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Abstract

The strength and defects of wave mechanics as a theory of chem-
istry are critically examined. Without the secondary assumption of
wave-particle duality, the seminal equation describes matter waves and
leaves the concept of point particles undefined. To bring the formal-
ism into line with the theory of special relativity, it is shown to require
reformulation in hypercomplex algebra that imparts a new meaning to
electron spin as a holistic spinor, eliminating serious current misconcep-
tions in the process. Reformulation in the curved space-time of general
relativity requires the recognition of nonlinear effects that invalidate
the practice of linear combination of atomic orbitals, ubiquitous in
quantum chemistry, and redefines the electron as a nondispersive wave
packet, or soliton.
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1 Introduction

Solution of Schrodinger’s wave equation was greeted with the expectation of
providing a mathematical tool for the easy simulation of chemical processes.
For a variety of reasons it turned out not to be the expected panacea and
the situation was further complicated by the incorporation of some dubi-
ous assumptions that misled the chemical community for more than half a
century.

This communication reviews some successes of wave mechanics applied
to chemical problems, but went largely unnoticed, due to persistent use by
theorertical chemists of flawed algorithms such as orbital hybridization and
linear combination of atomic orbitals. Recent developments, inspired by
taking cognisance of space-time topology and leading to a proper under-
standing of electron structure and spin, matter waves, and nonlinear effects,
are briefly outlined.



2 The Model

The nuclear model of the atom requires that interatomic interaction be
visualized in terms of extranuclear valence electrons, wave-mechanically as-
sociated with atomic cores. The wave equation has been solved only for the
hydrogen electron and this solution must perforce serve as a model for all
other atoms. The physical meaning of the wave function is not beyond dis-
pute and Madelung’s hydrodynamic interpretation [1], which comes closest
to the intuitive chemical model of an atomic nucleus, spherically surrounded
by a diffuse charge cloud, is assumed.

A spherically symmetric central field is therefore assumed for all free
atoms. Any interaction distorts the spherical symmetry and the wave func-
tion of the electron in interaction will be modified accordingly. In three
dimensions the allowed modes of distortion are described by Laplace’s equa-
tion, which is a linear differential equation.

Irrespective of the physical nature of an electron or the interpretation
of the wave function, standard procedures apply in solving the equation.
The basic assumption is that a three-dimensional hydrodynamic potential is
adequately approximated by the product of three one-dimensional functions:

V =Vi(xy) - Va(xa) - Va(x3)

Most commonly the independent variables are defined as either cartesian or
spherical polar coordinates.
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Separation of the variables is achieved by substituting the product function
into Laplace’s equation, which in cartesian form reads
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After differentiation and division by V' it reduces to
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X da? +?dy2 +Edz2 =0.

Each term is a function of one variable only and therefore independently
equal to some constant, e.g.

d?X

— =KX.

dx?
By defining the constant as a squared quantity the resulting Helmholtz equa-
tion is solved by an exponential function. For K = k2, X (z) = cexp(Lkiz).
Noting that e® - e® = e(@t?) | the overall solution follows as

V(ZB? y’ Z) = €k1$+k2y+k32 9y

such that kf + k3 + k3 = 0.

The simplest solution has k = k3 = k3 = 0. This amounts to three or-
thogonal linear distortions, which is at variance with the distortion expected
from a directed chemical interaction, which would be better described by as-
suming k1 = itky , k3 = 0, to give

X = cleﬂ:kx , Y = C2e:|:’ik‘y , 7 — C3e:|:k‘3z
i.e.
Vi = Clek(ac:tiy)
V, = tcoz

Given that a complex exponential is mathematically equivalent to a rotation,
the complex pair, V}, is interpreted as circular distortions, in opposite sense,
perpendicular to the polar Z direction. The polar coordinate that identifies
the direction of interaction, is labeled arbitrarily.

To analyze the problem in spherical polar coordinates the mathematics is
more complicated, but the result is the same. In this case solution is effected
by separation into a radial equation, solved by spherical Bessel functions,
and an angular equation solved by spherical surface harmonics. The set of
surface harmonics, equivalent to the cartesian functions considered before,

are of the form:
3
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The cartesian result follows from Euler’s formula
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and the cartesian—polar—transformation.

In chemical texts frequent use is made of the property of linear differen-
tial equations that any linear combination of solutions constitutes another
solution. One such exercise is to make linear combinations of two complex

harmonics:
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Noting that Yy = z/r, the outcome is

effectively amounting to a m/2 rotation of the polar axis from Z to X. It
is readily demonstrated [2] that any rotation of axes corresponds to some
linear superposition, and wvice versa.

3 Wave Mechanics

Wave-mechanical analysis of diatomic interaction develops along similar
lines. The formalism is based on Schrédinger’s simulation of the electronic
behaviour on an isolated hydrogen atom. Without specifying the physical
nature of the electron it is assumed to interact with the central electrostatic
field of a stationary proton. The general three-dimensional wave equation
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is modified in terms of de Broglie’s postulate that relates wavelength, A,
to mechanical momentum, p, through Planck’s action constant, h = pA, for
matter waves [4]. After separating space and time coordinates the amplitude

equation
2m
2

which is used to analyze chemical problems, is an eigenvalue equation for
kinetic energy, closely related to Laplace’s equation.

In polar coordinates the equation separates into radial and angular parts,
the latter identical to spherical surface harmonics. The radial function
specifies the electronic energy in the central field, with potential energy

of V = e%/(4megr) at a point distant r from the proton.



3.1 Hydrogenic Wave Functions

The eigenfunction solutions of the amplitude equation are more commonly
simply known as wave functions. A wave function in polar coordinates is a
product function of the type:

¥ =R(r)-6(0) - ().

The eigenvalues of each type are characterized by a set of quantum numbers:

R(r) : n=1,23... (Principal quantum number)
O@) : 1=0,1,2,...,(n—1) (Orbital quantum number)
D(p) @ mp=—l,...,+l (Magnetic quantum number)

The total energy of the electron is specified by the principal quantum num-
ber, E o —1/n?. As mentioned before, the angle-dependant Y (6, ¢) are
the Laplacian surface harmonics. In wave-mechanical practice they are in-
terpreted as angular-momentum eigenfunctions. This interpretation had
clearly been carried forward from Bohr’s planetary model, which treated the
electron as an orbiting particle. In the wave-mechanical model this inter-
pretation leads to an awkward dilemma in the case where [ = 1 and m; = 0.
The orbital quantum number would specify non-zero angular momentum
with a contradictory zero component (m; = 0) in an applied magnetic field.

The standard interpretation is clearly inadequate and casts some doubt
on the assumed particle nature of the electron. However, a more convincing
interpretation will have to await a more detailed analysis.

The particle model causes another interpretational problem. Chemical
intuition, in line with all experimental evidence, pictures the hydrogen atom
as a non-polar spherical object. Like the two-dimensional planetary model,
such an atom cannot be rationalized in terms of an electronic particle that
orbits the nucleus at high speed, without radiating away its energy.

The alternative, according to the Copenhagen interpretation of quantum
mechanics, considers the wave function as describing a probability wave that
controls the electronic particle. Although the nature of the wave remains
unspecified, its effect on the electron is that it may appear, at any time,
at any point, with equal probability. Given a probability sphere that limits
the extent of the atom, the electron is potentially present, at any given
instant, at all points within the sphere. It can be localized at any point,
chosen by an external observer, using a suitable probe. This is the picture,
which, with little variation, is presented by virtually all textbooks as the
quantum-mechanical description of the hydrogen atom.

This interpretation has some serious philosophical implications. It is
immediately obvious to be at variance with an objective reality. Without
a measurement there is no electron. This concept had been refined to the
point where it is seriously asserted [5] that ‘the moon is demonstrably not



there when nobody looks’. Another complication is that the electron oc-
curs with equal probability at all points until it is located somewhere by
a measurement, which is said to “collapse the wave function”. The elec-
tron instantaneously ceases to exist at all other points. The only way in
which information of the measurement can be broadcast over all space, is by
“spooky interaction at a distance”, in direct conflict with the special theory
of relativity.

This weird behaviour emerges only with the assumption of an electronic
particle, despite the overwhelming evidence that a beam of electrons under-
goes diffraction in the same way as electromagnetic waves of X-ray wave-
length.

By giving up the identification of Schrédinger wave functions with proba-
bility waves, an obvious alternative is identification with real physical matter
waves, as was consistently insisted on by the author of the wave equation.

3.2 Non-hydrogen Atoms

In the same way that a classical many-body problem defies mathematical
analysis, Schrodinger’s equation for non-hydrogen atoms cannot be solved in
closed form. Approximate simulations are all based on the hydrogen results,
augmented by spectroscopic evidence, and the unrealistic assumption that
all electrons behave according to the central-field harmonics of the hydrogen
model. Available electronic levels on any atom are assumed to precisely
follow the calculated hydrogen spectrum, without any guidance on the way
that electrons are distributed over the available levels in the ground state.

A useful assumption, designed to visualize wave mechanics, proposed
that each electron should be confined to the wave-mechanical analogue of
a Bohr orbit, dubbed an orbital, with a unique set of quantum numbers,
n,l,m;. However, in order to correlate with atomic spectra and the periodic
table of the chemical elements it was further necessary that each orbital
should accommodate two electrons.

The way in which a beam of silver atoms splits into two distinct compo-
nents in an inhomogeneous Stern-Gerlach magnetic field was interpreted as
arising from two possible orientations of the magnetic moment of an electron
in a singly-occupied atomic orbital. It was eventually agreed that the ob-
served magnetic moment was associated with intrinsic angular momentum,
called spin, carried by the electron.

The concept of spin is an entirely non-classical notion, but ironically it
does not appear in wave-mechanical analysis either. It entered into physical
science as an empirical concept, assumed to be described by an additional
quantun number, s. Based on the observation that the degeneracy of an [
sub-level amounts to 2[4 1, the two-fold variability associated with spin was
interpreted to imply 2s +1 =2 i.e. s = 1/2, ms = £1/2. It has become
standard terminology that each atomic orbital can accommodate only two



electrons of opposite spin, without precise definition of an orbital. A more
meaningful proposition is that each electron in an atom is characterized by
a unique set of four quantum numbers, n, [, m;, ms, known as the exclusion
principle.

Over the years the orbital concept has acquired a completely different
meaning in chemical bonding theory. In the context of real atomic orbitals it
occurs in contradiction of the exclusion principle. In particular, the rotation
of cartesian axes on linear combination of complex wave functions, as dis-
cussed before, was misinterpreted as creating a three-fold degenerate set of
real orbitals, with common m; = 0, in conflict with the exclusion principle.
To avoid further confusion it is recommended that the term orbital should
finally be abandoned and eliminated from chemical terminology.

Wave-mechanical simulation of the electronic structure of non-hydrogen
atoms is done by the method of a self-consistent field, also known as Hartree-
Fock simulation. Additional electrons are added to the hydrogen system
with suitably increased nuclear charge. A radial distribution function for
each electron is variationally optimized in turn, within the central field of
the nucleus and all other electrons, assuming the (n,[) multiplet structure
as in hydrogen to apply, until self-consistency is reached. The major com-
plication arises from the need to incorporate inter-electron repulsions. The
angle-dependence for each electron is assumed to be correctly described by
the corresponding hydrogen harmonic functions. The latter are strictly de-
fined in a central field, which is approximately valid only for the outermost
electron in the system.

3.2.1 Compressed Atoms

Normalization integrals in HF analysis are calculated over all space and the
final result therefore refers explicitly to isolated atoms. To allow for the effect
of the environment, as in a chemically crowded system, the normalization
should be terminated at a suitable finite value of the radial distance. This
is equivalent to isotropic compression of the free atom.

The effect of isotropic compression is to displace all electronic energy
levels to higher values. Compression is achieved [6] by repeating HF simula-
tion under boundary conditions that restrict the electron density to a sphere
of radius r¢ through a multiplication factor of

\P
S:exp[—(r> } , for p >>1
0

before normalization. The process is continued with decreasing ry until at a
critical compression radius the most energetic electron in the system reaches
the ionization limit. The electron is decoupled from the field of the atomic
core and finds itself in an impenetrable hollow sphere at constant potential,
with ground-state energy, E = h?/(8mrg)?.



When compressed to its ionization radius the decoupled (valence) elec-
tron is spread over a sphere of uniform density, with an effective wave func-
tion given by the step function,

w(r) = V/5efimn () 8

where c is a constant and n the principal quantum number according to the
HF shell structure.

Physically the activated valence electron is pictured as a standing spheri-
cal wave that encloses the atomic core, the size of which is allowed for by the
constant c. It is argued that in this state the electron is free to interact with
another similarly activated electron wave, resulting in a single wave that
envelops both atomic cores as a diatomic molecule. The radii of spherically
confined waves, as defined here, can be calculated directly from the maxima
of SCF wave functions [7, 8] normalized over spheres of constant density, as
re = /3u?(r)/m. This entire calculation can be duplicated by the analysis
of atomic wave structures, using elementary number theory [9].

The two sets of radii are remarkably alike and promising as a basis for the
simulation of generalized interatomic covalent interactions using the effective
wave function.

3.2.2 Generalized Heitler-London Method

Simulation of covalent interaction was first performed by Heitler and London
for Hy, by variation of a linear combination of 1s atomic wave functions. To
model the more general case of homonuclear diatomic molecules the inter-
acting atoms in their valence states are described by monopositive atomic
cores and two valence electrons with constant wave functions. Assuming the
cores to be clamped in fixed positions the electronic motion is described by
the Schrodinger equation

2
Hy = <—2hmv2+v> Y = Ev

In atomic units! length is measured in units of ag, energy in rydberg units
(27.2 €V), and the Hamiltonian operator is formulated as:

H=—(Vi+V3)/2— (1/ra1 + 1/ra2 + /11 + 1/142) + 1/r12 + 1/R

with all variables as in the diagram:

Im=h=e=4dmen =1



Electrons

Cores

The molecular wave function is defined by the combination of atomic wave
functions:

¥ =1a(1) - Pu(2) +1a(2) - (1)
which ensures equal sharing of exchanged electrons. At given internuclear

distance the ground-state energy-eigenvalue solution is obtained by integra-
tion of the differential equation over all space:

B [ wHpdr
[ pdr
The mathematical procedure consists of well-documented textbook material

[10].
If the valence-state wave functions are written in their simplest, hard-
sphere form,

Y(r) = +/3c/dmn/ro, 0 <r <rp, ¢ =0.46

The Heitler-London integrals can be evaluated directly by summation over
the atomic ionization spheres.

The Heitler-London calculation, without further modification, applies
only to homonuclear first-order interaction. However, it could be modi-
fied [11] by a few simple assumptions to deal with general heteronuclear
interactions of all orders numerically. The published results are in excellent
agreement with experiment.

Remark: The results obtained for Hy by the method of James and Coolidge
[12], with wave functions constructed numerically by linear combination of
hundred or more terms, are indisdinguishable from the most accurate spec-
troscopically measured values. Such extensive superposition must inevitably
result in uniform density as in the valence state proposed here for generalized
Heitler-London simulations. The success of this scheme is then no longer
surprising.

3.3 The Quantum Potential

Madelung’s hydrodynamic interpretation [1] of Schrodinger’s equation was
based on assuming a wave function in polar form with real amplitude R and



phase S, ¥ = Rexp(iS/h). Substituted into the time-dependent equation,

ov R,
LoV [ hT v
ih 5 < 2mv +V) ,

followed by the separation of real and imaginary parts, it results in a conti-
nuity equation,
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and an analogue of the classical Hamilton-Jacobi equation:

89S  (VS)?2 K
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It differs from the classical equation only in the appearance of the term

VPR

Vo= 2mR

now generally known as the quantum potential.

Madelung interpreted R? = p(7) as the density of a continuous fluid with
stream potential v= V.S/m to define hydrodynamic continuity. In this case
the ‘quantum potential’ arises in the effects of an internal stress in the fluid.

This promising model could not be reconciled with the conviction of an
electron as a particle, which persisted despite the conspicuous mathemati-
cal evidence of a wave structure. Subsequent efforts by de Broglie, Bohm,
Takabayasi, Holland and others, to develop the hydrodynamic model into
an alternative ontological theory, all stumbled on the notion of particle-and-
wave. The first meaningful alternative of an electron as a spherical standing
wave is perhaps due to Milo Wolff [13], but the impact of his work has been
minimal. However, it is in satisfying accord with Madelung’s model, assum-
ing all extranuclear electrons to coalesce into a spherical composite standing
wave with a nodal structure, defined by Schrédinger’s equation, that marks
the boundaries of the quantum shells.

3.3.1 Electronegativity

The quantum-potential concept explains the paradoxical conclusion that a
spherically confined valence electron has neither kinetic nor potential energy.
The answer is that the non-zero ground-state energy must be quantum po-
tential energy. By recognizing this as the chemical potential of the valence
state [14] it directly defines the elusive concept of electronegativity.

3.3.2 Non-local interaction

As the expression for quantum potential contains the variable R in both
numerator and denominator it may be argued not to fall off with distance

10



and hence could mediate non-local interaction. However, this is pure con-
jecture and its effects are more likely confined to local holistic systems, such
as molecules [2].

4 Space-Time Effects

A constant source of unease that plagued the probabilistic interpretation of
wave mechanics since its inception, has been the conflict with the theory of
relativity. The way in which a collapsing wave function transmits informa-
tion defines a non-local effect, in contrast to the basic premise of relativity
theory that the finite speed of light can never be exceeded.

This discrepancy amounts to more than a problematic interpretation
and may be traced back to the mathematical formulation of the the two
theories. Whereas wave mechanics is defined in three-dimensional space,
relativity is a four-dimensional theory in space-time, which implies math-
ematical equivalence of space and time coordinates. A comparison of the
transformation between relatively moving frames of reference, as defined in
classical Galilean relativity and by the relativistic Lorentz transformation,
highlights the difference. For relative motion along the z-coordinate one

has:
Galilean Lorentzian

¥=xz—vt 2=(x—vt)/B, B=+1—02/c?

t=t t'=(t—vz/c?)/B=pt
Although the expressions become identical in the limit where v << ¢, the
Lorentz transformation demands that the electromagnetic field only exists in
four-dimensional (Minkowski) space-time of special relativity. The invariant
separation between points in Euclidean space and Minkowski space-time
compares like:

P =2+ +22 vs d*=af+ ot +ad+ad, xo=ict
Whereas the d’Alembertian expression,

10V 0%V 9*V  9*V 0%V _0

2 ot2 ~ 0x3  Ox? Oz 023

allows separation of space and time variables in Euclidean space it is for-

bidden in Minkowski space-time. In this sense Schrodinger wave mechanics

is incomplete, as claimed [15], but never convincingly demonstrated by Ein-

stein. Solution of d’Alembert’s (4D Laplacian) equation, without separation
of the variables, requires the use of hypercomplex algebra.

0%V = V2V

4.1 Electron Spin

On writing the Lorentz transformation in the form of a 4 x 4 matrix it is
recognized as a four-dimensional complex rotation, which on closer scrutiny
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reveals the same characteristics as the electron spin function. The simplest
formulation of the Lorentz rotation is in terms of quaternions, the elements
of four-dimensional hypercomplex algebra. It is the same algebra first use
by Maxwell to define the electromagnetic field.

In the same way that two real numbers may be combined to create a
complex number a quaternion results from the combination of two complex
numbers, v = a + ib and v = ¢ + id:

3
qg=a+ib+je+kd; q:ao—l—Zaiei
i=1
qgx =a—1ib— jc—kd

where the e; are generalizations of v/—1, in matrix notation:

(10 (i 0 (01 (0 i
“No1 )% \o i) 2=\ 10) % o

with the rule of composition: i? = j2 = k? = ijk = —1. The d’Alembert
equation has hypercomplex quaternion solutions, also known as spinors.

The quaternion equivalent of Euler’s equation for a complex number,
z = re'? follows as

HCatiBHr) — cosf 4 sinf(ia + jB + k) ,
an exponential of unit length. The general quaternion in the form
Qexpl(ia+ jp + k)

represents a four-vector of length ). Unlike complex algebra, quaternion
multiplication is not commutative. By analogy with complex exponentials,
the product of two quaternions describes complex rotations in the same
way that complex numbers correspond to rotations of real vectors?. It is for
this reason that quaternions feature in the Lorentz transformation of special
relativity and define spin as four-dimensional action.

Consistent with the definition of spin in units of h/2 = h/4w, it defines a
rotation of period 47, unlike rotation about an axis that repeats the original
arrangement after 2. In three dimensions this is known as spherical rotation
[16] or rotation about a point, visualized by rolling a coin around a second
stationary coin.

2As the operation i> = —1 represents a 180° rotation on the real line the imaginary

number i represents a rotation of 90°. Likewise the 4, j, k in a quaternion represent three
orthogonal 90° rotations.
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The original arrangement is repeated only after rotation of 4w. It rep-
resents an element of four-dimensional symmetry, which does not appear in
three dimensions.

Two perennial mysteries of quantum theory are immediately resolved by
this observation: the inability to derive electron spin analytically in three-
dimensional wave mechanics and the unexpected commutation properties
of quantum-mechanical pairs of conjugate variables. Quaternion variables
do not commute. The obvious answer is to find quaternionic solutions of
d’Alembert’s ‘matter-wave equation’, also known as the Klein-Gordon equa-
tion, to replace traditional quantum theory. The theoretical justification of
this proposal is that only the theory of relativity can account for the nature
of the electromagnetic field and only in Minkowski space-time. All known
quantum phenomena are intimately related to this same field and hence
cannot be characterized correctly in three dimensions. It explains why spin
variables must be added empirically to 3D quantum models, such as Dirac’s
equation.

To solve Dirac’s equation it is necessary to separate space and time
variables, which destroys the quaternionic spin function, to be re-inserted
by hand [17]. The common textbook statement that spin is a relativistic
effect results from a misreading of Dirac theory. The more correct statement
is that spin is a four-dimensional phenomenon. It is measured in units of
action, the same as angular momentum, which is two-dimensional (h/27)
and one-dimensional vibration (h).

Mechanical models to demonstrate the operation of spherical rotation
[16, 18] elucidate the mechanism whereby an isolated spinning region of
space moves through the medium without developing shear in a surround-
ing surface of discontinuity. The entanglement that develops on cylindrical
rotation of 27 relaxes, almost miraculously, after 47 rotation perpendicu-
lar to an initial half turn. The composite motion is more like a continuous
wobble than a rotation and the three dimensions of space participate sym-
metrically in the motion. The initial arrangement is restored after each
rotation of 47 and only a half-frequency cyclical wave of strain is generated
in the medium.

There is no transfer of energy and the spinning core may be likened to a

13



dispersion-free wave packet (soliton), or a standing wave trapped in a cavity.
If an electron is to be modelled after a spinning element in continuous space
it must rotate in spherical mode, surrounded by an undulating, wave-like
region, related to a de Broglie wave; with elementary waves of Compton
wavelength (Zitterbewegung) in the core.

4.1.1 Non-local Effects

The paper [15], often referred to by the acronym EPR, based on the initials
of the three authors, describes how the probabilistic quantum model im-
plies instantaneous non-local communication, in conflict with relativity the-
ory. The most readable account [19] of the effect considers the separation
of paired spins, carried apart by molecular fragments, but still correlated
through a common wave function. A spin measurement on one fragment
collapses the wave function and instantaneously communicates the outcome
of the measurement to the second fragment. Without interfering with the
second spin in any way its orientation is therefore fixed at a distance.

The fallacy of this argument is now exposed by better understanding of
the holistic nature of a four-dimensional spinor. In this view the separated
spins are not linked by a common wave function, but by two wave functions,
correlated in the sense of describing two spinors of opposite chirality. This
correlation remains fixed in space-time and independent measurements must
always reveal, not create, paired spins. There is no further need of the
postulated collapse of a wave function as if it is some physical object.

4.2 Matter and Curvature

A comprehensible world must be free of singularities, the most bothersome
of which is infinity. The only way to get rid of it is to give up Euclidean
geometry in favour of a system which is closed, both physically and math-
ematically. This is the fundamental assumption of general relativity. As a
theory of the gravitational field a reciprocal relationship between space-time
curvature and the existence of matter is postulated. The implication is that
Fuclidean space-time is devoid of matter and energy and should be viewed
as a linear featureless void.

Nonlinear structure develops in curved space-time, like ripples on a pond.
With increased curvature more turbulence develops as elementary units of
generated action coalesce into more massive structures that cause local cur-
vature effects and attract more matter from the vicinity to itself. The end
result is the observed universe in dynamic equilibrium. Occam’s razor pre-
dicts a one-sided closed system, as realized in projective topology and visu-
alized in two-dimensional projection as a Md&bius strip. The double cover
of the Mébius strip demonstrates a one-sided surface with involution, and
separated from itself by a two-sided interface. In four-dimensional reality
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the interface encloses the double cover on all sides to produce an isolated
model universe that terminates in the vacuum, without an outside.

Like a circle, four-dimensional space-time has no beginning nor end,
neither in space nor time. There is no infinity and no need of creation.
Everything is just there, in energetic equilibrium and effective symmetry
across the interface.

The reason why this does not rhyme with common perception is because of
evolutionary conditioning to perceive the world in three dimensions. Topolo-
gists refer to perception in local Euclidean space, tangent to the underlying
four-dimensional reality. The linear science formulated in tangent space,
although a good approximation, fails to take into account, not only four-
dimensional detail, like spin, but also nonlinear effects.

4.2.1 Non-linearity

The hydrodynamic analogy is invoked once more to emphasize the impor-
tance of the nonlinearity that characterizes all macroscopic systems. Linear,
or laminar, flow is a delicate condition that develops nonlinear turbulence
on the slightest disturbance.

The solutions of a linear differential equation remain valid in superpo-
sition, much like the layers of a liquid in laminar flow. Non-linear differen-
tial equations do not have the superposition property and systems of any
complexity can therefore not be described correctly by linear differential
equations.

The way in which solutions of the linear Schrodinger equation are rou-
tinely used in linear superposition to simulate the behaviour of complex
chemical systems, is therefore not justified. The perennial problems of
molecular quantum chemistry [20] are manifestations of this oversight.

4.2.2 The soliton model

The idea of a dual wave-particle nature is now rarely challenged anymore
and found its way into all textbooks, although Schrédinger never abandoned
the wave-packet description for an electron. The standard objection was the
dispersive property of linear wave packets.
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The construction of non-dispersive nonlinear wave packets, in the form
of solitons, as models of elementary particles, is now routinely practised [21].
The attractive idea is that a running wave transforms spontaneously into
solitons when it enters a nonlinear environment.

The formation of a soliton can be understood as the balance between
linear dispersion and nonlinear cresting of a wave packet.

/E+A:A

The resulting soliton is persistent and moves without change in shape. It is
described by a linear differential equation with an added nonlinear term.

Propagation of a wave through a nonlinear medium, like the restriction
of laminar flow in hydrodynamics, causes cresting of the wave, resulting in
a wave train of longer wavelength.
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It is in this form that an electronic wave train with de Broglie wavelength
that depends on electric field strength undergoes diffraction. In media at an
increased level of nonlinearity, such as a Wilson cloud chamber, the wave-
train separates into individual solitons, each with the mass, charge and spin
of an electron, and for all practical purposes appear to behave like point
particles. The same thing happens to an electromagnetic wave at a metal
surface, in which case the resulting solitons cause the photoelectric effect.

Recognition of an electron as a flexible wave structure makes the con-
cept of wave-particle duality redundant. It also disposes of the need to
simulate wave motion in terms of probability particle density and of quan-
tum uncertainty, which is frequently ascribed to the commutation properties
of conjugate variables, such as position and momentum. However, this is a
well-known phenomenon associated with all forms of wave motion.

4.2.3 The Quantum Limit

The perceived fundamental difference between microscopic quantum systems
and macroscopic classical systems occurs because of the nonlinearity of the
latter. As pointed out before the classical nonlinear Hamilton-Jacobi equa-
tion differs from the linear Schrédinger equation in the appearance of the
quantum potential term and because of this difference there is no smooth
transition between the classical and nonclassical regimes. The obvious rem-
edy is to add the quantum-potential term to the traditional Schrodinger

16



equation. Substitution of ¥ = Rexp(iS/h) into the resulting nonlinear
Schrédinger equation

th— =

ov h?
ot

——V?+V + 1@) v,

2m
now transforms it directly into the HJ equation, which implies a seamless
transition between quantum and macroscopic systems, without a quantum
limit.

4.2.4 Antimatter

Matter and antimatter are chiral opposites that annihilate on contact. The
preponderance of matter in the observable universe becomes difficult to ra-
tionalize. In a universe of projective topology it becomes a non-issue.

The effect of an involution in space-time amounts to inversion of chirality
and hence conversion of matter into antimatter. Directed motion in the
double cover gradually experiences the involution and conversion. After
displacement of 27 the conversion is complete and after 47 the original
configuration is restored. There is only matter, with pliable chirality that
adapts to orientation in space-time.

5 Conclusion

There is ample evidence that the pioneers of wave mechanics aimed at for-
mulating a model that would correctly reflect the wave nature of matter,
Lorentzian invariance and nonlinearity. As a preliminary approximation
Schrodinger proposed a linear non-relativistic equation that could be solved
in closed form. Anticipating a nonlinear non-dispersive wave packet as a
model of elementary matter he demonstrated [22] how this could be forged,
using harmonic-oscillator wave functions of high quantum number.

Schrodinger’s ideal was never realized in the face of serious opposition
from the Copenhagen camp that favoured probabilistic particle mechanics
and, by now it is all but forgotten. As a result wave mechanics as a funda-
mental theory of matter has never come to fruition. As it stands, it gives a
convincing, but incomplete description of atomic spectra, a tolerable simu-
lation of one-electron chemical interaction, a qualitative guide to elemental
periodicity, empirical incorporation of electron spin, confusing exposition of
quantum measurement based on wave-function collapse and total inconsis-
tency with the theory of relativity.

In the hands of the chemist wave mechanics has suffered further distor-
tion. Substitution of the orbital concept for wave functions paved the way for
the introduction of fanciful ideas as quantum concepts. Some of these spu-
rious concepts, through repetition in generations of textbooks have gained
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the status of fundamental science. The creation of “real atomic orbitals” by
the linear combination of complex wave functions is but one example. It is
as if some authors, who appreciate the fallacy of the operation, nevertheless
avoid direct mention of the deception, without giving up the result. The
following quote [23] is a typical example of the way in which an unpalatable
fact can be disguised.

It is usual to depict the real and imaginary components, and call
these orbitals p, and p,:

1 3 1/2 ‘
Pr = ﬁ(p— —py) = <47T> Rp1(r) sin 6 cos ¢

. 1/2
i o
Py = ﬁ(p_ +pi) = <47r> Ry (r) sinf sin ¢

... the real forms are more appropriate when x— and y—axes are
well defined, such as in non-linear molecules. All three orbitals
(pz, py and p.) have the same double-lobed shape, but aligned
along the x—, y—, and z—axes respectively.

What they neglect to point out is that all three hybrid wave functions also
have the same magnetic quantum number (m; = 0), in violation of the
exclusion principle.

It is standard fare to claim that the real orbitals do not require quantum
numbers, without admitting that this identifies them as classical constructs.
It is helpful to call them orbitals, and not wave functions, in this instance.
The reason why chemists cling to the idea of hybridization, without mention-
ing it by name, is because without it the LCAO procedure that underpins
all of quantum chemistry has no validity.

In line with the quantum philosophy of “shut up and calculate” chemists
maintain that “quantum-chemical” computations, despite obvious deficiences,
are the sole means available for the theoretical simulation of electronic be-
haviour in molecules. This attitude reflects no more than reluctance to
abandon a profitable comfort zone and will not be pursued here any further.

The major deficiency of theoretical chemistry is a credible model of
molecular structure and this is where wave mechanics is least effective. The
current practice of optimizing observed structures in terms of semi-empirical
principles has no future. It is not clear where improved understanding would
originate, but a useful start could be a complete re-assessment of the concept
of matter waves [4] against the background of nonlinear four-dimensional
curved space-time. As a sobering side effect this might lead to rejection
of the quasi-philosophical baggage of unreality and mysticism that clouds
quantum theory.
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