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Abstract Many biological systems experience a periodic environment. Floquet theory

is a mathematical tool to deal with such time periodic systems. It is not often applied in

biology, because linkage between the mathematics and the biology is not available. To

create this linkage, we derive the Floquet theory for natural systems. We construct a

framework, where the rotation of the Earth is causing the periodicity. Within this

framework the angular momentum operator is introduced to describe the Earth’s rotation.

The Fourier operators and the Fourier states are defined to link the rotation to the bio-

logical system. Using these operators, the biological system can be transformed into a

rotating frame in which the environment becomes static. In this rotating frame the Floquet

solution can be derived. Two examples demonstrate how to apply this natural framework.

Keywords Population dynamics � Periodicity � Seasonality � Circadian cycle �
Floquet theory � Floquet ratio

1 Introduction

Many biological systems are influenced by an environment, which is periodic in

nature, e.g. due to the amount of light in the circadian cycle, or the seasonal weather

conditions. To describe the evolution of such biological systems the periodic forcing

of the environment should be taken into account. From a mathematical perspective, the

Floquet formalism provides tools to deal with such recurring patterns (Farkas 1994).

The Floquet theory deals with systems of linear differential equations with periodic

coefficients, and can be used to determine the stability of equilibria (Floquet 1883).

Application to the field of epidemiology has been proposed previously (Heesterbeek

and Roberts 1995a, b), but the use of the Floquet theory in ecology and epidemiology
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remains limited today. If applied, it makes use of numerical solutions of the linearized

system of periodic ODE’s (Klausmeier 2008). This is a straightforward and easily

implemented method, but does not provide analytical solutions for the evolution of the

biological system. For this reason the gap between the description of the evolution of

the biological systems and the Floquet theory remains.

To bridge this gap, we wish to translate the Floquet formalism into a natural

framework: the periodicity is dictated by the nature of the environment and is an

integral part of the description of the biological system. Thus, we design a natural

framework for the description of periodic causes. Furthermore, we derive the

Floquet solutions of the linearized system of periodic describing the biological

system within this framework and define the Floquet ratio RT with the same

threshold property as the basic reproduction number R0. We provide a recipe and

apply it to two examples, showing that this algorithm is relatively simple and can

easily be used in calculations to determine stability of a specific system.

2 Conceptual Description

In this section we describe the concepts of the natural framework and the recipe for

application. The full analytical description is presented in the Sect. 3, but for anyone

who is only interested in practical application, it should be sufficient to read this

section and continue reading in the Sect. 4.

2.1 Key Elements of the Natural Framework for the Effect of Periodic

Fluctuations

We are interested in the stability of the null equilibrium of the population, which is

stable if the long term growth rate of the population is negative. Due to the rotation

of the Earth, the environment of the population is forced to be periodic in time and

subsequently the population growth is time dependent. The time dependency of the

change in the population growth is

o

ot
vðu0; tÞ ¼ Kðu0; tÞvðu0; tÞ; ð1Þ

in which vðu0; tÞ is the population state, K the periodic growth operator reflecting

the influence of the environment on the population and t the time since start of

invasion, u0 the initial phase, which depends on the observation moment in the

cycle. Because in the context of this paper the Earth rotation forces the environment

of the biological to be periodic in time, u0 should be interpreted as a parameter

value for a variable u describing the rotation. In our description we undo this

premature substitution and make the rotation explicit. Consequently, the environ-

ment is described by the growth operator Kðu; tÞ: The periodicity of this operator is

forced by the rotation of the Earth with the frequency xr = 2p/Tr, in which Tr is the

known length of the period. The different frequency components of the environment

could be distinguished by means of the Fourier expansion, and therefore we can

expand this operator in a Fourier series (Oppenheim et al. 1983)
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Kðu; tÞ ¼
X1

l¼�1
KlFl expðilxrtÞ; ð2Þ

in which Kl are the Fourier components of K and the Fourier operators Fl are

defined by (Boender et al. 1998)

Fl ¼ exp iluð Þ: ð3Þ
These Fourier operators are used to describe the modulation of the environment

by the Earth rotation. We describe the rotation of the Earth in physical terms by an

angular momentum operator Lz, which is an infinitesimal rotation in the plane

perpendicular to the axis of rotation (z-axis) (Alonso and Finn 1968).

Lz ¼ �i
o

ou
; ð4Þ

The periodicity of the growth operator can be removed by means of a

transformation to the rotating frame, rotating with the frequency xr (Boender et al.

1998). The Floquet growth operator, i.e. the static growth operator in the rotating

frame, is

KF ¼
X1

l¼�1
KlFl � ixrLz: ð5Þ

The Floquet growth operator is time independent, with a correction for the

rotation -i xr Lz. The analytical derivation of this equation will be performed in the

Sect. 3. The dominant eigenvalue kmax of KF determines the growth. If the real part

rmax of dominant eigenvalue kmax is larger than 0, long term growth of the

population will occur. When the real part rmax is smaller than 0, the size of the

population will fluctuate but still fades away to extinction. This threshold is

equivalent to a description using the dominant Floquet multiplier exp rmaxð Þ
(Heesterbeek and Roberts 1995a, b). For exp rmaxð Þ\1 the population will go

extinct, but for exp rmaxð Þ[ 1 the population will grow. If the interval between the

generations (Tc) is exact and time independent, it is possible to construct a

reproduction ratio R ¼ exp rmaxTcð Þ (Wallinga and Lipsitch 2007). This well-known

threshold quantity separates population growth (R [ 1) and decline (R \ 1).

However, the generation interval Tc is often periodic as well, due to for instance

temperature dependent mortality rates. Therefore we propose here a general

threshold quantity, which is straightforward to determine: the Floquet ratio

RT ¼ exp rmaxTrð Þ; ð6Þ
which is the average number of offspring of a single individual after one period.

This threshold quantity separates population growth (RT [ 1) and decline (RT \ 1)

in the same way as R.

2.2 A Recipe for the Calculation of the Floquet Ratio

To calculate the eigenvalues of KF, we wish to construct a Floquet matrix of the

Floquet growth operator. To this end, we have to formulate the matrices of Lz and
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Fl. Lz measures the Fourier number n of the function exp inuð Þ and therefore the

matrix can be formulated as

� � � � � � � � � � � � � � � � � � � � �
� � � 2 0 0 0 0 � � �
� � � 0 1 0 0 0 � � �
� � � 0 0 0 0 0 � � �
� � � 0 0 0 �1 0 � � �
� � � 0 0 0 0 �2 � � �
� � � � � � � � � � � � � � � � � � � � �

0
BBBBBBBB@

1
CCCCCCCCA

: ð7Þ

Fl increases the Fourier number n of the function exp inuð Þ to n ? l. Therefore

the matrix for F1 can be formulated as

� � � � � � � � � � � � � � � � � � � � �
� � � 0 1 0 0 0 � � �
� � � 0 0 1 0 0 � � �
� � � 0 0 0 1 0 � � �
� � � 0 0 0 0 1 � � �
� � � 0 0 0 0 0 � � �
� � � � � � � � � � � � � � � � � � � � �

0

BBBBBBBB@

1

CCCCCCCCA

; ð8Þ

and the matrix for Fl can be found by multiplication of this matrix l times,

because Fl = (F1)l. According to Eqs. 5, 7 and 8 the Floquet matrix can be written

as

� � � � � � � � � � � � � � � � � � � � �
� � � K0 � 2ixrI K1 K2 K3 K4 � � �
� � � K�1 K0 � ixrI K1 K2 K3 � � �
� � � K�2 K�1 K0 K1 K2 � � �
� � � K�3 K�2 K�1 K0 þ ixrI K1 � � �
� � � K�4 K�3 K�2 K�1 K0 þ i2xrI � � �
� � � � � � � � � � � � � � � � � � � � �

0

BBBBBBBB@

1

CCCCCCCCA

; ð9Þ

in which the identity matrix I describes the rotational term i xr Lz. In Box 1 a

recipe is presented how to apply this description. In the Sect. 4 we will describe two

examples.

In the Sect. 3 we will present a comprehensive derivation of the theory. Readers

who wish to focus on the application can continue reading in Sect. 4.

Box 1 Recipe to determine the Floquet ratio

(1) Establish a time dependent growth matrix Kðu0; tÞ (see Eq. 1). This matrix describes the growth of

the system (e.g. the increase of population size or the transmission and recovery causing a change in

the number of infected hosts)

(2) Determine the Fourier components K-n to Kn of the growth matrix K (see Eq. 2)

(3) Formulate the Floquet matrix (see Eq. 9)

(4) Calculate the eigenvalues of the Floquet matrix, if possible analytically or otherwise using a

numerical approximation

(5) Compose the Floquet ratio RT from the real part of the largest eigenvalue
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3 Theoretical Derivation

3.1 The Natural Framework

The variable u, as introduced in previous section, is essential for the constitution of

the natural framework, because this is the variable for the description of the Earth’s

rotation. For an arbitrary function f ðuÞ holds f uð Þ ¼ f uþ 2pkð Þ with k an integer.

This function could be expanded in terms of the Fourier states similar to a Fourier

expansion (Oppenheim et al. 1983).

f ðuÞ ¼
X1

l¼�1
flUlðuÞ

fl ¼
Zp

�p

f ðuÞU�l ðuÞdu;

ð10Þ

with as base the Fourier states Ul ¼ 1ffiffiffiffi
2p
p exp iluð Þ (Alonso and Finn 1968;

Boender et al. 1998). The Fourier states have the property

U�l uð Þ ¼ 1ffiffiffiffi
2p
p exp �iluð Þ ¼ U�l uð Þ. From Eq. 10 it follows that the Fourier states

are normalized, because for the special case f uð Þ ¼ Un uð Þ, the coefficients fl equal

the Delta function dnl, which is 1 for n = l and 0 otherwise. Therefore, Un uð Þ
constitute an orthonormal base for the description of functions and operators. The

unit impulse or Dirac Delta is one the functions we applied further on (Oppenheim

et al. 1983). This function is defined by its transformation property of an arbitrary

function g

Zp

�p

g uð Þdðu� u0Þdu ¼ g u0ð Þ: ð11Þ

By means of a expansion, this Dirac Delta function can be expressed in terms of

the Fourier states (Boender et al. 1998)

dðu� u0Þ ¼
X1

m¼�1

Zp

�p

dðu� u0ÞU�mðuÞdu

0

@

1

AUm uð Þ

¼
X1

m¼�1

1ffiffiffiffiffiffi
2p
p expð�imu0ÞUm uð Þ;

ð12Þ

according to Eq. 10. Furthermore, the Angular momentum operator Lz and the

Fourier operator Fp can be formulated with respect to the Fourier states. The

eigenvalue equation for the angular momentum operator becomes (Alonso and Finn

1968; Boender et al. 1998)

LzUlðuÞ ¼ lUlðuÞ: ð13Þ
Therefore, UlðuÞ are the eigenstates of Lz. When Fp are applied to UlðuÞ, this

leads to
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FpUlðuÞ ¼ 1ffiffiffiffiffiffi
2p
p exp ipuð Þ exp iluð Þ

¼ UlþpðuÞ:
ð14Þ

This operator causes an increase in the order of the function, i.e. l is transformed

into l ? p. We will use this property in the derivations to calculate the

multiplication of Fourier components.

To finish the picture, we derive the relation of Lz and Fp, using the expansion of

the exponential function. This leads to the following relation for the Fourier

operator

exp ixrLztð ÞFpexp �ixrLztð Þn

¼
X1

j¼0

ixrtð Þn

n!
Lzð Þn

 !
Fp exp �ixrLztð Þn

¼ Fp

X1

j¼0

ixrtð Þn

n!
pþ Lzð Þn

 !
exp �ixrLztð Þn

¼ Fpp exp ipxrtð Þexp ixrLztð Þ exp �ixrLztð Þn
¼ Fp exp ipxrtð Þn;

ð15Þ

in which n is an arbitrary state. In this derivation we use the expansion of an

exponential function, the property exp ixrLztð Þ exp �ixrLztð Þ ¼ 1 and the follow-

ing relation

LzFpn ¼ �i
o

ou

� �
exp ipuð Þn

¼ p exp ipuð Þnþ exp ipuð Þ �i
o

ou

� �
n

¼ Fp pþ Lzð Þn:

ð16Þ

This natural framework facilitates the description of the population dynamics.

The population could be expressed in terms of the Fourier states Ul uð Þ. This

population is modulated by the environment, which is expressed in terms of the

Fourier operators Fp. The environment is forced to be periodic by the rotation of the

Earth, which is described by the angular momentum operator Lz.

3.2 Derivation of the Floquet Solution within the Natural Framework

We apply this natural framework to determine the growth of a population in a time

periodic environment. The Floquet formalism unravels the solutions into two

components: the long term behavior of the system and separated this from the short

term (periodic) behavior of the system (Floquet 1883). The method is straight

forward, in the sense that the long term behavior of a system is described directly by

the Floquet exponents (Farkas 1994). If the largest of the Floquet exponents is larger

than 0 the population will grow.
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According to Eq. 1, The biological system is described by a population state

vðu0; tÞ and the effect of the environment on this biological system by a growth

operator Kðu0; tÞ, in which the initial phase u0 is a constant. We transform the non-

differentiable constant u0 into a differentiable variable u to enable a description of

the effect of the rotation on the biological system. This phase variable u can be

transformed back to the initial phase u0, accordingly

vðu0; tÞ ¼
Zp

�p

vðu; tÞdðu� u0Þdu

¼
X1

m¼�1

1ffiffiffiffiffiffi
2p
p exp �imu0ð Þ

Zp

�p

vðu; tÞUm uð Þdu

Kðu0; tÞvðu0; tÞ ¼
X1

m¼�1

1ffiffiffiffiffiffi
2p
p exp �imu0ð Þ

Zp

�p

Kðu; tÞvðu; tÞUm uð Þdu;

ð17Þ

in which Eqs. 11 and 12 are applied. The mathematical solution of Eq. 1 is

presented by Floquet (1883). This solution is applied in physics to solve the

Schrödinger equation for a period Hamiltonian operator, which describes the energy

of a system leading to the Floquet Theory (Boender et al. 1998; Shirley 1965). We

will now apply this theory to the field of population biology. We present the

algebraic derivation of disentanglement of periodic changes and the long term

growth.

At the start of the invasion one typical individual is present. This initial state will

be denoted by v0. An invasion can start at any time during the season. Therefore,

this state v0 is independent of t and u0. According to Eq. 17, Eq. 1 can be

transformed into a equation of which vðu; tÞ is the solution

o

ot
vðu; tÞ ¼ Kðu; tÞvðu; tÞ

o

ot
Uðu; tÞv0 ¼ Kðu; tÞUðu; tÞv0;

ð18Þ

in which the evolution operator Uðu; tÞ describes the development of the biological

system in time, and is defined by

vðu; tÞ ¼ Uðu; tÞv0: ð19Þ
In the following we elaborate on the operator part of Eq. 18, resulting in

disentanglement of the growth operator Kðu; 0Þ and the rotating period xr.

Substitution of the outcome in Eq. 18 transforms the whole equation into a rotation

frame, in which the growth operator becomes time independent. As a consequence

this equation can be solved. After substitution of this solution in Eq. 17, the variable

u is transformed back into a constant u0, leading to an explicite expression for the

population state vðu0; tÞ.
We use the Eqs. 15 and 2 to transform Eq. 18 into a constant growth operator in a

rotating frame,
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o

ot
Uðu; tÞ �Kðu; tÞUðu; tÞ ¼

o

ot
Uðu; tÞ �

X1

p¼�1
Kp expðipuþ ipxrtÞ

 !
Uðu; tÞ

¼ o

ot
Uðu; tÞ � expðixrLztÞ

X1

p¼�1
KpFp

 !
expð�ixrLztÞ

 !
Uðu; tÞ

¼ o

ot
Uðu; tÞ � expðixrLztÞKðu; 0Þ expð�ixrLztð ÞUðu; tÞ:

ð20Þ

Thus, the growth operator Kðu; 0Þ is disentangled from the rotation with xr

around the axis of rotation (z-axis), which is described by the exponential operator

exp ixrLztð Þ. To transform the total equation into the rotating frame we substitute

the Floquet evolution operator UFðu; tÞ ¼ exp �ixrLztð ÞUðu; tÞ into Eq. 20,

leading to

o

ot
expðixrLztÞUFðu; tÞ � ð expðixrLztÞKðu; 0ÞUFðu; tÞ ¼

ixrLz expðixrLztÞUFðu; tÞ þ expðixrLztÞ
o

ot
UFðu; tÞ �Kðu; 0ÞUFðu; tÞ

� �
¼

expðixrLztÞ
o

ot
UFðu; tÞ � ðKðu; 0Þ � ixrLzÞUFðu; tÞ

� �
¼

expðixrLztÞ
o

ot
UFðu; tÞ �KFðuÞUFðu; tÞ

� �
:

Because these expressions equal zero according to Eq. 18, this leads to a directly

solvable equation

o

ot
UFðu; tÞ ¼ KFðuÞUFðu; tÞ; ð21Þ

in which KF is the Floquet growth operator, according to Eq. 5. Equation 21

provides a solution for the Floquet evolution operator, UFðu; tÞ ¼ exp KFðuÞtð Þ.
Using the transformed Eq. 21, the solution of Eq. 18 is given by

vðu; tÞ ¼ Uðu; tÞv0

¼ exp ixrLztð ÞUFðu; tÞv0 ¼ exp ixrLztð Þ exp KFðuÞtð Þv0:

ð22Þ
This is the operator presentation of the Floquet solution within the natural framework.

Periodic changes and the long term growth are disentangled in this solution, in which

ixrLz describes the periodic changes and KFðuÞ the long term growth.

3.3 The Threshold Quantity for Long Term Growth

Because the Floquet growth operator, KF, contains only the Angular momentum

operator Lz and the Fourier operator Fp (see Eq. 22), the eigenvalues kj and
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eigenstates wjðuÞ of KF can be calculated. To do so, the initial state should be

expressed in terms of these eigenstates:

v0 ¼
X

j

v0jwjðuÞ: ð23Þ

In Eq. 10 it is shown that the eigenstates wiðuÞ can be expanded in terms of

Fourier states, filUlðuÞ,

v0 ¼
X

j

X1

l¼�1
v0jfjlUlðuÞ; ð24Þ

where fjl is the lth Fourier coefficient of the Fourier expansion for the jth
eigenstate. Substitution of Eq. 24 in Eq. 17 gives

vðu0; tÞ

¼
X1

m¼�1

1ffiffiffiffiffiffi
2p
p e�imu0

Zp

�p

eixrLzt
X

j

eKFðuÞtv0jwjðuÞ
 ! !

Um uð Þdu

¼
X1

n¼�1

1ffiffiffiffiffiffi
2p
p einu0

Zp

�p

X

j

ekjt
X1

l¼�1
eixr ltv0jfjlUlðuÞ

 !
U�n uð Þdu

¼ 1ffiffiffiffiffiffi
2p
p

X1

n¼�1

X

j

v0jfjneinðu0þxr tÞekjt;

ð25Þ

which is analogue to the Shirley formula (Shirley 1965). In the derivation the

eigenvalue equation of the angular momentum operator in Eq. 13 and the

orthonormality of the Fourier states according to Eq. 10 are applied. Equation 1

is now given in terms of Fourier coefficients, fjl, and Floquet exponents, kj. If the

real part rmax of dominant eigenvalue kmax is larger than 0, long term growth of the

population will occur. When the real part rmax is smaller than 0, the size of the

population will fluctuate but still fades away to extinction.

3.4 Approximation Methods for the Calculation of the Growth Rate

To calculate the eigenvalues of the Floquet operator, we applied approximation

methods for the eigenvalues of this operator, which are are regularly applied in

physics (Leskes et al. 2010). In this section we follow this approach and apply this

to biological systems. To determine the eigenvalues, we have to find the

diagonalized Floquet operator DF, which has the following property

KF ¼ D�1
F KFDF ¼ K0F0 � ixrLz; ð26Þ

in which DF the diagonalization Floquet operator KF is the diagonalized Floquet

growth operator, and K0 it’s zero Fourier component. The diagonalization Floquet

operator can be defined by
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DF ¼ exp SFð Þ: ð27Þ
This can be used to expand Eq. 26 according to

D�1
F KFDF ¼ KF þ ½KF ; SF� þ

1

2
½½KF; SF�; SF�. . .; ð28Þ

in which the commutator of two operators A en B: [A, B] = AB - BA
is applied. From Eqs. 3 and 16 the following commutation relations can be

deduced:

½Lz;Fp� ¼ pFp

½Fm;Fn� ¼ 0;
ð29Þ

in which is used FmFn = Fm?n. In the diagonalisation procedure, we expand the

operator SF = SF
(1) ? SF

(2)… into several orders. To diagonalize the Floquet growth

operator in first order, the (off-diagonal) terms of Eq. 5 should be removed, leading

to

S
ð1Þ
F ¼

X

n 6¼0

Kn

inxr
Fn: ð30Þ

This removes the off-diagonal blocks of KF as a result of the relation

½�inxrLz; S
ð1Þ
F � ¼ �

X

n6¼0

KnFn; ð31Þ

according to Eq. 29. Substitution of this in Eq. 28 gives

KF ¼ K0F0 � ixrLz þ
X

n6¼0

K�n;Kn½ �
i2nxr

F0þ

X

n6¼0

K0;Kn½ �
inxr

Fn þ
X

n 6¼0;p6¼0;p 6¼n

Kp�n;Kn

� �

i2nxr
Fp þ . . .

ð32Þ

The two latter terms are the higher order off-diagonal terms. If [Kp,Kn] = 0 for

arbitrary p and n, these terms would disappear and K0 ¼ K0. If the size of Kn is

much smaller than the rotation frequency, i.e. Knj j � nxr, then the higher order

terms in Eq. 32 are negligible. If this is not the case, the diagonalization procedure

should be extended to the second order leading to

S
ð2Þ
F ¼

X

n6¼0

K0;Kn½ �
inxrð Þ2

Fn þ
X

n 6¼0;p 6¼0;p6¼n

Kp�n;Kn

� �

2np ixrð Þ2
Fp; ð33Þ

in which the same procedure is applied as was done in the first step in Eq. 30.

Substitution of Eqs. 30 and 33 into Eq. 28 would lead to a Floquet growth operator

which is diagonal up to second order. This procedure should be repeated until

desired convergence is obtained. In the next section we will provide two examples

where we apply this formalism for the analytical determination and the numerical

determination of RT.

312 G. J. Boender et al.

123



4 Application

In this section we illustrate the recipe for the determination of the Floquet ratio (see

Box 1) by means of two simple models. For a more complex model we refer to a

study of Rift Valley fever (Fischer et al. in prep).

4.1 An Example for Analytical Determination of the Floquet Ratio RT

4.1.1 Establish a Time Dependent Growth Matrix Kðu0; tÞ

In this subsection we describe an ecological example: the establishment of an

exotic species. The establishment of an exotic species requires that the

equilibrium without the new species is unstable. Seasonality will have an effect

on a new species. Especially seasonal temperature changes strongly affects

population growth of ectothermic animals such as arthropods, fish, amphibians

and reptiles. To illustrate our Floquet method, we will use the example of a

species with a temperature dependent intrinsic growth rate, gðu0; tÞ (see e.g.

Delatte et al. 2009). The intrinsic growth rate is the difference between the birth

rate and the mortality rate. For a model of this biological system Eq. 1 has the

form,

o

ot
vðu0; tÞ ¼ Kðu0; tÞvðu0; tÞ ¼ gðu0; tÞvðu0; tÞ ð34Þ

The average daily temperature follows a sinus function with the periodicity

xr ¼ 2p
Tr

, in which Tr = 1 year. For this simple example, we assume that the intrinsic

rate of increase is linear with temperature. The intrinsic growth rate of increase has

the form gðu0; tÞ ¼ gmean þ gamp sinðxrtÞ, where gmean is the mean growth rate and

gamp the amplitude of the intrinsic growth rate in time.

4.1.2 Determine the Fourier Components K-n to Kn of the Growth Matrix Kðu0; tÞ

The expression gðu0; tÞ could be expanded in Fourier series

� 1
2i gamp expð�ðxrtÞÞ þ gmean þ 1

2i gamp expðxrtÞ. As a consequence, the Fourier

coefficients are K�1 ¼ � 1
2i gamp; K0 ¼ gmean, and K1 ¼ 1

2i gamp, according to Eq. 2.

4.1.3 Formulate the Floquet Matrix (see Eq. 9)

In this case the matrix Kn equals the number Kn and the identity matrix I equals 1.

4.1.4 Calculate the Eigenvalues of the Floquet Matrix

Because K-1, K0, and K1 are coefficients in this example, they all commute, i.e. [Kp,

Kn] = Kp Kn - Kn Kp = 0. According to Eq. 20, the eigenvalues of the diagonal-

ized matrix is
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k ¼ gmean � inxr: ð35Þ

4.1.5 Compose the Floquet Ratio RT from the Real Part of the Largest Eigenvalue

rmax = gmean is the real part of the dominant eigenvalue. Therefore the threshold

quantity could be constructed, according to 6 and the Floquet ratio becomes

RT ¼ exp gmeanTrð Þ: ð36Þ
If RT [ 1 i, the null equilibrium is unstable. Furthermore, the population cannot

grow if RT \ 1. Obviously for this simple example, the Floquet ratio is larger than

one if the growth rate is positive.

4.2 An Example for Numerical Determination of the Floquet Ratio RT

4.2.1 Establish a Time Dependent Growth Matrix Kðu0; tÞ

We illustrate this by means of a epidemiological example: a vector-borne infection.

In the field of epidemiology, the class of vector-borne infectious diseases are most

profoundly forced by seasonal changes in the rates. Here we discuss a simple

periodic model of a vector-borne infection describing one vector population and one

host population, in which all parameters are time independent with exception of the

transmission rate, b(t), and the mortality rate of the vector lx(t). For such a model,

Eq. 1 has the form,

o

ot
vðu0; tÞ ¼ Kðu0; tÞvðu0; tÞ

o

ot

xðu0; tÞ
yðu0; tÞ

� �
¼ �lxðtÞ

bðtÞ
Nh

bðtÞ �ly

 !
xðu0; tÞ
yðu0; tÞ

� � ð37Þ

in which x and y are the number of infected vectors and hosts, and lx(t) is vector

mortality and ly is host mortality. In this example we investigate a seasonal effect

with the periodicity xr ¼ 2p
Tr

, in which Tr = 1 year. The transmission rate is a

function of the seasons by average daily temperature (24 h) due to maturation of the

eggs, the size of the population peaks twice during the period, and each day has a

fluctuation in vector activity.

bðtÞ ¼ bmean þ btemp sin xrtð Þ þ bpop sin 2xrtð Þ þ bday sin 365xrtð Þ; ð38Þ

in which bmean is the mean transmission rate and the amplitudes of the

transmission rate are due to the temperature btemp and due to the size of the

population bpop, and the daily amplitude of the vector activity is bday. The mortality

rate is only a simple function of temperature with a mean lmean and

amplitude ltemp:

lx tð Þ ¼ lmean þ ltemp sin xrtð Þ; ð39Þ
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4.2.2 Determine the Fourier Components K-n to Kn of the Growth Matrix Kðu0; tÞ

The function of the mortality rate can easily be expanded in a finite Fourier series

using the relation sin xrtð Þ ¼ exp ixrtð Þ�exp �ixrtð Þ
2i (see previous example). The Fourier

components for the transmission rate are ±1, ±2 and ±365. We neglect the daily

rhythm of transmission (±365), because this will most likely have a small amplitude

and is effective on a different time scale. Using Eqs. 24, 37 and 39 the different

Fourier components Kl can be calculated:

K0 ¼
�lmean

bmean

Nh

bmean �ly

 !

K1 ¼
1

2i

�ltemp
btemp

Nh

btemp 0

 !
¼ �K�1

K2 ¼
1

2i

0
bpop

Nh

bpop 0

 !
¼ �K�2

ð40Þ

4.2.3 Formulate the Floquet Matrix (see Eq. 9)

The Fourier coefficients are now represented as matrices, according to Eq. 40.

4.2.4 Calculate the Eigenvalues of the Floquet Matrix

Diagonalization of this Floquet matrix will provide the eigenvalues of this matrix.

In this example, the calculation of the eigenvalues needs to be approximated by

numerical techniques. In principle the Floquet matrix is infinite. For numerical

calculation, the matrix must be truncated to determine the eigenvalues. This

truncation will introduce numerical errors. According to Eq. 26, eigenvalues are

not unique numbers, but should follow the pattern k0 - i n xr (Farkas 1994;

Shirley 1965). If the truncated Floquet matrix is extended, higher orders of

n should appear. Eigenvalues which do not follow this pattern, are not the sought

values, but numerical errors caused by the truncation. The eigenvalues of the

Floquet matrix are in general complex, because in the evolution of interacting

subpopulations, oscillations could occur. The imaginary part of k0 will reflect

these oscillations. However, the real part of the dominant eigenvalue determines

whether growth occurs. For this reason we focus on the real part. The maximum

value of the real parts of the eigenvalue rmax determines the evolution of the

epidemic.

4.2.5 Compose the Floquet Ratio RT from the Real Part of the Largest Eigenvalue

The Floquet ratio is given in Eq. 36. If RT [ 1 i, major outbreaks could occur and if

RT \ 1 only minor outbreaks could occur.
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5 Discussion

We derived a methodology to determine the stability of the null-equilibrium for

biological systems which are periodically forced by the environment. This

formalism can be used for simple models in which one or a few parameters are

forced to change periodically in time and for complex models including many

forced time-periodic parameters. For simple models analytical results for the

eigenvalues of the Floquet growth matrix KF can be achieved. The real part of the

dominant eigenvalues rmax of KF leads straightforward to the Floquet ratio RT,

which has the well-known properties of a threshold quantity. For complex models a

numerical calculation of rmax is required, while all other steps in the determination

of RT remain analytical.

The formalism can be used for systems with a stable external forcing and a

known periodicity. Examples are seasonality and the circadian rhythm which force

the biological system by temperature and light conditions, and which have a regular

period (i.e. of 365 days for seasons or 24 h for the circadian cycle).

Several methodologies were previously put forward to describe forced period-

icities in biological systems. Analytical solutions for specific problems are proposed

by Bacaer and Guernaoui (2006). However, in their approach for each new problem

new solutions need to be constructed using the simplicity of the system. A general

numerical approach using Floquet theory is put forward by Klausmeier (2008). This

is not limited to specific problems. However, this technique does not provide an

analytical framework for theoretical considerations. Several attempts for such

analytical framework were discussed by Heesterbeek and Roberts (1995a, b). They

investigated the suitability of the Floquet multiplier as a threshold quantity for

epidemic growth. According to them, this quantity is probably the easiest threshold

quantity to calculate numerically. They were not very satisfied with this quantity,

because at that time an analytical Floquet framework was not available, in which

analytical solutions and analytical approximations for this quantity could be

derived.

We provided such Floquet framework in this paper. It is an analytical framework,

including both analytical and numerical approximation methods. Within this

framework the Floquet ratio is the natural threshold quantity. We offer a

straightforward 5 step recipe, by which analytical solutions or analytical approx-

imations of this threshold quantity could be derived. If numerical solutions are

required, this is only needed in the fourth step for the calculation of the eigenvalue

of the Floquet growth operator.

Within this natural framework we focused on the Earth’s rotation as the single

driving force of the periodicity. In the future, this can be extended in two ways.

Firstly, a forced periodicity from another cause could also be described within this

framework. The phase variable u would have a different origin and therefor a

different meaning, but the mathematical formalism remains the same. Secondly, we

present an example containing the seasonal rhythm and the circadian rhythm and we

dealt with that by ignoring the relative fast circadian rhythm. A combination of

several forced periodicities could be treated within a multi mode Floquet approach

(Leskes et al. 2010). For each periodicity a phase variable should be defined where
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after the framework presented in this paper provide the tools to describe such a

system. Although the procedure to formulate the multi mode Floquet matrix is

straightforward, it is laborious to operate due to the large number of terms.
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