((A,S \A)). Then, we have:

(i) S− = sinks(S \A) ∪ {x : ∃y(y ∈ −→F (x) ∧ y ∈ A)}, and
(ii) S+ = sinks(A) ∪ {x : x ̸∈ sinks(S) and ∀y(y ∈ −→F (x)→ y ∈ S \A)}.
To show that (A,S \ A) is a fixed point of ϕ, we have to prove that S+ = A
and S− = S \ A. From (i), it follows that S− = S \ A, since A absorbs every
non-sink node and, obviously, every sink of S \ A belongs to S \ A. Let us
prove now that S+ = A. (1) S+ ⊆ A: By reductio, assume that there exists
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x ̸∈ A, such that x is not a sink and ∀y(y ∈ −→F (x) → y ∈ S \ A). But
then, x is not absorbed by A, which contradicts that A is a conglomerate.
(2) A ⊆ S+: Of course, sinks(A) ⊆ S+. Let now x ∈ A be a non-sink node.

From the definition of conglomerate,
←−
F (A) ⊆ S \A. Therefore, it is clear that

∀y(y ∈ −→F (x)→ y ∈ S \A). Finally, the fact that (A,S \A) is a complete and
consistent fixed point is obvious.
(If) Let (S+, S−) be a complete and consistent fixed point of F = ⟨S, F ⟩.
By way of the absurd, assume z ∈ −→F (x) and x, z ∈ S+. Then, ϕ((S+, S−))
= (S′+, S′−) is such that x ∈ S′+ and x ∈ S′−. But, this contradicts the

consistency property. Therefore, (i) for all x, z ∈ S+, z /∈ −→F (x). Now, since
(S+, S−) is complete and consistent, it follows that S− = S \S+. By this and
because (S+, S−) is a fixed point of ϕ, we have that S \ S+ = sinks(S−) ∪
{x : ∃y(y ∈ −→F (x)∧y ∈ S+)}, which in turn implies that (ii) (S\S+)\sinks(S)
= {x : ∃y(y ∈ −→F (x) ∧ y ∈ S+)} ⊆ ←−F (A). Therefore, from (i) and (ii) and by
definition, S+ is a conglomerate.

Example 5 (Continuation of Example 4) There are three conglomerates, {a, c},
{b}, and {c}, that can be put in correspondence with the fixed points ({a, c},
{b}), ({b}, {a, c}), and ({c}, {a, b}), respectively.

From Theorem 2, it follows immediately that if A is a conglomerate then
(A,S \ A) is a maximal fixed point (w.r.t. ≤). The converse is clearly not
true. For instance, ({a}, {a}) is a maximal fixed point in the Liar scenario
⟨{a}, {(a, a)}⟩, but {a} is not a conglomerate. The conditions of completeness
and consistency are key to relating maximal fixed points to conglomerates.

5 Sentences with Intrinsic Value: Referential Contradictions and
Tautologies

We have seen that some F-systems, by their own structural nature, have sen-
tences that can only be labeled as undetermined (U): those just characterized
as paradoxical. In addition, some systems have sentences that can only be la-
beled as true (T) and others, as false (F) by every classical labelling. We will say
that those sentences are referential tautologies/contradictions, meaning that
their truth/falsity is due to structural conditions of the system.

Definition 10 Given a non-paradoxical system F = ⟨S, F ⟩, x ∈ S is a ref-
erential contradiction (tautology) iff L(x) = F (L(x) = T), for every classical
labelling L.9

As a consequence, referential contradictions and tautologies are related to
conglomerates in the following way:

Proposition 1 Let F = ⟨S, F ⟩ be non-paradoxical. Then, x ∈ S is a referen-
tial contradiction (tautology) iff for every conglomerate A, x /∈ A (x ∈ A).

9 In Section 6, we will generalize these notions for every F-system (not only the non-
paradoxical ones) (Definition 12).
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Proof It follows immediately from Theorem 1.

Referential tautologies are just sentences that assert the falsity of a contradic-
tion. However, referential contradictions can exist independently of referential
tautologies.

Proposition 2 Given F = ⟨S, F ⟩, if x ∈ S is a referential tautology, then
there exists some z ∈ S, such that z is a referential contradiction (and z ∈
−→
F (x)).

Proof By definition, if x is a referential tautology, then L(x) = T for every
classical labelling L. By definition of ‘labelling’, x cannot be a sink (otherwise it

could be labeled as F by some classical labelling). Hence, there exists z ∈ −→F (x)
and, obviously, L(z) = F in every classical labelling L.

Let us see now the relation of referential contradictions and tautologies
with fixed points. Due to the fact that an F-system can have several ground
bases (depending on the number of sinks), each ground base determines a class
of fixed points that cannot be related in terms of ≤ with those determined by
other ground bases. Hence, it is not suitable to talk about intrinsic fixed points
in the present context in a similar manner as in the context of Kripke’s theory.
However, we can say that referential contradictions and tautologies have an
intrinsic truth value in the sense that that value is the same in every fixed
point in which those sentences receive a classical truth value.

Proposition 3 Let F = ⟨S, F ⟩ be non-paradoxical. x is a referential contra-
diction (resp. tautology) in F iff for every complete and consistent fixed point
(S+, S−) of ϕ, x ∈ S− (resp. x ∈ S+).

Proof x is a referential contradiction iff (by Proposition 1) for every conglom-
erate A, x ̸∈ A iff for every conglomerate A, x ∈ S \A. Finally, by Theorem 2,
for every conglomerate A, (A,S \A) is a complete and consistent fixed point.
The case of referential tautologies is obvious.

Example 6 Let F = ⟨{a, b, c}, {(a, b), (b, c), (a, c)}⟩. There exist two conglom-
erates, {c} and {b}. Correspondingly, ({c}, {a, b}) and ({b}, {a, c}) are the
only two complete and consistent fixed points. Therefore, a is a referential
contradiction.

This example leads us to make two observations. First, referential con-
tradictions and tautologies are not related to kernels in the same way as to
conglomerates. In the example, the only kernel {c} is useless to capture the
referential contradiction of a. Second, the same example shows that transitiv-
ity is a source of referential contradictions when the antecedent conditions of
the transitive property are met in non-paradoxical systems.

Proposition 4 Let F = ⟨S, F ⟩ be non-paradoxical and F be transitive. If
x, y, z ∈ S are such that (x, y), (y, z) ∈ F , then x is a referential contradiction.
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Proof Assume the antecedent of the claim. By the transitivity of F , (x, z) ∈ F .
Let L be a classical labelling of F (which exists due to the non-paradoxicality
of F). Then, either (i) L(z) = T or (ii) L(z) = F. If (i) is the case then
L(x) = F. If (ii) is the case, then either (a) L(y) = T or (b) L(y) = F. If (a)
is the case, then L(x) = F, and if (b) is the case, then there exists w ∈ S
such that (y, w) ∈ F and L(w) = T. But then, by transitivity, (x,w) ∈ F .
That implies that L(x) = F. Hence, in any case L(x) = F. Therefore, x is a
referential contradiction.

In addition, if transitivity is satisfied by systems where every sentence refers
to other sentences, we get paradox, as we will see in Section 8.

The notions of referential contradictions and tautologies can be extended
to systems that are partially paradoxical. That is, they can also be identified
in systems where paradoxes can be circumscribed, so that other sentences can
be assigned a classical truth value. However, there are no conglomerates in
such systems as there are no classical labellings. In the next section, we will
see a local version of conglomerate that will enable us –among other things–
to redefine referential contradictions and tautologies with regards to any F-
system.

6 Local Conglomerates

Conglomerates capture all the sentences that can be true together in systems
that are free of paradoxes. In terms of Dyrkolbotn [9], the absorption condi-
tion on conglomerates is global, and that inhibits some systems from having
conglomerates. However, we can still want to know what sentences can be true
together in systems containing paradoxes, even if that class is empty. That can
be done by defining a local version of the absorption condition. To that aim,
in this section, we define the notion of local conglomerate.

Definition 11 Given F = ⟨S, F ⟩, a local conglomerate is a subset A ⊆ S that
satisfies:

1.
←−
F (A) ⊆ S \A, and

2.
−→
F (A) \ sinks(S) ⊆ ←−F (A).

It is easy to see that conglomerates are also local conglomerates, which
allows to establish a hierarchy among the notions, including kernels. Local
conglomerates only “absorb” those non-sink nodes to which they point at.
As a consequence, the empty set of nodes is always a local conglomerate,
which implies that the notion is well-defined: every F-system has, at least,
one local conglomerate. Moreover, due to the fact that local conglomerates
are local “absorbers,” they capture all the sentences that can be assigned the
true value in contexts where paradoxes can be isolated.

Example 7 Let F = ⟨S, F ⟩ = ⟨{a, b, c, d, e}, {(a, a), (b, c), (c, d), (b, d), (d, e)}⟩.
Then, F has no conglomerates, but has three non-empty local conglomerates,
{d}, {e}, and {c, e} (Figure 1).
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Fig. 1 Local conglomerates in dashed lines. The empty set is always a local conglomerate.

The two following results relate maximal local conglomerates to maximally
consistent fixed points and labellings maximizing T.

Theorem 3 A is a maximal (w.r.t. ⊆) local conglomerate iff (A,
−→
F (A) ∪

←−
F (A)) is a maximally consistent (w.r.t. ≤) fixed point of ϕ.

Proof (If) Let (A,B) be a maximally consistent (w.r.t. ≤) fixed point of ϕ.
Then,
(i)
←−
F (A) ⊆ S \A. To prove this, assume x ∈ ←−F (A). By way of contradiction,

assume now that x ∈ A and let z ∈ A be such that z ∈ −→F (x). Since (A,B) is

a fixed point, we have that B = sinks(B)∪{x : ∅ ≠ −→F (x)∩A}. Then, z ∈ B.
Hence, z ∈ A ∩ B, which contradicts the consistency of (A,B). Therefore,
x ̸∈ A, which implies that x ∈ S \A.

(ii)
−→
F (A)\sinks(S) ⊆ ←−F (A). To prove this, let u ∈ A and w ∈ −→F (u)\sinks(S)

(i.e., w ∈ −→F (A) \ sinks(S)). Since (A,B) is a fixed point, the hypothesis

w ̸∈ ←−F (A) implies that w ̸∈ B, because B = sinks(B) ∪ {x : ∅ ̸= −→F (x) ∩ A}.
But then u ̸∈ A, since A = sinks(A) ∪ {x : ∅ ≠ −→F (x) ⊆ B}. Contradiction.
Therefore, w ∈ ←−F (A).
From (i) and (ii), it follows that A is a local conglomerate. Assume now that A
is not maximal, i.e., there exists some local conglomerate A′, such that A ⊂ A′.
Let x ∈ A′ \ A. If x is a sink then x ∈ sinks(A′) ∪ {x : ∅ ≠

−→
F (x) ⊆ B} =

A′. But this contradicts that (A,B) is a maximal fixed point. Hence, x is not

a sink. Let z ∈ −→F (x). Then z ∈ B′, for some B′ such that B ⊆ B′. But then

z ∈ ←−F (A′). Then, (A,B) ≤ ϕ((A′, B′)) but not ϕ((A′, B′)) ≤ (A,B). This also
contradicts that (A,B) is a maximal fixed point.
(Only if) Let A be a maximal (w.r.t. ⊆) local conglomerate. We have to prove

that ϕ((A,
−→
F (A) ∪ ←−F (A))) = (A,

−→
F (A) ∪ ←−F (A)). This follows from: (i) A =

{sinks(A) ∪ {x : ∅ ≠
−→
F (x) ⊆ −→F (A) ∪ ←−F (A)}. For this, just observe that

since A is a maximal local conglomerate, if x is not a sink, then x is such that
∅ ≠ −→F (x) ⊆ −→F (A)∪←−F (A) iff x ∈ A. (ii)

−→
F (A)∪←−F (A) = sinks(

−→
F (A)∪←−F (A))∪

{x : ∅ ≠ −→F (x)∩A}. To prove this, note that, since {x : ∅ ≠ −→F (x)∩A} =←−F (A),

it is obvious that sinks(
−→
F (A)∪←−F (A))∪{x : ∅ ≠ −→F (x)∩A} ⊆ −→F (A)∪←−F (A).

Now, since A is a local conglomerate,
−→
F (A) \ sinks(−→F (A)) ⊆ ←−F (A), hence,

we have that
−→
F (A) ∪←−F (A) ⊆ sinks(

−→
F (A) ∪←−F (A)) ∪ {x : ∅ ≠ −→F (x) ∩A}.
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Theorem 4 L is a labelling that maximizes T iff A = {x : L(x) = T} is a
maximal local conglomerate.

Proof (If) Let A = {x : L(x) = T} be a maximal local conglomerate. Let us
assume, by way of the absurd, that there exists z ̸∈ A, such that L(z) = T.

Then, for all w ∈ −→F (z), L(w) = F. Then, since
−→
F (A) \ sinks(S) ⊆ ←−F (A)

and L(x) = T for every x ∈ A, it follows that z ̸∈ −→F (A). Moreover, z ̸∈ ←−F (A)
either, otherwise we would have L(z) = F. Then, A∪{z} is a local conglomerate
greater than A, contradicting the hypothesis. Therefore, for every z ̸∈ A,
L(z) ̸= T, which implies that L is a labelling that maximizes T.
(Only if) Let L be a labelling that maximizes T. First, it is easy to see that
A = {x : L(x) = T} is a local conglomerate. Now assume, by way of the
absurd, that A is not maximal. Then, there exists some local conglomerate A′

such that A ⊂ A′. Let x ∈ A′ \ A. Since L maximizes T, then L(x) ̸= T. If

L(x) = F, then there exists some z ∈ A such that z ∈ −→F (x). This contradicts
that A′ is a local conglomerate. And if L(x) = U, then x is paradoxical, which
also contradicts that A′ is a local conglomerate. Therefore, A is a maximal
local conglomerate.

Thus, from the two previous theorems, we get the following corollary:

Corollary 2 For every set of sentences A ⊆ S, the following three statements
are equivalent:

1. A is a maximal local conglomerate.
2. There exists a labelling L that maximizes T and A = {x : L(x) = T}.
3. (A,

−→
F (A) ∪←−F (A)) is a consistent maximal (w.r.t. ≤) fixed point of ϕ.

Local conglomerates enable us to characterize the notions of referential
contradictions and tautologies with regards to any F-system (not only non-
paradoxical ones). First, we redefine the notions as follows.

Definition 12 Let F = ⟨S, F ⟩, x ∈ S is a referential contradiction (tautology)
iff L(x) = F (L(x) = T), for every labelling L that maximizes F (T).

From [4], it is known that a labelling maximizes T if and only if it maximizes
F. Then, from Definition 12 and Theorems 3 and 4, we immediately have
that x is a referential tautology (resp. contradiction) iff x ∈ A (resp. x ∈
−→
F (A) ∪ ←−F (A)) for every A ⊆ S that is a maximal local conglomerate or,

equivalently, for every A ⊆ S such that (A,
−→
F (A) ∪ ←−F (A)) is a maximally

consistent (w.r.t. ≤) fixed point of ϕ. In Example 8, b can only be assigned
F by labellings that maximize the labels T and F, hence, it is a referential
contradiction. The maximal local conglomerates {d} and {c, e} are matched
with the fixed points ({d}, {c, e, b}) and ({c, e}, {d, b}), respectively.

An interesting question10 is whether referential tautologies and contradic-
tions can be related to the intensional concepts of semi-truth and semi-falsity,

10 Posed by an anonymous reviewer.
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respectively [17,7]11. The idea is that a sentence is semi-true (semi-false) if and
only if it is true (false) in some fixed points and false (true) in none. Consider
the following example:

Example 8 Let F = ⟨S, F ⟩ = ⟨{a, b, c, d}, {(a, b), (b, c), (a, c), (c, d), (d, c)}⟩.
Then, a has no classical truth value in the minimal fixed point (∅, ∅), but it is
false in every consistent fixed point extending the minimal one.

As we know, referential tautologies (contradictions) are true (false) in every
maximally consistent fixed point and, for each fixed point that consistently
assigns truth values, there exists a maximally consistent fixed points extending
it. Hence, referential tautologies and contradictions can be considered (the
only) semi-true and semi-false sentences, respectively, in the context of F-
systems. Moreover, the intentional notions of semi-classicality (either true or
false in every maximally consistent fixed point) and paradox (neither true nor
false in any fixed point) can also be understood in a similar way.

7 Local Conglomerates in Dung’s Argumentation Frameworks

P.M. Dung [8] has defined argumentation frameworks, which are just special
cases of F-systems, where S is interpreted as a set of arguments and F , as
an attack relation. The notion of admissibility captures the idea of sets of
arguments that can be defended jointly:A ⊆ S is admissible iff 1)

−→
F (A) ⊆ S\A

(i.e., the arguments that A attacks are outside A), and 2)
←−
F (A) ⊆ −→F (A) (i.e.,

A attacks all its attackers). Replacing F with F−1, we obtain a notion that is
known in graph theory with the name of semikernel [11]; the notion of local
conglomerate, in turn, leads to a weaker version of admissibility.

In Dung’s theory, the class of all the admissible sets of an argumentation
framework forms a complete partial order with respect to the set inclusion
(i.e., reflexive, transitive, antisymmetric, and every increasing sequence has a
least upper bound). The “fundamental lemma,” from which the result follows
immediately in [8], can be paraphrased in our framework with the help of the
operator ϕ.

Lemma 1 Let ϕ((A,
−→
F (A)∪←−F (A))) = ((S+, S−)) and A be a local conglom-

erate. Then, for every x, z ∈ S+, the set A′ = A ∪ {x} is such that

1. A′ is a local conglomerate.
2. Let ϕ((A′,

−→
F (A′) ∪←−F (A′))) = (S′+, S′−). Then, z ∈ S′+.

Proof 1. We only have to prove that
←−
F (A′) ⊆ S \ A′. Assume the contrary.

Since
←−
F (A) ⊆ S \ A, there exists some w ∈ A, such that either x ∈ −→F (w)

or w ∈ −→F (x). Assume x ∈ −→F (w). Since x ∈ S+, by definition of ϕ, ∅ ̸=
−→
F (x) ⊆ −→F (A) ∪←−F (A). Hence,

−→
F (x) ∩ A = ∅, which implies that A does

not absorb w. This contradicts that A is a local conglomerate. Assume now
that w ∈ −→F (x). Then, x ̸∈ S+. Contradiction.

11 Cook [7] gave the canonical example of the tautology-teller (‘This sentence is either true
or false’) as semi-true, but that is clearly not expressible in the present framework.



16 Gustavo Bodanza

2. Since z ∈ S+, we have that
−→
F (z) ⊆ −→F (A) ∪ ←−F (A). Then, given that

A ⊆ A′,
−→
F (z) ⊆ −→F (A′) ∪←−F (A′). Therefore, z ∈ S′+.

Intuitively, the lemma says that, if A is a local conglomerate and ϕ can expand
it to incorporate x and z, then A∪{x} is a local conglomerate and ϕ can expand
it to incorporate z. As a consequence, the class of all local conglomerates forms
a complete partial order with respect to ⊆. Maximally (w.r.t. ⊆) admissible
sets of arguments are called preferred extensions in Dung’s theory. They rep-
resent maximal subsets of arguments that a “credulous” agent (i.e., an agent
willing to accept arguments beyond groundedness) can accept. Caminada [4]
showed that preferred extensions correspond to labellings that maximize T (or,
equivalently, F). In a similar way, we put maximal local conglomerates also in
correspondence with such labellings in our framework (Theorem 4). Preferred
extension semantics is different from stable extension semantics, in correspon-
dence with the difference between semikernels and kernels. Intuitively, the
difference is that a stable extension is a set of arguments that not only re-
sponds to every external attack, but also attacks every external argument. As
kernels, stable extensions are not defined for every argumentation framework,
and those argumentation frameworks with no stable semantics involve some
kind of argumentative paradox or anomaly. Dung argued that it is not neces-
sarily all wrong with those argumentation frameworks. Analogously, it is not
necessarily all wrong with F-systems having no conglomerates, in the sense
that they may have many meaningful, non-paradoxical parts, and those parts
can be captured via local conglomerates.

The notion of local conglomerate clearly extends that of admissible set
(again, provided that F is changed to F−1 appropriately). Let us argue why
local conglomerates not corresponding to admissible sets can make sense in
argumentation frameworks. Consider the system ⟨{a, b}, {(a, b)}⟩. Interpreted
as an argumentation framework, we have that argument a attacks argument b,
and the only maximally admissible set is {a} (by the way, ∅ is also admissible,
but not maximally). On the other hand, there are two maximal local con-
glomerates: {a} and {b}. In what sense can {b} be “admissible”? The notion
of admissibility was introduced by Dung as a model of the “principle” “The
one who has the last word laughs best.” As such, it is a good model. However,
we can also think of situations in which the last word is wrong. For example,
assume b is an argument without objections except for a, which is an argu-
ment that everybody in the audience would reject. Then that audience would
possibly deem the argument b in inasmuch as a is out, and even if a is the
last word. The local conglomerate {b} enables us to capture that possibility.
A similar intuition is also modeled by value-based argumentation frameworks
(VAF’s) [1]: if a attacks b, but b promotes a value that is preferred to the
value promoted by a, then a does not defeat b. For example, consider, on the
one hand, an argument that promotes the legalization of abortion as a public
health necessity in view of a significant magnitude of women’s deaths as a
result of clandestine abortion practices and, on the other hand, an argument
that promotes the prohibition of abortion as a need for protection of the fun-
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damental human right to the life of an embryo. Suppose the second argument
is advanced as an attack on the first. However, if the audience values public
health over the right to the life of a human embryo, it will result that the
expected defeat will have no effect (the same applies in the opposite case). In
this setting, we can capture the opposing opinions with two different (local)
conglomerates. In any case, these ideas are only exploratory and require more
in-depth analysis that is beyond the scope of the present work.

8 Sufficient Conditions for Paradox in F-systems

In this section, we summarize some conditions found in the literature in re-
lation to different systems, which are sufficient for paradoxes to occur and
which apply to general F-systems. We will express those conditions using our
notation. Rabern et al. and Beringer and Schindler identified structural prop-
erties of the digraphs as necessary conditions for paradox. The conditions are,
basically, the existence of directed cycles (as in the case of the Liar) [15] or
double paths12 (as in the case of the Yablo’s paradox) [2]. Previously, Cook [5]
defined f-forced sentences as those x such that there exists an infinite sequence
x, x1, x2, . . . , xn in F , where n is even, and either x ∈ −→F (xn) or xn ∈

−→
F (x);

then, he showed that (i) if L is a classical labelling and x is f-forced, then
L(x) = F (i.e., x is a referential contradiction), and (ii) if x is f-forced and

for every y ∈ −→F (x), y is f-forced, then the F-system is paradoxical. Even be-
fore Cook, Dung [8] observed, in the context of argumentation frameworks,
a similar issue due to what he called controversial arguments. x is said to
be controversial w.r.t. y iff (i) there exists a sequence x0, . . . , x2n+1, such
that y = x0, x = x2n+1, and (xi+1, xi) ∈ F , and (ii) there exists a sequence
x0, . . . , x2n, such that y = x0, x = x2n, and (xi+1, xi) ∈ F . x is said to
be controversial if it is controversial w.r.t. some y.13 Then, Dung defined the
property of “limited controversiality” for argumentation frameworks which, in
terms of our general setting, says that an F-system is limited controversial if
there exists no infinite sequence x0, . . . , xn, . . . such that xi is controversial
with respect to xi+1. Note that both Yablo’s and the Liar paradoxical systems
are particular cases of non-limited controversial systems. We can discern two
different ways of not complying with the limited controversiality, and both are
sufficient conditions for paradox. One has to do with transitivity in sink-free
systems and the other, with odd-length cycles in F . The first one was observed
by Cook [5], while the second one, will be precised here.

12 A double path is a graph consisting of two non-trivial paths, both with common origin
and end.
13 In terms of argumentation, x is controversial w.r.t. y if and only if x indirectly attacks
y (odd-length path) and indirectly defends y (even-length path). In terms of sentences, we
would be tempted to say that x indirectly affirms the falsity of y and indirectly affirms
the truth of y, but this is not necessarily the case, since the possible existence of shortcuts
between both paths could give rise to different interpretations.
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8.1 Transitivity

F is transitive iff for all x, y, z ∈ S, if y ∈ −→F (x) and z ∈ −→F (y), then z ∈ −→F (x).
For instance, in Figure 1, F |{b,c,e} (i.e., the restriction of F to {b, c, e}) is
transitive. Note that b is a referential contradiction: it cannot be labelled as T,
but it can be labeled as F whenever d is labeled as T or F. Moreover, if every
sentence refers to the falsity of some other sentences, then transitivity will also
prevent the assignment of the label F. This result was showed by Cook [5].

Definition 13 F = ⟨S, F ⟩ is unlimited transitive iff (i) F is transitive and
(ii) F is a serial digraph (i.e., no node is a sink).

Proposition 5 (Cook [5]) If F is unlimited transitive, then it is paradoxical.

Proof Assume F = ⟨S, F ⟩ is not paradoxical. Then it has a classical labelling
L. Then, for every x ∈ S, either L(x) = T or L(x) = F. Assume L(x) = T.

Then, for all y ∈ −→F (x), L(y) = F. Let now y ∈ −→F (x). Then, for some z ∈
−→
F (y), L(z) = T. But, by transitivity, z ∈ −→F (x), which implies that L(z) = F.

Contradiction. Assume now L(x) = F. Then, for some y ∈ −→F (x), L(y) = T.
Then we can apply on y the same argument as before to get a contradiction.
Therefore, F is paradoxical.

Both the Liar and Yablo’s paradoxes can be modeled as unlimited transitive
F-systems. Moreover, as we have seen before (Proposition 4), transitivity is
also a source of other untruthful sentences like referential contradictions.

8.2 Odd-Length Cycles

Unlike Yablo’s paradox, the Liar paradox contains a referential cycle. Refer-
ential cycles imply direct or indirect self-reference, but not every referential
cycle leads to paradox. Bolander [3] distinguished between vicious and innocu-
ous self-reference and claimed that the first sort can only occur if it involves
negation or something equivalent (like in ‘not true’ or ‘untrue’). That is guar-
anteed in F-systems. However, the conditions for vicious self-reference can be
further narrowed. Next, we define some conditions involving cycles that suffice
to yield paradox in F-systems.

Definition 14 Given F = ⟨S, F ⟩, a subset O ⊆ S is an odd core of F iff
for some n ≥ 0 there exist sentences x1, . . . , x2n+1 ∈ S, such that O =
{x1, . . . , x2n+1}, {(xi, xi+1) : 1 ≤ i ≤ 2n} ∪ {(x2n+1, x1)} ⊆ F , and for all

x ∈ O, |−→F (x)| = 1 (i.e., the restriction of F to O is functional). Moreover, F
is odd iff it has an odd core.

Informally, the definition says that an odd F-system is such that there exists
an odd-length cycle in F , the nodes of which can shoot exactly one arrow each
(no matter how many arrows point to them).
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Fig. 2 Odd-length cycles yield paradox whenever all their nodes point only to untrue
sentences (either paradoxical or not)

Proposition 6 If F is odd, then it is paradoxical.

Proof Let F = ⟨S, F ⟩ be odd and let O = {x1, . . . , x2n+1} be an odd core of F .
By way of contradiction, let us assume that A is a conglomerate of F . Assume,
without lost of generality, that x1 ∈ A. Then, since for all x ∈ O, |−→F (x)| = 1,
by the absorption condition we have {x1, x3, . . . , x2n+1} ⊆ A. However, since
(x2n+1, x1) ∈ F , that contradicts the independence property of A. Hence, we
should have x1 ∈ S \ A. This implies that {x2, x4, . . . , x2n, x1} ⊆ A. How-
ever, since (x1, x2) ∈ F , we get again a contradiction with the independence
property. Therefore, F cannot have any conglomerate, which means that it is
paradoxical.

This sufficient condition can be relaxed to some extent. We will still have
paradox by allowing the nodes involved in odd-length cycles to point to refer-
ential contradictions, i.e., nodes that do not belong to any local conglomerate.
This is easy to see, since no sentence referred from the cycle can be labeled
as true, and at least one referred sentence has undetermined value (see an
example in Figure 2).

From the last two propositions we can see that the source of paradox in
the Liar paradox is twofold: the F-system is both unlimited transitive and
odd. Yablo’s paradox, in turn, only suffers from unlimited transitivity. Thus,
we have identified more specific cases of directed cycles and double paths that
yield paradox in F-systems.

It is worth mentioning that Dyrkolbotn [9] resumed some known sufficient
conditions to avoid paradox in presence of odd-length cycles, though they are
limited to finite systems. In our framework, the result can be expressed as
follows:

Proposition 7 (Dyrkolbotn) Any finite F-system has a conglomerate if every
odd-length cycle has one of the following conditions
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1. at least two symmetric nodes
2. at least two crossing consecutive chords (a chord is an arrow on a cycle

connecting two non-consecutive nodes)
3. at least two chords with consecutive targets.

The lesson seems to be that paradoxes are related to transitivity in infinite
contexts, and to cycles of odd length in finite ones. However, both issues can be
connected in some way. An important finding by Cook (maybe in collaboration
with Thomas Bolander, as suggested in [5]) is that every finite paradoxical set
of sentences is, in some sense, equivalent to an infinite set of sentences with no
cycles. Cook introduced unwinding, an ingenious paradox-preserving operation
that, applied to an arbitrary system, returns an infinite acyclic system (see
[5] for details, and [15] for a clear illustration). In that way, the unwinding
of the Liar paradox yields the Yablo’s paradox. In sum, circularity is not
a necessary condition for paradox in systems with infinite sentences, while
in finite contexts it remains to specify what kinds of circularities constitute
necessary conditions.

9 Final Comments and Conclusions

The notions of conglomerate and local conglomerate enabled us to essentially
capture the same results as that of kernel regarding semantic paradoxes. How-
ever, while kernels can only represent situations in which all the sink (object
language) sentences in the system are true, conglomerates also allow to rep-
resent the false cases. An important result is that our concepts allow for the
characterization of referential contradictions and tautologies, i.e., sentences
that can be assigned only the false value or only the true value, respectively.
Referential contradictions cannot belong to any local conglomerate, while ref-
erential tautologies belong to every maximal local conglomerate.
F-systems offer a treatment of paradoxes and other sentence interaction

problems at an abstract level with respect to language, similar to how Dung’s
argumentation frameworks treat the interaction among arguments by abstract-
ing the specific nature and qualities of arguments. The level of abstraction is
key to subsuming argumentation frameworks in the most general framework
of F-systems. However, the analogy goes further, since predication of falsity
among sentences and refutation among arguments generate similar patterns of
paradoxical behavior. Cook’s acceptable assignments for a propositional lan-
guage of paradox [5] and Caminada’s labelling semantics for Dung’s systems
[4] provide essentially the same semantic device for analyzing the aforemen-
tioned phenomena. Furthermore, Dung showed that Kripke’s original ideas
about fixed points of an operator to trace dependency and its application to
groundedness and intrinsic truth value of sentences are useful for characterizing
complete semantics in argumentation. Dyrkolbotn [9] has previously treated
paradox, kernel theory, and argumentation frameworks on a common ground.
He showed the connection between local kernels and admissible sets. Here,
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we extended that connection with the notion of local conglomerate, which in
turn gives a twist to the notion of argument admissibility. In that respect, we
plan to explore in the future the use of local conglomerates as a semantics for
value-based argumentation frameworks [1], as suggested in Section 7.

Finally, we have shown two sufficient conditions for paradox, to wit, tran-
sitivity in serial digraphs (previously discussed by Cook [5]) and odd-length
cycles involving single reference sentences, which are special cases of the con-
troversy problem treated by Dung. As we can see, much of the studies on
semantic paradoxes and argumentation theory can contribute to each other
within the common ground of F-systems.
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