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In three experimental tasks Stephen and Mirman (2010) measured gaze steps, the distance
in pixels between gaze positions on successive samples from an eyetracker. They argued
that the distribution of gaze steps is best fit by the lognormal distribution, and based on
this analysis they concluded that interactive cognitive processes underlie eye movement
control in these tasks. The present comment argues that the gaze step distribution is pre-
dictable based on the fact that the eyes alternate between a fixation state in which gaze is
steady and a saccade state in which gaze position changes rapidly. By fitting a simple mix-
ture model to Stephen and Mirman'’s gaze step data we reveal a fixation distribution and a
saccade distribution. This mixture model captures the shape of the gaze step distribution in
detail, unlike the lognormal model, and provides a better quantitative fit to the data. We
conclude that the gaze step distribution does not directly suggest processing interaction,
and we emphasize some important limits on the utility of fitting theoretical distributions

to data.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

This article comments on Stephen and Mirman'’s (2010)
approach to determining the nature of the cognitive
processing that underlies eye movement behavior. The
starting point of Stephen and Mirman’s article is the obser-
vation that examining the shape of the distribution of a re-
sponse variable can potentially provide insight into the
nature of the processes that generated the values of that
variable. In general, if the underlying processes take place
in non-interactive, serially-ordered stages, the response
variable will be distributed somewhere along a continuum
containing the normal, exponential, and gamma distribu-
tions. A completely non-interactive, staged process will
tend to result in an approximately normal distribution; if
there is modest interaction between the outcomes of the
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stages, the distribution of the variable will move in the
direction of the right-skewed (i.e., exponential and gam-
ma) distributions. As an example of a serially-ordered pro-
cess resulting in a normally-distributed response variable,
consider the time it takes to type a sentence of a given
length: This is simply the sum of the time it takes to type
letter 1, letter 2, and so on. The central limit theorem tells
us that this sum will tend to be distributed normally.

In contrast, there may be very strong interaction be-
tween processes or stages, such that the effect of each of
several processes depends on the outcome of the others;
we could model this by multiplying the values of the
underlying variables. The product of random variables is
generally not normal, but right-skewed. Indeed, this prod-
uct distribution is sometimes approximated by a lognor-
mal or power law distribution. As an example, consider
the amount of money in an investor’s portfolio after
10 years, without any new additions or withdrawals over
this period. This final quantity will depend on the amount
in the portfolio at the beginning of the period, and the rate
of return each year. If each of these quantities varies
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normally and independently, the distribution at the end of
year 10 will have the characteristics of the lognormal and
power law distributions, i.e., the modal value is at the ex-
treme left, and there is an extremely long right tail.

The novel contribution of Stephen and Mirman (2010)
was to use this distribution-based logic to address the nat-
ure of the cognitive processes that underlie eye movement
control. They measured eye movements in three experi-
mental tasks. Six subjects participated in a single feature
search task, a conjunctive feature search task, and a variant
of the visual world paradigm (Cooper, 1974; Tanenhaus,
Spivey-Knowlton, Eberhard, & Sedivy, 1995), in which sub-
jects were presented with four objects on the screen and
were instructed to click on the animal. The measure Ste-
phen and Mirman analyzed is a fairly novel one in the
eye movement literature: the gaze step, which is defined
as the Euclidean distance, in pixels, between consecutive
gaze positions sampled by an eye-tracking device (Aks &
Sprott, 2003; Aks, Zelinsky, & Sprott, 2002; Stephen,
Mirman, Magnuson, & Dixon, 2009). In the experiments,
the tracker sampled at a rate of 500 Hz, i.e., every 2 ms.
(With a constant sampling rate, gaze step is directly pro-
portional to the eyes’ angular velocity; e.g., when the gaze
step over a 2 ms period is 10 pixels, the eyes are moving 10
times as fast as when the gaze step is 1 pixel.)

Stephen and Mirman (2010) claimed that if the cogni-
tive processes underlying eye movement control are gen-
erally interactive, the observed distributions of gaze steps
should be better fit by a power law or lognormal distribu-
tion than by an exponential or gamma distribution. Using a
log likelihood goodness-of-fit criterion they found the log-
normal to be the best-fitting distribution in 17 out of 18
cases (6 subjects x 3 tasks), with the power law distribu-
tion providing the best fit for the remaining case. They ar-
gued that “these findings reveal the interactive nature of
cognitive processing and are consistent with theories that
view cognition as an emergent property of processes that
are broadly distributed over many scales of space and time
rather than a componential assembly line” (p. 154).

We begin with an observation made by Stephen and
Mirman (2010), who pointed out, based on visual inspec-
tion of these distributions on logarithmic axes, that there
were ‘“systematic departures of the empirical distributions
from the best-fitting theoretical distributions” (p. 163).
Stephen and Mirman refer to these departures as small,
but what is noteworthy in their figures is that the form
of the discrepancy between the observed data and the the-
oretical distributions is essentially the same for all 18 data
sets, with all observed distributions showing an irregular
two-hump shape that is not approximated by any of the
candidate theoretical distributions (see Figs. 4-6 in Ste-
phen & Mirman, 2010). Thus, while the distributions of
gaze steps were closer to lognormal than they were to
any of the other theoretical distributions explored in the
paper, visual inspection reveals that the gaze step distribu-
tions do not, in fact, have the shape of lognormal distribu-
tions. Consistent systematic discrepancies between data
and model ordinarily suggest that a search for an alterna-
tive model is in order. What kind of process could have
generated the idiosyncratic shape that occurs for all 18
gaze step distributions?

Here we offer a simple account of the distribution of
gaze steps, grounded in decades of empirical evidence
about how the eyes move in tasks such as the ones under
consideration here (see, e.g., Rayner, 1998; Rayner, 2009,
for reviews). The eyes transition between two states: a
fixation state, in which the gaze position is steady
except for very small corrections (microsaccades; e.g.,
Martinez-Conde, Macknik, Troncoso, & Hubel, 2009) and
noise introduced by tracker error; and a saccade state, in
which the gaze position changes very rapidly as the eyes
move to fixate a new location. Much more time is spent
in the fixation state than in the saccade state, as each fixa-
tion tends to be much longer than the saccade that follows
it. Fixations average in the range of 200-400 ms, with
much variation due to the individual and the task; sac-
cades average in the range of 20-50 ms, with much varia-
tion depending on the amplitude of the saccade. In
addition, each saccade will involve an acceleration to a
peak velocity, and then a deceleration. (See Gilchrist,
2011, for a review of the spatial and temporal characteris-
tics of saccades.)

Our main argument is that a gaze step distribution is a
single distribution in only a nominal sense: It is actually a
mixture of two underlying distributions of gaze steps, one
corresponding to fixations, the other to saccades. We pro-
ceed as follows. Making use of Stephen and Mirman'’s
(2010) data,' we first illustrate the fact that gaze steps
are organized temporally into long sequences of near-zero
values (i.e., fixations), followed by small runs of larger val-
ues, which first increase and then decrease in magnitude
(i.e., saccades). We then use a maximum likelihood tech-
nique to find the best-fitting mixture model for each of
the gaze step distributions, making minimal assumptions
about the nature of the two underlying distributions. We
show that several positive results follow: the best-fitting
parameters for the underlying distributions are in the
range one would expect a priori, assuming that these
underlying distributions correspond to fixations and sac-
cades; the cumulative distribution functions (cdfs) of these
mixtures closely mimic the shape of the observed cdfs but
the best-fitting lognormal cdfs clearly do not; the mixture
model always provides a better quantitative fit to the data
than does the lognormal; and finally, the unexplained dif-
ferences between tasks noted by Stephen and Mirman
can be easily explained in terms of the parameters of the
underlying mixtures.

2. Data

The reader is referred to Stephen and Mirman (2010) for
details of the experimental method. Six participants com-
pleted 24 trials of each of three tasks: a single feature
search task, a conjunction search task, and a variant of
the visual world paradigm. Gaze positions were recorded
by a remote SR EyeLink 1000 eye-tracker sampling at
500 Hz. The mean number of gaze steps (Euclidean dis-
tances between samples, in pixels) per participant-task
combination was 36,590 (reflecting approximately 73 s of

! Thanks to Damian Stephen for providing us with these data.
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Fig. 1. The first 1000 gaze step values, as a function of the index of the observation, for one subject in the single feature search, conjunction search, and

visual world tasks, in Stephen and Mirman’s (2010) study.

eyetracking) with a standard deviation of 9703.24 and a
range from 14,682 to 51,311.

3. Graphical display of gaze step sequences

Fig. 1 shows the first 1000 observations (2 s of data) for
a single subject, in each of the three tasks. The index of the
observation is on the x-axis, and gaze step in pixels is on
the y-axis. The data are extremely well organized into long
runs of near-zero values, followed by short periods in
which there is a sudden rise and then fall in gaze step va-
lue. Clearly the eyes do indeed transition between two
qualitatively distinct states, a long-duration state in which
the eyes are relatively immobile, and a short-duration state
in which the eyes move rapidly; within the latter state, the
eyes rapidly accelerate to a maximum velocity (i.e., a max-
imum gaze step), and then rapidly decelerate.? Moreover, it
is clear that a sequence of gaze steps will predict the next
value with great precision; we note that across the 18 distri-
butions, the serial correlation between each observation and

2 1t is worth pointing out that eyetracking devices determine when a
saccade begins and ends by means of a change-in-velocity criterion; the
beginning of a saccade is identified by determining the point at which
velocity suddenly begins to increase, based on the distances between gaze
positions across several successive samples.

the next ranged between .89 and .99. Note that this obvious
temporal structure is unexplained on any modeling ap-
proach that focuses on the overall distribution of gaze steps,
rather than on the sequence of events that gives rise to this
distribution.

4. Mixture modeling

We tested the assumption that the data for each of the
18 participant-task combinations could be modeled well as
a mixture of two normal distributions, representing the
fixations and saccades that are apparent in Fig. 1. For each
of the 18 distributions of gaze steps, we estimated the mix-
ture model parameters (the mean, u; and u,, and variance,
0? and o2, of each of the two underlying normal distribu-
tions, and the proportion of observations drawn from the
first of the two, m;) by implementing the expectation-
maximization (EM) algorithm (Dempster, Laird, & Rubin,
1977), using the normalmixEM() function in the mixtools
package (Benaglia, Chauveau, Hunter, & Young, 2009) for
the R statistical programming language (R Development
Core Team, 2009). We do not describe the EM algorithm
in detail here; the interested reader is referred to the liter-
ature. To avoid biasing the parameter estimation process,
we began each fit from the default parameters employed
by the function, e.g., assuming that the mixing proportion
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of the two distributions is .5. (Note that this procedure
does not guarantee that the optimal parameters are ob-
tained; but as is evident below, an extremely good fit
was obtained for every distribution.)

We note that prior to obtaining the mixture parameters
for each subject-task combination, we eliminated gaze
steps greater than 100 from each distribution. It was
apparent that some of the obtained high values could only
reflect tracker error or track loss; 100 pixels corresponds to
well over 2° of visual angle, given the experimental param-
eters that Stephen and Mirman (2010) report. Thus, during
the corresponding 2 ms the eyes would have to maintain a
velocity of more than 1000°/s, which is substantially faster
than the maximum saccade velocities reported in the liter-
ature (Boghen, Troost, Daroff, Dell’Osso, & Birkett, 1974;
Yee et al., 1985). Stephen and Mirman apparently did not
exclude any outliers, but we regarded this as necessary, gi-
ven the apparent physiological impossibility of moving the
eye at the rate some of the high values in the data would
imply. The top panel of Fig. 1 contains two such points,
and illustrates the fact that such extreme high values are
not continuous with the previous or following gaze steps,
consistent with the assumption that they represent track
losses; instantaneous acceleration to a very high velocity
is clearly not possible. Note, in any event, that our exclu-
sion criteria were extremely conservative. The proportion
of observations we eliminated was only .00082 overall,
ranging from no observations to .00416 of the observations
across the 18 distributions. (Moreover, as we demonstrate
below in the section “Quantitative tests of model fit,” the
mixture model outperforms the lognormal model even
without outlier exclusion.)

The obtained mixture parameters are shown in Table 1.
We begin by noting several uniformities in these parame-
ters. First, in all cases, p; (the mean of the first distribution)
is no more than .55 of a pixel. Thus, the EM algorithm al-
ways identified a component distribution consisting of
very small values. Second, the proportion of observations
that the EM algorithm identified as coming from this dis-
tribution was between .795 and .906. Third, the second dis-
tribution, which contributed between .1 and .2 of the
observations, had a much larger mean value (ranging from
4.8 to 14.6 pixels), with a relatively large variance.

In sum, all fits converged on very similar parameter val-
ues. More importantly, these are values that would be ex-
pected based on the existing knowledge of fixation and
saccade characteristics. Fixations account for approxi-
mately 80-90% of viewing time (and therefore, gaze steps),
and there is very little eye movement during fixations; sac-
cades account for the remaining viewing time, and eye
movement is quite rapid during saccades. In addition, the
eye must accelerate to its peak velocity (as shown in
Fig. 1), and decelerate from it, so the gaze steps during sac-
cades would be expected to be relatively variable, as veloc-
ity is variable.

5. Graphical display of fits

Next, we display cumulative distribution functions
(cdfs) of the log of the observed gaze steps, in Figs. 2-4,

Table 1

Best-fitting mixture model parameters for each distribution of gaze steps.
Parameters u; and p, are the means of the two underlying normal
distributions; ¢ and o3 are their variances; and 7, is the proportion of
observations from the first distribution.

Feature search 1y 1o a? a3 U3l

Subject 1 0.209 4.844 0.019 63.506 0.903
Subject 2 0.550 7.492 0.144 57.082 0.861
Subject 3 0.517 9.417 0.097 68.239 0.861
Subject 4 0.343 6.788 0.045 63.667 0.906
Subject 5 0.436 11.169 0.074 222.863 0.881
Subject 6 0.360 9.349 0.052 157.109 0.851
Mean 0.403 8.177 0.072 105.411 0.877
Conj. search I 1 a2 a3 2!

Subject 1 0.211 6.203 0.019 50.979 0.868
Subject 2 0.506 8.216 0.119 95.620 0.858
Subject 3 0.461 9.513 0.080 73.148 0.853
Subject 4 0.344 6.680 0.045 48.623 0.900
Subject 5 0.449 10.098 0.079 175.995 0.853
Subject 6 0.344 8.757 0.045 150.783 0.859
Mean 0.386 8.245 0.065 99.191 0.865
Visual world I 1o a? a3 2!

Subject 1 0.247 10.543 0.028 83.239 0.795
Subject 2 0.496 10.969 0.114 94.334 0.830
Subject 3 0.535 14.299 0.107 138.580 0.879
Subject 4 0.367 10.228 0.048 97.104 0.846
Subject 5 0.489 14.574 0.091 181.180 0.845
Subject 6 0.366 11.686 0.050 165.875 0.875
Mean 0.417 12.050 0.073 126.719 0.845

for the single feature search, conjunction search, and visual
world tasks, respectively. We superimpose on these cdfs
the predicted cdfs generated from the best fitting mixture
parameters in Table 1. In addition, we display predicted
cdfs based on the best-fitting lognormal parameters, which
we also obtained by maximum likelihood estimation.

The most obvious feature of these graphs is that the
mixture model does capture the details of the shape in
every observed cdf, while the lognormal clearly does not.
Moreover, the departure of the lognormal from the ob-
served cdf is essentially identical in every case, as the log-
normal cdf always has the same (almost linear) form. (Note
that though the log-log plots in Stephen & Mirman, 2010,
are graphically different from ours, a two-hump shape is
evident in each of their plots, and the lognormal and power
law pdfs do not capture this shape in their plots. Here we
show cdfs of log gaze step because we regard these plots
as more easily interpretable.) Clearly, the theoretically
and empirically well-motivated assumption that a gaze
step distribution is a mixture of two distributions is suffi-
cient to capture the basic shape of the observed distribu-
tions, while the assumption that it is a single lognormal
distribution does not capture this shape.>

We do note, however, that there are still systematic dif-
ferences between the empirical cdfs and the cdfs generated

3 The reader may note remarkable similarity between some of the plots.
In part, this is due to the granularity in Stephen and Mirman’s (2010) data;
e.g. the five smallest values represented in each data file are 0, .1,.14142, .2,
and .22361.
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Fig. 2. Empirical cumulative distribution function (cdf) of the logo of the gaze steps, for each subject in Stephen and Mirman’s (2010) single feature search
task. The data are represented by points; the cdf of the best-fitting mixture distribution is represented by a solid line, and the cdf of the best-fitting

lognormal distribution is represented by a dashed line.

using the mixture model. These differences are very small
compared to the deviation from the lognormal, but they
are consistent with our assumption that in fact the two
underlying distributions are probably not normal. Specifi-
cally, the gaze step distribution during fixations is bounded
at 0, and the shape of the gaze step distribution during sac-
cades will depend on the details of how the eyes accelerate
and decelerate during saccades, and on the distribution of
saccade amplitudes; we have abstracted away from these
details here, for the sake of clarity and simplicity.

6. Quantitative tests of model fit

Though Figs. 2-4 show that the fit of the mixture model
to the observed distributions is qualitatively much better
than the fit of the lognormal model, it is conceivable that
this is due only to the added flexibility the mixture model
gains from having five free parameters, as opposed to two
for the lognormal (see, e.g., Myung, 2000). To assess
whether the fit of the mixture model is quantitatively bet-
ter when it is penalized for its additional free parameters,
we computed both the Akaike Information Criterion (AIC;
Akaike, 1973) and Bayesian Information Criterion (BIC;
Schwarz, 1978) statistics for each model fit. Each of these
statistics begins with the log likelihood, and then penalizes

the model based on the number of parameters. The penalty
for increased flexibility (i.e., more free parameters) is gen-
erally greater with BIC than with AIC. For both statistics, a
smaller value indicates a better penalized fit.

Table 2 presents the log likelihood, AIC and BIC statis-
tics for each of the 18 distributions. The mixture model is
the winner in all 18 cases, by both AIC and BIC. Indeed,
the AIC and BIC statistics for the two models are never very
close, despite the mixture model’s penalty for extra param-
eters. Thus, it is safe to conclude that in all cases, the mix-
ture model fits the data better not only qualitatively, but
also quantitatively.

For completeness, in Table 3 we present the same infor-
mation as in Table 2, but where no outlier values have been
excluded. Again, the mixture model wins for all 18 distri-
butions. The difference in fit is very slightly smaller than
when outliers are excluded, which is expected, based on
the fact that the lognormal model is better able to capture
very high (and in this case, physiologically impossible; see
Fig. 1) values.

7. Differences between tasks

We also address Stephen and Mirman'’s (2010) observa-
tion of differences in the gaze step distributions between
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task. The data are represented by points; the cdf of the best-fitting mixture distribution is represented by a solid line, and the cdf of the best-fitting

lognormal distribution is represented by a dashed line.

tasks. They noted that while the advantage for lognormal
over power law, in terms of maximum likelihood, was clear
for the two search tasks, in the visual world task the fits
were somewhat more equivocal between the two distribu-
tions. They did not address the question of why this might
be the case, noting only that “task differences shifted cog-
nitive dynamics along a continuum of interaction-domi-
nance between lognormal and power-law distributions”
(p. 162).

Examination of the best-fitting mixture parameters in
Table 1, however, reveals differences between tasks that
are unsurprising, given the nature of the tasks. We note
that there are almost no differences between tasks in the
mean of the fixation distribution (). This is as expected,
based on the assumption that within-fixation eye move-
ment is due entirely to oculomotor instability and to track-
er error. On the other hand, the mean of the saccade
distribution (u,) is substantially larger in the visual world
task than in either of the search tasks. This, too, is consis-
tent with our expectations. In Stephen and Mirman’s
(2010) visual world task, there were only four objects in
the display, and these objects were relatively far apart,
requiring some very long saccades. Because maximum sac-
cade velocity increases with saccade amplitude (Boghen,
Troost, Daroff, Dell’Osso, & Birkett, 1974; Gilchrist, 2011;

Yee et al., 1985; see also Fig. 1), it is to be expected that
some saccade gaze steps will be large when saccade ampli-
tude is large.

The small differences between tasks in the proportion
of samples drawn from the fixation distribution (7;) are
also consistent with this simple account. Because the vi-
sual world task elicits some long saccades, relatively more
of the gaze steps will occur during saccades, and fewer will
occur during fixations, i.e., w; will be relatively small. In
general, it should be the case that when p, is relatively
large, m; will be relatively small, as both patterns arise
when the task involves large-amplitude saccades. In sum,
it is not only the case that the best-fitting mixture param-
eters are generally consistent with the assumption that
there are two distributions corresponding to fixations
and saccades; it is also the case that these parameters vary
between tasks in a predictable way, based on expected dif-
ferences in eye movement behavior in the different tasks.

8. Conclusion
We have demonstrated several phenomena relating to

the gaze step variable. First, the existence of two eye move-
ment states, fixations and saccades, is evident in plots of
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fitting lognormal distribution is represented by a dashed line.

the temporal sequence of gaze steps. Second, if a distribu-
tion of gaze steps is modeled as a mixture of two normal
distributions, these two distributions have the characteris-
tics one would expect from fixations and saccades. Third,
for all 18 distributions considered here, the mixture model
captures the idiosyncratic shape of the empirical distribu-
tions, while the lognormal model does not. Fourth, the
mixture model provides a quantitatively better fit to all
18 distributions, even when it is penalized for its addi-
tional parameters. Finally, differences between tasks in
the best-fitting mixture model parameters are consistent
with basic differences between the tasks themselves.

At a broader level, we think that the important morals
here are that researchers should carefully note qualitative
departures from model fit, and should constrain their the-
orizing based on known facts about the processes underly-
ing their data. The question of which quantitative model of
some dependent variable provides the best fit to the data is
of interest only as long as there are not aspects of the data
that clearly suggest a failure of all the models under con-
sideration. And the question of which statistical model
provides the best fit should be considered against the back-
ground of the cognitive, neural, or motor processes that
generated the data. In the present case, the nature of the
gaze step distribution is mostly defined by basic facts

about how the eyes move; it has its shape because the eyes
are relatively stable for several hundred milliseconds, then
rapidly, in only several tens of milliseconds, move to fixate
a new location.

The observation that the distribution of gaze steps is a
mixture, not a lognormal distribution, raises the question
of how to regard Stephen and Mirman'’s (2010) substantive
claim that interactions of cognitive variables underlie eye
movement behavior. Clearly, we think that this conclusion
is not supported by modeling of the distribution of gaze
steps. However, this should not be taken to suggest that
the claim of interactivity is wrong; we believe researchers
will simply need to look elsewhere for evidence of such
interactivity. There is a well-established modeling tradi-
tion in eye movement research (e.g., in reading: Engbert,
Nuthmann, Richter, & Kliegl, 2005; Reichle, Rayner, & Poll-
atsek, 2003; in scene perception: Itti & Koch, 2001; Nuth-
mann, Smith, Engbert, & Henderson, 2010), and these
models, which differ from each other in many details, treat
fixation duration and saccade targeting as the phenomena
in need of cognitive explanation. With respect to these
variables, the question of interaction or non-interaction
can be meaningfully posed. Are the durations of eye fixa-
tions and the targeting of saccades influenced by interac-
tions between cognitive processes? The fact that the
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Table 2

Log likelihood, AIC, and BIC statistics for the best-fitting mixture model and for the lognormal model, for each distribution of gaze steps.
Feature search Mixture model Lognormal model

loglik AIC BIC loglik AIC BIC

Subject 1 —2871 5753 5765 —8305 16,613 16,618
Subject 2 -51,363 102,736 102,779 -56,695 113,394 113,412
Subject 3 —45,789 91,589 91,632 -57,208 114,421 114,438
Subject 4 -20,618 41,245 41,289 -36,156 72,316 72,333
Subject 5 —24,820 49,650 49,691 -31,625 63,254 63,270
Subject 6 —39,780 79,570 79,614 —49,922 99,848 99,866
Mean -30,874 61,757 61,795 —39,985 79,974 79,989
Conj. search loglik AIC BIC loglik AIC BIC
Subject 1 -9893 19,795 19,808 —-16,880 33,763 33,768
Subject 2 —55,777 111,564 111,608 —-61,572 123,148 123,166
Subject 3 —47,966 95,941 95,985 -61,370 122,743 122,761
Subject 4 —23,651 47,311 47,355 -41,614 83,232 83,249
Subject 5 —43,736 87,481 87,524 -51,130 102,264 102,281
Subject 6 —41,623 83,255 83,300 —54,712 109,429 109,446
Mean -37,107 74,225 74,263 —47,380 95,763 95,779
Visual world loglik AIC BIC loglik AIC BIC
Subject 1 —25,049 50,109 50,121 -30,335 60,673 60,678
Subject 2 —41,309 82,628 82,670 —46,674 93,352 93,369
Subject 3 —32,794 65,599 65,640 —-42,131 84,266 84,283
Subject 4 -12,954 25,919 25,957 -17,472 34,949 34,964
Subject 5 —34,675 69,360 69,401 —42,186 84,377 84,393
Subject 6 -30,672 61,354 61,397 —44,447 88,898 88,915
Mean -29,576 59,161 59,198 -37,208 74,419 74,434

Table 3

Log likelihood, AIC, and BIC statistics for the best-fitting mixture model and for the lognormal model, for each distribution of gaze steps, without outlier
exclusion.

Feature search Mixture model Lognormal model
loglik AIC BIC loglik AIC BIC

Subject 1 —6506 13,021 13,062 —8975 17,953 17,969
Subject 2 -37,995 76,000 76,042 —40,536 81,076 81,092
Subject 3 —47,239 94,489 94,532 -57,250 114,505 114,522
Subject 4 —14,994 29,998 30,039 —25,723 51,450 51,466
Subject 5 —25,604 51,218 51,259 -31,764 63,532 63,549
Subject 6 —48,284 96,577 96,620 —51,965 103,934 103,951
Mean -30,104 60,217 60,259 —36,035 72,075 72,092

Conj. search

Subject 1 —11,038 22,086 22,128 —16,930 33,865 33,881
Subject 2 -57,175 114,361 114,405 —61,702 123,409 123,426
Subject 3 —50,073 100,156 100,200 —61,467 122,938 122,955
Subject 4 —18,075 36,161 36,202 —27,292 54,589 54,606
Subject 5 -30,574 61,159 61,200 —34,454 68,912 68,928
Subject 6 —48,729 97,468 97,512 -55,914 111,832 111,849
Mean —35,944 71,898 71,941 —42,960 85,924 85,941

Visual world

Subject 1 —25,310 50,631 50,672 —30,345 60,694 60,710
Subject 2 —41,994 83,997 84,039 —46,688 93,379 93,396
Subject 3 —32,794 65,599 65,640 —-42,131 84,266 84,283
Subject 4 -12,954 25919 25,957 -17,472 34,949 34,964
Subject 5 —33,067 66,144 66,185 —39,686 79,375 79,392
Subject 6 —36,155 72,320 72,363 —45,573 91,151 91,168

Mean -30,379 60,768 60,809 —36,982 73,969 73,985
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distribution of gaze steps is a mixture of a fixation distribu-
tion and a saccade distribution is entirely consistent with a
positive answer to this question. The eyes alternate be-
tween a fixation state and a saccade state, but it is entirely
possible that, e.g., the time that the eyes spend in the fixa-
tion state is determined by complex interactions between
cognitive processes.*

One notable empirical observation, in this regard, is that
distributions of fixation durations in reading (Staub, White,
Drieghe, Hollway, & Rayner, 2010; White & Staub, 2011)
and in the visual world paradigm (Staub, Abbott, & Bogartz,
submitted for publication) have a single peak and show
only a modest amount of right skew, and are well fit by
the ex-Gaussian distribution (Ratcliff, 1979). Indeed, Staub
et al. (2010) and White and Staub (2011) have pointed out
that fixation duration distributions in reading are substan-
tially less skewed than are response time distributions in
many behavioral paradigms. Thus, application of Stephen
and Mirman’s (2010) distribution-based logic would sug-
gest that these durations are not generated by broadly
interactive processes. We do not wish to endorse non-
interactivity on this basis, however. In fact, we think that
questions of interactivity and non-interactivity are most
likely to be settled in the traditional fashion, by experi-
ments assessing whether manipulations of multiple vari-
ables do, in fact, result in interaction effects on the
dependent measure of interest. To take just one example,
an important issue in the reading literature is whether
the two principal lexical effects on fixation durations in
reading, frequency and predictability, have additive or
interactive effects. On the basis of repeated experimental
failures to demonstrate interactivity (e.g., Hand, Miellet,
O’Donnell, & Sereno, 2010; Rayner, Ashby, Pollatsek, &
Reichle, 2004; Slattery, Staub, & Rayner, 2011), both of
the principal models of eye movements in reading (Engbert
et al,, 2005; Reichle et al., 2003) have explicitly adopted the
assumption of additivity. But this is just one pair of vari-
ables (and one dependent measure, in one task), and it is
likely that there are many theoretically important interac-
tions to be found.

Despite the fact that we disagree with their substantive
claims, we think that Stephen and Mirman (2010) make an
important contribution. Though the eye movement litera-
ture has taken fixations and saccades to be central theoret-
ical constructs, if it had turned out to be the case that
distributions of gaze steps were well fit by any of the
parameterizations tested by Stephen and Mirman, this
might have provided an important alternative way of
understanding eye movement behavior. It might have sug-
gested that though the eyes appear to alternate between a
stable state and a moving state, in fact this appearance is
misleading, as the eyes actually engage in continuous
movement, with the rate of movement varying as pre-
dicted by the best-fitting parameterization of the distance
measure. The fact that the distribution of gaze steps is

4 To draw an analogy: While any useful description of automobile
behavior will recognize that a car alternates between a stationary state and
a moving state, it is surely the case that the time spent in the stationary
state, and the distance traveled in the moving state, are each determined by
complex interactions of variables.

clearly a mixture, however, reaffirms the established fixa-
tions-and-saccades model of eye movement control. This
is an important conclusion.
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